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Second gradient theories have to be used to capture how local micro heterogeneities macroscopically
affect the behavior of a continuum. In this paper a configurational space for a solid matrix filled by an
unknown amount of fluid is introduced. The Euler–Lagrange equations valid for second gradient porome-
chanics, generalizing those due to Biot, are deduced by means of a Lagrangian variational formulation.
Starting from a generalized Clausius–Duhem inequality, valid in the framework of second gradient the-
ories, the existence of a macroscopic solid skeleton Lagrangian deformation energy, depending on the
solid strain and the Lagrangian fluid mass density as well as on their Lagrangian gradients, is proven.

1. Introduction

Poroelasticity stems from Biot’s pioneering contributions on consolidating fluid saturated porous mate-
rials [Biot 1941] and now spans a lot of different interrelated topics, from geo- to biomechanics, wave
propagation, transport, unsaturated media, etc. Many of these topics are related to modeling coupled
phenomena (for example, chemomechanical swelling of shales [Dormieux et al. 2003; Coussy 2004], or
biomechanical models of cartilaginous tissues), and nonstandard constitutive features (for instance, in
freezing materials [Coussy 2005]). In all these cases, complexity generally remains in rendering how
heterogeneities affect the macroscopic mechanical behavior of the overall material.

It is well known from the literature how microscopically heterogeneous materials can be described in
the framework of statistically homogeneous media [Torquato 2002] considering suitable generalizations
of the dilute approximation due to Eshelby [Nemat-Nasser and Hori 1993; Dormieux et al. 2006]; how-
ever, some lack in the general description of the homogenization procedure arises when dealing with
heterogeneous materials, the characteristic length of which can be compared with the thickness of the
region where high deformation gradients occur. This could be due, for example, to external periodic
loading, the wavelength of which is comparable with the characteristic length of the material, or to phase
transition, etc.

From the macroscopic point of view the quoted modeling difficulties, arising when high gradients
occur, are discussed in the framework of so called high gradient theories [Germain 1973], where the
assumption of locality in the characterization of the material response is relaxed. In these theories,
the momentum balance equation reads in a more complex way than the classical one used for Cauchy
continua. As a matter of fact, it is the divergence of the difference between the stress tensor and the
divergence of so-called hyperstresses that balance the external bulk forces. Stress and hyperstress are
introduced by a straightforward application of the principle of virtual power, as those quantities working
on the gradient of velocity and the second gradient of velocity, respectively [Casal 1972; Casal and
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Gouin 1988]. Even the classical Cauchy theorem is, in this context, revised by introducing dependence
of tractions not only on the outward normal unit vector but also on the local curvature of the boundary
[dell’Isola and Seppecher 1997]; moreover symmetric and skew-symmetric couples (the actions called
“double-forces” by Germain) must be prescribed on the boundary in terms of the hyperstress tensor
together with contact edge forces along the lines where discontinuities of the normal vector occur.

Following the early papers on fluid capillarity [Casal 1972; Casal and Gouin 1988], the second gradient
model can indeed be introduced by means of a variational formulation where the considered Helmholtz
free energy depends both on the strain and the strain gradient tensors.

In the case of fluids, second gradient theories are typically applied for modeling phase transition
phenomena [de Gennes 1985] or for modeling wetting phenomena [de Gennes 1985], when a character-
istic length, say the thickness of a liquid film on a wall, becomes comparable with the thickness of the
liquid/vapor interface [Seppecher 1993], annihilation (nucleation) of spherical droplets, when the radius
of curvature is of the same order of the thickness of the interface [dell’Isola et al. 1996], or topological
transition [Lowengrub and Truskinovsky 1998].

In the case of solids, second gradient theories are applied, for instance, when modeling the failure
process associated with strain localization [Elhers 1992; Vardoulakis and Aifantis 1995; Chambon et al.
2004]. To the best of our knowledge, second gradient theories are very seldom applied in the mechanics
of porous materials [dell’Isola et al. 2003] and no second gradient poromechanical model, consistent
with the classical Biot theory, is available except the one presented in [Sciarra et al. 2007]. As gradient
fluid models, second gradient poromechanics will be capable of providing significant corrections to
the classical Biot model when considering porous media with characteristic length comparable to the
thickness of the region where high fluid density (deformation) gradients occur. We refer, for instance, to
crack/pore opening phenomena triggered by strain gradients or fluid percolation, the characteristic length
being in this case the average length of the space between grains (pores).

Several authors have focused their attention on the development of homogenization procedures capable
of rendering the heterogeneous response of the material at the microlevel by means of a second gradi-
ent macroscopic constitutive relation [Pideri and Seppecher 1997; Camar-Eddine and Seppecher 2003];
however, very few contributions seem to address this problem in the framework of averaging techniques
[Drugan and Willis 1996; Gologanu and Leblond 1997; Koutzetzova et al. 2002]. The present work does
not investigate the microscopic interpretation of second gradient poromechanics, but directly discusses
its macroscopic formulation. It is divided into two papers: in the first paper the basics of kinematics,
Section 2; the physical principles, Section 3; the thermodynamical restrictions, Section 4; and in Section
5 the variational deduction of the governing equations for a second gradient fluid filled porous material
are presented.

In particular, in Section 2 a purely macroscopic Lagrangian description of motion is addressed by
introducing two placement maps in χs and φ f (Equation (1)). We do not explicitly distinguish which
part of the current configuration of the fluid filled porous material is occupied at any time t by the solid
and fluid constituents, this information being partially included by the solid and fluid apparent density
fields, which provide the density of solid/fluid mass with respect to the volume of the porous system
(Equation (5)).
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The deformation power, or stress working (Equation (12)), following Truesdell [1977] is deduced in
Section 3 starting from the second gradient expression of power of external forces (Equation (9)) Cauchy
theorem (Equation (10)) and balance of global momentum (see (11)).

In the spirit of Coussy et al. [1998] and Coussy [2004] thermodynamical restrictions on admissible
constitutive relations are stated in Section 4, finding out a suitable overall potential, defined on the
reference configuration of the solid skeleton. This last depends on the skeleton strain tensor and the
fluid mass content, measured in the reference configuration of the solid, as well as on their Lagrangian
gradients, in Equation (18).

Finally a deduction of the governing equations is presented in Section 5, based on the principle of
virtual works, by requiring the variation of the internal energy to be equal to the virtual work of external
and dissipative forces (see (19)). A second gradient extension of the two classical Biot equations of
motion [Coussy 2004; Sciarra et al. 2007], endowed with the corresponding transversality conditions on
the boundary, is therefore formulated (see Equations (30)–(33)). Generalizing the treatment developed,
for example, by Baek and Srinivasa [2004] for first gradient theories, one of the equations of motion
found by means of a variational principle is interpreted as the balance law for total momentum, when
suitable definitions of the global stress and hyperstress tensors are introduced (see (34)).

In a subsequent paper (Part II, to be published in a forthcoming issue of this journal), an application of
the second gradient model to the classical consolidation problem will be discussed. Our aim is to show
how the present model enriches the description of a well-known phenomenon, typical of geomechanics,
curing some of the weaknesses of the classical Terzaghi equation [von Terzaghi 1943]. In particular
we will figure out the behavior of the fluid pressure during the consolidation process when varying the
initial pressures of the solid skeleton and/or the saturating fluid. From the mathematical point of view,
the initial boundary value problem will be discussed according with the theory of linear pencils.

2. Kinematics of fluid filled porous media and mass balances

The behavior of a fluid filled porous material is described, in the framework of a macroscopic model,
adopting a Lagrangian description of motion with respect to the reference configuration of the solid
skeleton. At any current time t the configuration of the system is determined by the maps χs and φ f ,
defined as

χs : Bs × I → E, φ f : Bs × I → B f , (1)

where Bα (α = s, f ) is the reference configuration of the α-th constituent, while E is the Euclidean place
manifold, and I indicates a time interval. The map χs ( · , t) prescribes the current (time t) placement
x of the skeleton material particle Xs in Bs . The map φ f ( · , t), on the other hand, identifies the fluid
material particle X f in B f which, at time t , occupies the same current place x as the solid particle Xs .
Therefore the set of fluid material particles filling the solid skeleton is unknown, to be determined by
means of evolution equations. Both these maps are assumed to be at least diffeomorphisms on E. The
current configuration Bt of the porous material is the image of Bs under χs ( · , t). In accordance with
the properties of χs and φ f it is straightforward to introduce the fluid placement map as

χ f : B f × I → E, such that χ f ( · , t) = χs ( · , t) ◦ φ f ( · , t)−1 ,
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Figure 1. Lagrangian variations of the placement maps χs , φ f , and χ f .

where χ f ( · , t) is still a diffeomorphism on E. Figure 1 shows how the introduced maps operate on the
skeleton particle Xs ∈ Bs ; admissible variations of the two maps χs ( · , t) and φ f ( · , t) are also depicted,
in Section 5. In this way the space of configurations we will use has been introduced.

Independently of t ∈ I, the Lagrangian gradients of χs and φ f are introduced as

Fs ( · , t) : Bs → Lin (V E) , 8 f ( · , t) : Bs → Lin (V E) ,

Xs 7→ ∇sχs (Xs, t) , Xs 7→ ∇s φ f (Xs, t) ,
(2)

with V E being the space of translations associated to the Euclidean place manifold. In Equation (2) ∇s

indicates the Lagrangian gradient in the reference configuration of the solid skeleton; analogously, the
gradient of χ f is given by Ff

(
X f , t

)
= Fs (Xs, t) .8 f (Xs, t)−1, where X f = φ f (Xs, t). 1

In the following the fluid Lagrangian gradient of χ f will be indicated both by Ff or ∇ f χ f when
confusion can arise. Moreover, the time derivatives of χs and χ f , say the Lagrangian velocities of the
solid skeleton and the fluid, can be introduced as

for all Xα ∈ Bα, Vα (Xα, · ) : I → V E, t 7→
dχα

dt

∣∣∣∣
(Xα,t)

.

We also introduce the Eulerian velocities vα as the push-forward of Vα into the current domain

vα ( · , t) = Vα ( · , t) ◦ χα ( · , t)−1 .

In the following we do not explicitly distinguish the map χs from its section χs ( · , t) if no ambiguity can
arise. Moreover we will distinguish between the Lagrangian gradient (∇s) in the reference configuration
of the solid skeleton and the Eulerian gradient (∇) with respect to the current position x. Analogously,
the solid Lagrangian and the Eulerian divergence operations will be noted by divs and div, respectively.
All the classical transport formulas can be derived both for the solid and the fluid quantities; in particular,

1From now on we will indicate single, double and triple contraction between two tensors with . , : , and
... respectively.
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those ones for an image volume and oriented surface element turn to be

dBt = JαdBα, nd St = Jα F−T
α .nαd Sα,

where dBt and d St represent the current elementary volume and elementary oriented surface corre-
sponding to dBα and d Sα, respectively, where Jα = det Fα, and where n and nα are the outward unit
normal vectors to d St and d Sα . As far as only the solid constituent is concerned, we can understand that
deformation induces changes in both the lengths of the material vectors and the angles between them.
As it is well known, the Green–Lagrange strain tensor ε measures these changes, and is defined as

ε :=
1
2

(
FT

s .Fs − I
)
, (3)

where I clearly represents the second order identity tensor.
The balance of mass both for the solid and the fluid constituent are introduced as

Mα =

∫
Bt

ρα dBt = const =

∫
Bα

ρ0
α dBα, (α = s, f ) , (4)

where Mα is the total mass of the α-th constituent, ρα is the current apparent density of mass of the α-th
constituent per unit volume of the porous material, while ρ0

α is the corresponding density in the reference
configuration of the α-th constituent. When localizing, Equation (4) reads

ρα Jα = ρ0
α, (α = s, f ) ,

or, in differential form,
dαρα

dt
+ ρα div (vα) = 0, (α = s, f ) , (5)

where dαρα/dt represents the material time derivative relative to the motion of the α-th constituent. In
other words,

dα

dt
:=

d
dt

∣∣∣∣
Xα=const

.

The macroscopic conservation laws could also be deduced in the framework of micromechanics
[Dormieux and Ulm 2005; Dormieux et al. 2006] starting from a refined model, where the solid and
the fluid material particles occupy two disjoint subsets of the current configuration, and considering an
average of the solid and fluid microscopic mass balances. The macroscopic laws do involve the so called
apparent density of the constituents and suitable macroscopic velocity fields. For a detailed description
of the procedure which leads to averaged conservation laws we refer to the literature [Coussy 2004].

2.1. Pull back of continuity equations. It is clear that Equation (5) consists of Eulerian equations, mean-
ing that they are defined on the current configuration of the porous medium. Following Wilmanski [1996]
and Coussy [2004] we want to write both these equations in the reference configuration of the solid
skeleton. With this purpose in mind let us define the relative fluid mass flow w as w := ρ f

(
v f − vs

)
.

The use of this definition allows us to rearrange the fluid continuity (5) in the form

dsρ f

dt
+ ρ f div vs + div w = 0. (6)



512 GIULIO SCIARRA, FRANCESCO DELL’ISOLA, NICOLETTA IANIRO AND ANGELA MADEO

We want now to rewrite the continuity equation for the fluid constituent in the reference configuration of
the solid skeleton. The Lagrangian approach to the fluid mass balance can be carried out by introducing
the current Lagrangian fluid mass content m f , defined as

m f := Js
(
ρ f ◦ χs

)
. (7)

Furthermore, let M be the Lagrangian vector referred to the reference configuration of the solid and
related to the flow w through the relations

M := Js F−1
s . (w ◦ χs) , Js (div w ◦ χs) = (divs M) . (8)

By using the definitions from Equations (7) and (8) in (6) the fluid Lagrangian mass balance takes the
form

dm f

dt
+ divs M = 0.

3. Power of external forces

In this section, starting from the statement of the power of external forces for a second gradient solid-
fluid mixture, we deduce its corresponding reduced form, accounting for the extended Cauchy theorem
valid for second gradient continua [Casal 1972; Germain 1973; dell’Isola and Seppecher 1997], and the
balance of global momentum. The external power Pext

(
vs, v f

)
for a second gradient porous medium

can be defined as a continuous linear functional of the velocity fields vα; in particular

Pext (vs, v f
)
:=

∫
Bt

(
bs .vs + b f .v f

)
dBt +

∫
∂Bt

(
ts .vs + t f .v f

)
dSt

+

∫
∂Bt

(
τ s .

∂vs

∂n
+ τ f .

∂v f

∂n

)
dSt +

m∑
k=1

∫
Ek

(
f k

s .vs + f k
f .v f

)
dl, (9)

where Bt is the current volume occupied by the porous medium, ∂Bt its boundary, and m is the number
of edges Ek (if any) of the boundary. In addition, bα, tα, τα, and f k

α represent the body force density,
the generalized traction force (Cauchy stress vector), the double force vector, and the force per unit line
acting on the k-th edge of the boundary, respectively.

The physical meaning of the double force τα can be described in a way similar to that used in different
contexts in [Germain 1973] and [dell’Isola and Seppecher 1997]. It can be regarded as the sum of two
different contributions, the first of which works on the rate of dilatancy along the outward unit normal n
(∇vα : (n ⊗ n)), and the second being a tangential couple working on the vorticity; this nomenclature is
due to Germain [1973].

Let σ α and Cα be the apparent Cauchy stress and hyperstress tensors per unit volume of the porous
material relative to the α-th constituent [Germain 1973; dell’Isola and Seppecher 1997]. The Cauchy
theorem can be extended for a second gradient continuum, and in particular for a second gradient porous
continuum, in order to specify how the generalized external tractions appearing in (9) can be balanced
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by the internal forces when considering any subdomain of the current volume. In particular we have2

tα = (σ α − div Cα).n − divS (Cα.n) , τα = (Cα.n).n, f k
α = [] (Cα.n).ν[]k, (10)

where ν is the binormal unit vector which form a left-handed frame with the unit normal n and the
unit vector being tangent to the k-th edge. We note that, since n is not continuous through the edge k,
the vector ν is also discontinuous when passing from one side of the edge k to the other. It is for this
reason that the edge force f k

α is balanced by the jump of the internal force (Cα.n).ν through the edge
k. Extending classical poromechanics [Biot 1941; Coussy 2004] we now define the overall stress and
hyperstress tensors as σ := σ f + σ s and C := C f + Cs, so that the momentum balance for the porous
medium as a whole reads

div (σ − div C) + b = 0, (11)

where b = bs +b f is the overall body force. Bearing in mind both the extended Cauchy theorem, Equation
(10), and the overall balance of momentum, (11), together with the principle of virtual powers (Pext

=

Pdef.), (9) leads to the expression for the deformation power

Pdef.(v, ω) =

∫
Bt

[
σ : ∇v + div

(
σ T

f .ω
)

+ C
... ∇∇v + C f

... ∇∇ω − div
(
div C f

)
.ω

]
dBt . (12)

Here and later on v := vs and ω := v f − vs . Moreover, it must be remarked that (12) is obtained under
the hypothesis of absence of volume forces (bα = 0) so that no inertia is taken into account in our model.
We refer to [Coussy 2004] for the complete form of the deformation power in the case of first gradient
porous continua. From now on, we also assume that the structure of the hyperstress tensors Cα (α = f, s)
takes the particular form

Cα = I ⊗ cα, α = f, s, (13)

where I is the second order identity tensor and cα is a kind of hyperstress vector related to the α-th
constituent. The use of this assumption restricts second gradient external forces just to vector fields
τα, which only work on the stretching velocity of the α-th constituent; in other words, no contribution
to the vorticity on the boundary of Bt comes from τα. The aforementioned hypotheses indeed restrict
the second gradient model; however, solid microdilatancies and capillarity effects can be still described
by this second gradient model. According to (13) the external power due to second gradient effects,
Equations (9) and (10), reduces to

τα.
∂vα

∂n
= {[(I ⊗ cα) .n] .n} .

∂vα

∂n
= (cα.n) n.

∂vα

∂n
= (cα.n) [∇vα : (n ⊗ n)] .

3.1. Pull-back operations. Let us now consider the solid reference configuration pull-back of the defor-
mation power; in order to do so, we will introduce the Piola–Kirchhoff like stress and hyperstress tensors
for the overall body and for the fluid constituent. Thus, Piola–Kirchhoff stress (S) and hyperstress (γ )
are defined so that

Jsσ : ∇v =: S :
dε

dt
H⇒ S = Js F−1

s .σ .F−T
s , (14)

2Fixed a basis (e1, e2, e3), where e1 and e2 span the plane tangent to the surface ∂Bt at x, and the surface divergence of a
second order tensor field A is defined as divS A :=

∑2
α=1 (∂ A/∂xα) eα .
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JsC
... ∇∇v =: γ .

[(
∇s

dε

dt

)T

: C−1
− (∇s C)T

:

(
C−1.

dε

dt
.C−1

)]
H⇒ γ = Js F−1

s .c,

where C = FT
s .Fs is the Cauchy–Green strain tensor and c is the total hyperstress vector defined by

c = cs + c f . Moreover, the fluid ones are Sf =: Js F−1
s .σ f .F−T

s , and γ f =: Js F−1
s .c f . The deformation

power Pdef. can be finally written in the Lagrangian form

PL
def.

=

∫
Bs

P̂L
def. dBs,

where

P̂L
def.

=

{[
S − C−1. ((∇s C).γ ) .C−1]

:
dε

dt
+
(
C−1

⊗ γ
) ...

(
∇s

dε

dt

)
+ divs

(
1

m f
ST

f .M
)

+ ∇s

[
divs

(
M
m f

)]
.γ f −

M
m f

.∇s
(
divs γ f

)
+ divs

[(
J−1

s
M
m f

.∇s Js

)
γ f

]}
.

4. Thermodynamics: deduction of a macroscopic second gradient strain energy potential

In this section, starting from the first and second principles of thermodynamics, we will prove that a
suitable macroscopic strain potential can be identified depending both on the solid strain and on the fluid
mass density as well as on their Lagrangian gradients. Let eα be the Eulerian density of internal energy
relative to the α-th constituent, and the corresponding energy density of the porous medium is defined
as e := ρses + ρ f e f . The first principle of thermodynamics can be written as [Coussy 2004]

ds

dt

∫
Bt

ρses dBt +
d f

dt

∫
Bt

ρ f e f dBt = Pext
+ Q̊,

where Q̊ := −
∫

Bt
q.ndBt is the rate of heat externally supplied, and where q is the heat flow vector. In

the Lagrangian form the first principle reads

d
dt

∫
Bs

E dBs = PL
def.

−

∫
Bs

divs
(
e f M + Q

)
dBs . (15)

where we recall that d/dt is the material time derivative associated with the motion of the solid, E := Jse
represents the Lagrangian density of internal energy, and Q is the Lagrangian heat flux defined by
Q := Js F−1

s .q. Starting from Equation (15), the local Lagrangian form of the first principle is naturally
given by

d E
dt

= P̂L
def.

− divs
(
e f M + Q

)
.

Let us now consider the second principle of thermodynamics and introduce the overall Eulerian density
of entropy s as s := ρsss + ρ f s f . The corresponding Lagrangian entropy is S := Jss, and the Lagrangian
form of the second principle can be written as [Coussy 2004]

d
dt

∫
Bs

S dBs ≥ −

∫
Bs

divs

(
s f M +

Q
T

)
dBs . (16)
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If we now introduce the Helmholtz free energy 9 as 9 := E − T S, Equation (16) can be rewritten in
the local form as

d E
dt

− S
dT
dt

−
d9

dt
≥ −T divs

(
s f M +

Q
T

)
.

Merging the local form of the first and the second principles, the extended Clausius–Duhem inequality
(dissipation inequality) can be deduced. In particular, following Sciarra et al. [2007], we will distinguish
different contributions to the dissipation function due to the solid and fluid motion and to thermal effects,
respectively (8s , 8 f , and 8th).

We now constitutively restrict [Coleman and Noll 1963] the admissible processes only to those ones
which guarantee the dissipation inequality to be satisfied, because 8s , 8 f and 8th are separately non-
negative. In particular, the solid dissipation 8s reads

8s =

{
S − C−1. [(∇s C).γ ] .C−1

−
[
Js C−1.∇s

(
J−1

s m f
)]

⊗
γ f

m f

}
:

dε

dt
+
(
C−1

⊗ γ
) ...

d
dt

(∇sε)

+

[
g f −

(
1 +

1
tr I

)
γ f .∇s

(
1

m f

)
−

J−1
s

tr I
γ f

m f
.∇s Js

]
.
dm f

dt
−

γ f

m f
.

d
dt

(
∇sm f

)
− S

dT
dt

−
d9

dt
. (17)

Assuming nondissipative processes occurring in the solid skeleton (8s = 0), Equation (17) allows for
regarding the internal energy 9 as a state function

9 = 9
(
ε, m f , ∇sε, ∇sm f , T

)
. (18)

From now on we will treat an isothermal problem and therefore assume the energy 9 does not depend
on the temperature field T .

5. Variational deduction of second gradient poroelastic equations

5.1. Basic concepts and first variation of the internal energy. In this section we deduce the governing
equations for a second gradient poroelastic continuum by means of a variational procedure. Variational
approaches to first gradient mixture models are available in the literature [Bedford and Drumheller 1978;
Gavrilyuk et al. 1998; Gouin and Ruggeri 2003].

In our case, we introduce the varied placement maps χ∗
s and φ∗

f for all Xs ∈ Bs as

χ∗

s (Xs, t) = χs (Xs, t) + δχs (Xs, t) , φ∗

f (Xs, t) = φ f (Xs, t) + δφ f (Xs, t) ,

where δχs and δφ f represent arbitrary variations of the functions χs and φ f , respectively. The physical
meaning of the variation δχs is well known in continuum mechanics, and stands for the virtual displace-
ment (deformation) of the solid skeleton. The variation δφ f , instead, accounts for the virtual relative
displacement of a fluid material particle with respect to a solid one (see Figure 1). Since these variations
keep fixed Xs ∈ Bs we label them Lagrangian variations and we note that the symbol δ commutes with
the integral over Bs and with the Lagrangian gradient operator ∇s .

Following the statements of classical mechanics [Gantmacher 1970; Arnold 1989], the principle of
virtual works reads

δA = δLext
+ δLdiss, (19)
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where δA represents the Lagrangian variation of the internal energy of the porous material, defined as

A :=

∫
Bs

9 dBs,

while δLext and δLdiss are the virtual works due to the external and dissipative forces acting on the
porous system. Because of the aforementioned properties of the Lagrangian variations we can write

δA = δ

∫
Bs

9 dBs =

∫
Bs

δ9 dBs . (20)

Recalling now Equation (18), (20) implies

δA =

∫
Bs

(
∂9

∂ε
: δε +

∂9

∂m f
δm f +

∂9

∂ (∇sε)

... δ (∇sε) +
∂9

∂
(
∇sm f

) .δ (∇sm f
))

dBs . (21)

The variations δε, δm f , δ (∇sε), and δ
(
∇sm f

)
must now be rewritten in terms of the variations of the

primitive kinematical fields χs and φ f , bearing in mind that the Lagrangian variation commutes with the
operator ∇s . We show here directly the results obtained in Appendix A, to which we refer for detailed
calculations,

δε =
1
2

{
(∇s (δχs))

T .Fs + FT
s .∇s (δχs)

}
, (22)

and
δm f = m f

(
∇s φ f

)−T
: ∇s

(
δφ f

)
. (23)

Substituting (22) and (23) into (21), integration by parts (see Appendix B for details), allows us to
write the variation of the second gradient potential A as

δA =

∫
Bs

AdBs +

∫
∂Bs

a dSs +

m∑
k=1

∫
Ek

αdl, (24)

where m is the number of edges Ek of the body in the reference configuration of the solid and

A := − divs

[
Fs .

(
∂9

∂ε
− divs

(
∂9

∂(∇sε)

))]
.δχs+

{(
∇s φ f

)−T
.

[
−m f ∇s

(
∂9

∂m f
− divs

(
∂9

∂
(
∇sm f

)))]}.δφ f ,

a :=

{[
Fs .

(
∂9

∂ε
− divs

(
∂9

∂(∇sε)

))]
.ns − divS

s

[
Fs .

(
∂9

∂(∇sε)
.ns

)]}
.δχs

+

{[
Fs .

(
∂9

∂(∇sε)
.ns

)]
.ns

}
.
∂(δχs)

∂ns

+

{(
∇s φ f

)−T
.

[
m f

(
∂9

∂m f
− divs

(
∂9

∂
(
∇sm f

))) ns − m f ∇
S
s

(
∂9

∂
(
∇sm f

) .ns

)]}
.δφ f

+

[(
∇s φ f

)−T
.

(
m f

∂9

∂
(
∇sm f

) .ns

)
ns

]
.
∂
(
δφ f

)
∂ns

,

α :=

{[
Fs .

(
∂9

∂ (∇sε)
.ns

)]
.ν

}
.δχs, +

[(
∇s φ f

)−T
.

(
m f

∂9

∂
(
∇sm f

) .ns

)
ν

]
.δφ f .
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5.2. Dissipative governing equations. In order to obtain the equations of motion for a second gradient
poroelastic continuum, the form of the external and dissipation virtual works, δLext and δLdiss, formally
introduced in Equation (19), must be stated. The virtual dissipation δLdiss will account for the classi-
cal Darcy effects and for the so called Brinkman-like contributions [Brinkman 1947]. We define the
dissipation δLdiss in the Eulerian configuration as

δLdiss
:= −

∫
Bt

{
D
(
v f − vs

)
.
[(

δχ f ◦ φ f − δχs
)
◦ χ−1

s
]}

dBt

−

∫
Bt

{[
A.∇

(
v f − vs

)]
: ∇

[(
δχ f ◦ φ f − δχs

)
◦ χ−1

s
]}

dBt , (25)

where D is the symmetric, definite positive Darcy tensor and A is a suitably defined symmetric, definite
positive second gradient Darcy-like tensor.

Moreover, from now on, we assume the following Eulerian expression for the external work δLext,

δLext
:= −

∫
∂Bt

{
t .
(
δχs ◦ χ−1

s
)
+ t f .

[(
δχ f ◦ φ f − δχs

)
◦ χ−1

s
]}

dSt . (26)

We restrict our attention to t and t f , defined as

t := pext n, t f := ρ f µ
ext n, (27)

where pext is the overall external pressure applied on ∂Bt , and µext is the chemical potential of the fluid
outside the porous system. By comparison of Equation (26) with (9), we are assuming vanishing double
forces and edge forces on the external boundary, as well as vanishing bulk actions. Equation (26), the
expression for the external work, states that the external force t works only on the displacement of the
solid skeleton (δχs), while µext works on the fluid mass virtual relative displacement ρ f

(
δχ f − δχs

)
.

We note that if µext is spatially constant then∫
∂Bt

ρ f µ
ext [(δχ f ◦ φ f − δχs

)
◦ χ−1

s
]

dSt =

∫
∂Bs

(
µext

◦ χs
)
δm f dSs,

that is, µext works on the fluid mass which leaves (or enters) the solid skeleton (see Appendix C for
details). Equation (26) for δLext can be rewritten (see Appendix C) on the reference configuration of the
solid as

δLext
=

∫
∂Bs

{
−
(

pext Js F−T
s .ns

)
.δχs +

[
µextm f

(
∇s φ f

)−T
.ns

]
.δφ f

}
dSs . (28)

Finally, (25) for δLdiss (see Appendix C) assumes the Lagrangian form

δLdiss
=

∫
Bs

{[(
∇s φ f

)−T
.
(
Js D FT

s .
(
V f ◦ φ f − Vs

))]
.δφ f

}
dBs

−

∫
Bs

{(
∇s φ f

)−T
.
[
FT

s . divs
(
JsA.∇s

(
V f ◦ φ f − Vs

)
.(FT

s .Fs)
−1)]} .δφ f dBs

+

∫
∂Bs

{[(
∇s φ f

)−T
.
(
Js FT

s .A.∇s
(
V f ◦ φ f − Vs

)
.(FT

s .Fs)
−1)] .ns

}
.δφ f dSs . (29)
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Starting from the principle of virtual works, (19), and using (24), (29), and (28) for δA, δLdiss, and
δLext, respectively, we can write the local equations of motion on Bs as

− divs

[
Fs .

(
∂9

∂ε
− divs

(
∂9

∂ (∇sε)

))]
= 0, (30)

and

(
∇s φ f

)−T
.

[
−m f ∇s

(
∂9

∂m f
− divs

(
∂9

∂
(
∇sm f

)))− Js D FT
s .
(
V f ◦ φ f − Vs

)]
+
(
∇s φ f

)−T
.
[
FT

s . divs
(
JsA.∇s

(
V f ◦ φ f − Vs

)
.(FT

s .Fs)
−1)]

= 0. (31)

Analogously the boundary conditions on ∂Bs read[
Fs .

(
∂9

∂ε
− divs

(
∂9

∂ (∇sε)

))]
.ns − divS

s

[
Fs .

(
∂9

∂ (∇sε)
.ns

)]
= − Js pext F−T

s .ns

(
∇sφ f

)−T
.

[
m f

(
∂9

∂m f
− divs

(
∂9

∂
(
∇sm f

)))ns − m f ∇
S
s

(
∂9

∂
(
∇sm f

) .ns

)]
+

−
(
∇sφ f

)−T
.
{[

JsFT
s .A.∇s

(
V f ◦ φ f − Vs

)
.(FT

s .Fs)
−1] .ns

}
=
(
∇sφ f

)−T
.
(
m f µ

ext ns
)
, (32)

[
Fs .

(
∂9

∂ (∇sε)
.ns

)]
.ns = 0,

(
∇sφ f

)−T
.

[(
m f

∂9

∂
(
∇sm f

) .ns

)
ns

]
= 0.

Finally, on the edges Ek of the boundary (if any) the following conditions hold true:[
Fs .

(
∂9

∂ (∇sε)
.ns

)]
.ν = 0,

(
∇s φ f

)−T
.

[(
m f

∂9

∂
(
∇sm f

) .ns

)
ν

]
= 0. (33)

The Darcy and Brinkman dissipations appearing in Equations (31) and (32) can be rewritten in terms
of the Lagrangian vector M, previously defined as M = m f F−1

s .
(
v f − vs

)
. In fact, after some straight-

forward calculations, it can be proven that

∇
(
v f − vs

)
=

1
m f

{[
(∇s Fs)

T . M
]T

+ Fs .∇s M
}

+ Fs .

[
M ⊗ ∇s

(
1

m f

)]
.

We now show that (30) is in agreement with the classical second gradient balance law for the total
momentum [Germain 1973; dell’Isola and Seppecher 1997]. In order to do so, considering assumption
(13), it can be proven that the constitutive relations for S and γ (see Equations (14))

∂9

∂ε
= S − C−1. ((∇s C).γ ).C−1,

∂9

∂ (∇sε)
= C−1

⊗ γ , (34)
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imply that (30) can be regarded as the solid-Lagrangian pull-back of (11). In other words,

Js div (σ − div C) = divs
{

Fs .
[
S − C−1. ((∇s C).γ ).C−1

− Fs . divs
(
C−1

⊗ γ
)]}

= 0.

6. Concluding remarks

In this paper a purely macroscopic second gradient theory of poromechanics is presented, extending
classical Biot poromechanics [Biot 1941; Coussy 2004]. Following a standard procedure, sketched in
[Coussy et al. 1998], we determine a suitable representation formula of the deformation power, (12), for
a second gradient porous medium, assuming the forces acting on solid skeleton to be balanced (using
the generalized second gradient balance of momentum in the current domain and the generalized second
gradient Cauchy theorem on its boundary) and the power of external forces to be that of two super-
posed second gradient continua [Germain 1973]. The principles of thermodynamics, together with the
aforementioned representation of the deformation power, allow for deducing the existence of a suitable
overall strain energy potential 9 depending on the solid strain tensor ε and the solid Lagrangian fluid
mass density m f , as well as on their Lagrangian gradients.

The Euler–Lagrange equations associated with the energy density 9 are the governing equations of
the problem. In particular, Lagrangian variations of the placement maps χs and φ f are considered. It
is worth noting that the governing equations associated with the solid Lagrangian displacement δχs

(when δφ f = 0) represents the balance of total momentum and therefore allows for the constitutive char-
acterization of the overall stress and hyperstress tensors. This is a characteristic feature of the classical
Biot model [Baek and Srinivasa 2004], which is completely recovered in this more general framework.
On the other hand, the governing equation associated with the fluid placement map δφ f represents the
balance of momentum relative to the pure fluid, which, in this case, is a generalization of the classical
Darcy law.

In part II, an application to the classical consolidation problem will show how the present model
improve the classical ones. It is well known that second gradient theories are capable to detect boundary
layer effects in the vicinity of interfaces; this is indeed what we will observe in the case of consolidation.
In particular, a kind of fluid mass density increment in the neighborhood of the impermeable wall will
be observed for the first time in a one dimensional problem [Mandel 1953; Cryer 1963].

Appendix A: Basic variations

We show here how to derive the variations δε and δm f in terms of the kinematical variations δχs and
δφ f . Equation (3) for the Green–Lagrange strain tensor implies

δε =
1
2

[(
δs FT

s
)
.Fs + FT

s .δs Fs
]
,

where by definition Fs := ∇sχs ; the expression (22) for δε is easily derived. As far as the variation δm f

is concerned, recalling definition (7) for m f we can write

m f = Js J−1
f ρ0

f , (A.1)

where ρ0
f is the fluid density in the reference configuration of the fluid. Since by definition

J f := det(∇ f χ f ) and φ f := χ−1
f ◦ χs,
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we have

J f = det
[
∇ f

(
χs ◦ φ−1

f

)]
= det

(
∇sχs .∇ f φ

−1
f

)
= Js det

(
∇s φ f

)−1
,

where for the sake of simplicity we neglect the dependence of the considered fields on the reference
places. Equation (A.1) thus reads

m f = ρ0
f det

(
∇s φ f

)
. (A.2)

By derivation rule of the determinant and assuming ρ0
f = constant, we get

δm f = ρ0
f δ
[
det

(
∇s φ f

)]
= ρ0

f det
(
∇s φ f

)
tr
[(

∇s φ f
)−1

.δ
(
∇s φ f

)]
= m f

[(
∇s φ f

)−T
: ∇s

(
δφ f

)]
.

Appendix B: Variation of the internal energy

The procedure to calculate the variation δA of the internal energy will be here shown in detail.
According to Equations (21)–(23) and recalling that ∂9/∂ε is a symmetric second order tensor, while

∂9/∂(∇sε) is a third order tensor symmetric with respect to its first two indices, we can write

δA =

∫
Bs

(
A1

+ A2
s + A2

f

)
dBs, (B.1)

where

A1
:=

∂9

∂ε
:
(
FT

s .∇s (δχs)
)
+ m f

∂9

∂m f

(
∇s φ f

)−T
: ∇s

(
δφ f

)
,

A2
s :=

∂9

∂ (∇sε)

... ∇s
(
FT

s .∇s (δχs)
)
,

A2
f :=

∂9

∂
(
∇sm f

) .∇s

(
m f

(
∇s φ f

)−T
: ∇s

(
δφ f

))
,

account for the first gradient contribution to δA and for the solid and fluid second gradient contributions
respectively.

The following identities are recalled in order to perform integrations by parts in (B.1); let λ, a, A,
and A be scalar, first, second, and third order tensor fields respectively. (Here ∇

S a indicates the surface
gradient operator of a vector field a defined — analogously to divS

s — as ∇
S a = ∂a/∂xα ⊗ eα, α = 1, 2,

where eα belong to the tangent plane.) Then,

div
(

AT .a
)
= A :∇a + a. div A, div (λA) = A.∇λ + λ div A, div (λa) = a.∇λ + λ div a,

div
(
AT

: A
)
= A : div A+ (∇ A)

... A, ∇a = ∇
S a +

∂a
∂n

⊗ n,

where transposition for third order tensors is defined so as AT
:= ai jk ek ⊗ ei ⊗ e j if A = ai jk ei ⊗ e j ⊗ ek .

Moreover, given second order tensors A, B, C, third and first order tensors A and a the following
identities are satisfied:

A : (B.C) =
(
BT.A

)
: C =

(
A.CT )

: B,
(
AT

: A
)
.a = A : (A.a) .
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Finally, if ϕ = χs or ϕ = φ f , the identity holds true that

0 = divs
[
det (∇sϕ) (∇sϕ)−T ]

= det (∇sϕ) divs
[
(∇sϕ)−T ]

+ (∇sϕ)−T .∇s [det (∇sϕ)] . (B.2)

We underline that this equality holds unchanged for the surface divergence operator divS
s . For the sake

of simplicity, we will perform integration by parts for the first and second gradient terms appearing in
(B.1) separately. Integration by parts of the first gradient term, recalling Equation (A.2) for m f and using
Equation (B.2) for φ f , leads to

∫ 1

Bs
A1 dBs = −

∫
Bs

divs

(
Fs .

∂9

∂ε

)
. δχs dBs +

∫
∂Bs

[(
Fs .

∂9

∂ε

)
.ns

]
. δχs dSs

−

∫
Bs

{(
∇s φ f

)−T
.

[
m f ∇s

(
∂9

∂m f

)]}
. δφ f dBs +

∫
∂Bs

[(
∇s φ f

)−T
.

(
m f

∂9

∂m f
ns

)]
. δφ f dSs . (B.3)

Integrating by parts the solid second gradient term we get

∫ 2

Bs
A2

s dBs = −

∫
Bs

∇s (δχs) :

[
Fs . divs

(
∂9

∂ (∇sε)

)]
dBs +

∫
∂Bs

∇s (δχs) :

[
Fs .

(
∂9

∂ (∇sε)
.ns

)]
dSs

= −

∫
∂Bs

[(
Fs . divs

(
∂9

∂ (∇sε)

))
.ns

]
. δχs dSs +

∫
Bs

divs

[
Fs . divs

(
∂9

∂ (∇sε)

)]
. δχs dBs

+

∫
∂Bs

(
∇

S
s (δχs) +

∂ (δχs)

∂ns
⊗ ns

)
:

[
Fs .

(
∂9

∂ (∇sε)
.ns

)]
dSs .

Performing a further surface integration by parts we finally get

∫
Bs

A2
s dBs = −

∫
∂Bs

[(
Fs . divs

(
∂9

∂ (∇sε)

))
.ns

]
.δχs dSs +

∫
Bs

divs

[
Fs . divs

(
∂9

∂ (∇sε)

)]
.δχs dBs

−

∫
∂Bs

divS
s

(
Fs .

(
∂9

∂ (∇sε)
.ns

))
.δχs dSs +

∫
∂Bs

[(
Fs .

(
∂9

∂ (∇sε)
.ns

))
.ns

]
.
∂ (δχs)

∂ns
dSs

+

n∑
k=1

∫
Ek

[(
Fs .

(
∂9

∂ (∇sε)
.ns

))
.ν

]
. δχs dl. (B.4)

We finally rewrite the fluid second gradient term as

∫ 2

Bs
A2

f dBs =

∫
Bs

∂9

∂
(
∇sm f

) .∇s

[
m f divs

((
∇s φ f

)−1
.δφ f

)]
dBs

−

∫
Bs

∂9

∂
(
∇sm f

) .∇s

[
m f divs

((
∇sφ f

)−T
)

.δφ f

]
dBs;
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recalling Equation (A.2) for m f , using Equation (B.2) for φ f and rearranging, we have

∫
Bs

A2
f dBs =

∫
Bs

∂9

∂
(
∇sm f

) .∇s

[
m f divs

((
∇s φ f

)−1
.δφ f

)]
dBs

+

∫
Bs

∂9

∂
(
∇sm f

) .∇s

[((
∇s φ f

)−1
.δφ f

)
.∇sm f

]
dBs =

∫
Bs

∂9

∂
(
∇sm f

) .∇s

[
divs

(
m f

(
∇sφ f

)−1
.δφ f

)]
dBs .

Integrating by parts we get

∫
Bs
A2

f dBs =

∫
∂Bs

divs

(
m f
(
∇sφ f

)−1
.δφ f

) ∂9

∂
(
∇sm f

) .ns dSs −

∫
Bs
divs

(
m f
(
∇sφ f

)−1
.δφ f

)
divs

(
∂9

∂
(
∇sm f

))dBs,

and, integrating again,

∫
Bs

A2
f dBs =

∫
∂Bs

m f divs

((
∇s φ f

)−1
.δφ f

)( ∂9

∂
(
∇sm f

) .ns

)
dSs

+

∫
∂Bs

(
∇sm f .

((
∇s φ f

)−1
.δφ f

))( ∂9

∂
(
∇sm f

) .ns

)
dSs −

∫
∂Bs

[
m f divs

(
∂9

∂
(
∇sm f

))(∇s φ f
)−T

.ns

]
.δφ f dSs

+

∫
Bs

m f

[(
∇s φ f

)−T
.∇s

(
divs

(
∂9

∂
(
∇sm f

)))] . δφ f dBs .

Recalling again Equation (A.2) for m f , using (B.2) for φ f and rearranging we get

∫
Bs

A2
f dBs =

∫
∂Bs

∇s
(
δφ f

)
:

[
m f

(
∂9

∂
(
∇sm f

) .ns

) (
∇s φ f

)−T

]
dSs

−

∫
∂Bs

[
m f divs

(
∂9

∂
(
∇sm f

)) (∇s φ f
)−T

. ns

]
.δφ f dSs

+

∫
Bs

m f

[(
∇s φ f

)−T
.∇s

(
divs

(
∂9

∂
(
∇sm f

)))] .δφ f dBs .
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Decomposing ∇s
(
δφ f

)
as ∇s

(
δφ f

)
= ∇

S
s
(
δφ f

)
+
(
∂
(
δφ f

)
/∂ns

)
⊗ ns , performing a last surface inte-

gration by parts and using (B.2) for the surface divergence operator we finally get

∫
Bs

A2
f dBs =

∫
∂Bs

{(
∇s φ f

)−T
.

[
m f

(
∂9

∂
(
∇sm f

) .ns

)
ns

]}
.
∂
(
δφ f

)
∂ns

dSs+

−

∫
∂Bs

{(
∇sφ f

)−T
.

[
m f ∇

S
s

(
∂9

∂
(
∇sm f

) .ns

)]}
.δφ f dSs+

n∑
k=1

∫
Ek

{(
∇sφ f

)−T
.

[
m f

(
∂9

∂
(
∇sm f

) .ns

)
ν

]}
.δφ f dl

−

∫
∂Bs

{(
∇s φ f

)−T
.

[
m f divs

(
∂9

∂
(
∇sm f

)) ns

]}
. δφ f dSs

+

∫
Bs

{(
∇s φ f

)−T
.

[
m f ∇s

(
divs

(
∂9

∂
(
∇sm f

)))]} . δφ f dBs . (B.5)

Substituting (B.3), (B.4), and (B.5) into (B.1), the variation of the internal energy given in (24) has been
recovered.

Appendix C: External and dissipation works

The dissipation and external works have been defined in (25) and (26) on the Eulerian configuration of
the system in terms of δχs and δχ f ◦φ f . These works must then be rewritten in terms of the independent
variations δχs and δφ f . In order to do so, the relationship between (δχ f ◦ φ f − δχs) and δφ f must
be established. We know by definition that χ f ◦ φ f = χs, so that δ

(
χ f ◦ φ f

)
= δχs . Moreover, by

differentiation rule for composite functions we have δχs = δ
(
χ f ◦ φ f

)
= δχ f ◦φ f +

[(
∇ f χ f

)
◦ φ f

]
.δφ f .

But since χ f = χs ◦ φ−1
f , we get

∇ f χ f ◦ φ f = ∇sχs .
[
∇ f

(
φ−1

f

)
◦ φ f

]
= ∇sχs .

(
∇sφ f

)−1
,

so that δχs = δχ f ◦ φ f + ∇sχs .
(
∇s φ f

)−1
. δφ f , or,

δχ f ◦ φ f − δχs = − Fs .
(
∇sφ f

)−1
. δφ f . (C.1)

We now prove that the external work due to the force t f appearing in Equation (26) and prescribed
by (27) represents the external work L f

ext done to change the fluid mass inside the porous system when
the external chemical potential µext is assumed to be constant. We define this work as

L f
ext

=

∫
Bs

(
µext

◦ χs
)
δm f dBs;

according to (23) and neglecting composition operations we can write

L f
ext

=

∫
Bs

µextm f
(
∇sφ f

)−T
: ∇s

(
δφ f

)
dBs,
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which, integrating by parts, recalling (A.2) for m f , and assuming µext constant, gives

L f
ext

=

∫
∂Bs

{[
µextm f

(
∇s φ f

)−T
. ns

]
.δφ f

}
dSs −

∫
Bs

µextρ0
f divs

[
det

(
∇s φ f

) (
∇s φ f

)−T
]

dBs .

It is known from (B.2) that the divergence appearing in the second integral is vanishing, so that L f
ext

can be rewritten on the Eulerian configuration as

L f
ext

=

∫
∂Bt

{[
µextρ f

((
∇s φ f

)−T
. FT

s

)
.n
]
.δφ f

}
◦ χ−1

s dSt ,

or, using (C.1),

L f
ext

= −

∫
∂Bt

[
ρ f µ

extn .
(
δχ f ◦ φ f − δχs

)]
◦ χ−1

s dSt ,

which is the expression of the fluid external work used in (26).
The final expressions for δLdiss and δLext can now be determined. We first consider the solid

Lagrangian pull-back of (25), which, recalling that ∇vα = ∇sVα.F−1
s , reads

δLdiss
:= −

∫
Bs

{
Js D

(
V f ◦ φ f − Vs

)
.
[(

δχ f ◦ φ f − δχs
)]}

dBs

−

∫
Bs

{
Js
[
A .∇s

(
V f ◦ φ f − Vs

)
. F−1

s
]
: ∇

[(
δχ f ◦ φ f − δχs

)]}
dBs .

Recalling Equation (C.1), the dissipation work can be rewritten as

δLdiss
=

∫
Bs

[(
∇sφ f

)−T
.
(
Js D FT

s .
(
V f ◦ φ f − Vs

))]
. δφ f dBs

+

∫
Bs

{
Js
[
A .∇s

(
V f ◦ φ f − Vs

)
. F−1

s .F−T
s
]
: ∇s

[
Fs .

(
∇s φ f

)−1
. δφ f

]}
dBs;

integrating the second term by parts, Equation (29) for the dissipation work is easily recovered.
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