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EXTENDED DISPLACEMENT DISCONTINUITY METHOD FOR CRACK
ANALYSIS IN THREE-DIMENSIONAL TWO-PHASE TRANSVERSELY

ISOTROPIC MAGNETOELECTROELASTIC MEDIA

MINGHAO ZHAO, NA LI, CUIYING FAN AND TONG LIU

Green’s functions for extended displacement discontinuity in a three-dimensional two-phase transversely
isotropic magnetoelectroelastic medium are obtained by using the integral equation method. Based on
the obtained Green’s functions, an extended displacement discontinuity method is developed for analy-
sis of planar cracks of arbitrary shape in three-dimensional two-phase magnetoelectroelastic media. A
rectangular interior crack parallel to the interface under the electrically and magnetically impermeable
boundary condition is analyzed, and the extended intensity factors are calculated by the proposed method.
The magnetoelectroelastic medium is made with BaTiO3 as the inclusion and CoFe2O4 as the matrix.
The influences of the interface and the material properties on the extended intensity factors are studied.
Numerical results show that the three normalized extended intensity factors, that is, the stress intensity
factor, the electric displacement intensity factor, and the magnetic induction intensity factor, are different
both from each other and from the case of a crack in a homogeneous medium.

1. Introduction

Because of the coupling effect among the mechanical, electrical and magnetic properties, magnetoelec-
troelastic materials are finding more and more applications in many areas such as electronics, lasers,
supersonics, infrared, and microwave sources. Laminated composite structures of these materials are
often used to enhance the coupling effects. The integrity and reliability of the structures depend greatly
on the defects, such as inclusion, void, crack, etc., in the materials and structures. So the study of cracks
in magnetoelectroelastic materials and structures has been attracting more and more efforts [Huang and
Kuo 1997; Wang and Shen 2003; Wang and Mai 2003; Gao and Noda 2004; Zhou et al. 2004; Tian and
Rajapakse 2005; Zhao et al. 2006a; Zhao et al. 2006b].

It is difficult to find the analytical solution of a problem in a general case. Numerical approaches have
to be used such as the finite element method (FEM) and the boundary element method (BEM). BEM is
one of the preferred techniques for dealing with field concentration and singularity problems in fracture
mechanics. In this method, the Green’s function or a fundamental solution plays an important role. A
lot of work has been done in this field. In two-dimensional problems, for example, Chung and Ting
[1995] gave the two-dimensional Green’s functions for anisotropic magnetoelectroelastic media with an

Keywords: Green’s functions, two-phase, three-dimensional, magnetoelectroelastic medium, displacement discontinuity
method, crack, intensity factor.
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elliptic hole or rigid inclusion. Based on the Stroh formalism, Jiang and Pan [2004] obtained the two-
dimensional Green’s functions in an exact closed form for general inclusion problems of anisotropic and
fully coupled magnetoelectroelastic full, half, and bimaterial planes. Liu and Liu [2001] derived the
Green’s functions for an infinite two-dimensional anisotropic magnetoelectroelastic medium including
an elliptical cavity by use of the technique of conformal mapping and the Laurent series expansions. Qin
[2004] derived the Green’s function for magnetoelectroelastic solids with an arbitrarily oriented half-
plane or bimaterial interface. Ding et al. [2005] obtained the Green’s functions for two-phase transversely
isotropic magnetoelectroelastic media, including the two-dimensional Green’s functions of an infinite
plane and an infinite half-plane as well as the three-dimensional counterparts.

In three-dimensional problems, Pan [2002] obtained the three-dimensional Green’s functions in aniso-
tropic infinite, semiinfinite, and two-phase magnetoelectroelastic media based on extended Stroh formal-
ism. Hou et al. [2005] presented the three-dimensional Green’s functions of infinite, two-phase, and
semiinfinite transversely isotropic magnetoelectroelastic media under point forces, point charge, and
magnetic monopole in terms of elementary functions for all cases of distinct eigenvalues and multiple
eigenvalues. Wang and Shen [2002] gave the general solutions and the fundamental solutions or Green’s
functions for magnetoelectroelastic media through five potential functions.

Parallel to the Green’s functions for point force, the displacement discontinuity fundamental solutions
[Crouch 1976] are other important kinds of Green’s functions, which are of special use in displacement
discontinuity boundary integral equation methods in fracture mechanics. This method is commonly
called displacement discontinuity method (DDM). It has been proved to be one of the most powerful
methods in fracture mechanics of purely elastic media [Wen 1996; Pan and Amadei 1996; Zhao et al.
1998], poroelastic media [Pan 1991], as well as for piezoelectric media [Zhao et al. 1997a; Zhao et al.
1997b; Zhao et al. 2004]. In the present paper, the Green’s functions for the extended displacement
discontinuity in three-dimensional two-phase transversely isotropic magnetoelectroelastic media will
be derived. Based on the obtained Green’s function, the extended Crouch fundamental solutions for
uniformly distributed extended displacement discontinuity on a rectangular segment are obtained and
the extended displacement discontinuity method is proposed. A rectangular crack is analyzed by the
proposed method as an application.

2. Basic equation

In the absence of body force, electric charge, and electric current, the basic equations for a three-
dimensional two-phase transversely isotropic magnetoelectroelastic medium with the poling direction
being along the z-direction in the oxyz Cartesian coordinate system are given by

σi j, j = 0, Di,i = 0, Bi,i = 0, (1a)

σi j = ci jkl(uk,l + ul,k)/2 + eki jϕ,k + fki jψ,k,

Di = eikl(uk,l + ul,k)/2 − εikϕ,k − gikψ,k,

Bi = fikl(uk,l + ul,k)/2 − gikϕ,k −µikψ,k,

(1b)

where i, j = 1, 2, 3(x, y, z), and σi j , Di , and Bi are the stress, electric displacement, and magnetic
induction components, respectively. ui is the displacement component, and ϕ and ψ are respectively



EXTENDED DISPLACEMENT DISCONTINUITY METHOD FOR CRACK ANALYSIS 547

 

 

 

 

 

 

                              

z 

x 

y o 

S

h 

 

 

 

 

 

 

 

 

 

 

Figure 1. An arbitrarily shaped planar crack S in )0( ! hhz  plane in a 

magnetoelectroelastic bimaterial. 

 

Figure 1. An arbitrarily shaped planar crack S in the z = h(h > 0) plane in a magneto-
electroelastic bimaterial.

the electric potential and magnetic potential. ci j , eki j , fki j , εi j , gi j and µi j are the elastic constant, piezo-
electric constant, piezomagnetic constant, dielectric permittivity, electromagnetic constant, and magnetic
permeability, respectively. A subscript comma denotes the partial differentiation with respect to the
coordinate.

3. Boundary integral expressions of extended displacement discontinuity

Consider a three-dimensional two-phase transversely isotropic magnetoelectroelastic medium with the
interface being parallel to the plane of isotropy. A Cartesian coordinate system is set up such that the
xoy-plane lies in the interface. A planar crack S of arbitrary shape lies in the plane z = h(h > 0) as
shown in Figure 1. The upper and lower surfaces of S are denoted by S+ and S−, respectively. The outer
normal vectors of S+ and S− are respectively given by

{ni }
+

= {0, 0,−1}, {ni }
−

= {0, 0, 1}. (2)

The prescribed tractions, the electric displacement boundary value, and the magnetic induction bound-
ary value on the crack faces are denoted respectively by pi (i = 1, 2, 3, or x, y, z), ω, and γ , which
hereafter are called extended tractions. By using the extended point force fundamental solutions given
in Appendix A and the Somigliana identity for magnetoelectroelastic media, the displacements ui , the
electric potential ϕ, and the magnetic potential ψ at any internal point (x, y, z) can be expressed in the
following forms

ui (x, y, z)= −

∫
S+

[P F
i j u j +�F

i ϕ+0F
i ψ]d S −

∫
S−

[P F
i j u j +�F

i ϕ+0F
i ψ]d S

+

∫
S+

[p jU F
i j +ω8F

i + γ9F
i ]d S +

∫
S−

[p jU F
i j +ω8F

i + γ9F
i ]d S, (3)
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−ϕ(x, y, z)= −

∫
S+

[P D
j u j +�Dϕ+0Dψ]d S −

∫
S−

[P D
j u j +�Dϕ+0Dψ]d S

+

∫
S+

[p jU D
j +ω8D

+ γ9D
]d S +

∫
S−

[p jU D
j +ω8D

+ γ9D
]d S, (4)

−ψ(x, y, z)= −

∫
S+

[P B
j u j +�Bϕ+0Bψ]d S −

∫
S−

[P B
j u j +�Bϕ+0Bψ]d S

+

∫
S+

[p jU B
j +ω8B

+ γ9B
]d S +

∫
S−

[p jU B
j +ω8B

+ γ9B
]d S, (5)

where P F
i j , �F

i , 0F
i , U F

i j , 8F
i , and 9F

i are the tractions, the electric displacement boundary value, the
magnetic induction boundary value, the displacements, the electric potential, and the magnetic potential
of the fundamental solutions corresponding to the unit point force in the i th direction, respectively, P D

j ,
�D, 0D, U D

j , 8D, and 9D corresponding to the unit point electric charge and P B
j , �B , 0B , U B

j , 8B ,
and 9B corresponding to the unit point electric current

P F
i j = σ F

i jknk, �F
i = DF

iknk, 0F
i = B F

iknk,

P D
j = σ D

jknk, �D
= DD

k nk, 0D
= B D

k nk,

P B
j = σ B

jknk, �B
= DB

k nk, 0B
= B B

k nk,

(6)

where the upper index F , D, and B refer to the variables corresponding to point forces, point electric
charge, and point electric current, respectively. Based on the fundamental solutions, we easily obtain the
following relationship on the crack faces

P F
i j |S+ = − P F

i j |S−, U F
i j |S+ = U F

i j |S−, �F
i |S+ = −�F

i |S−,

8F
i |S+ =8F

i |S−, 0F
i |S+ = −0F

i |S−, 9F
i |S+ =9F

i |S−

P D
j |S+ = − P D

j |S−, U D
j |S+ = U D

j |S−, �D
|S+ = −�D

|S−,

8D
|S+ =8D

|S−, 0D
|S+ = −0D

|S−, 9D
|S+ =9D

|S−,

P B
j |S+ = − P B

j |S−, U B
j |S+ = U B

j |S−, �B
|S+ = −�B

|S−,

8B
|S+ =8B

|S−, 0B
|S+ = −0B

|S−, 9B
|S+ =9B

|S− .

On assuming that the extended tractions on the upper and lower crack faces satisfy the conditions

pi |S+ = − pi |S−, ω|S+ = −ω|S−, γ |S+ = − γ |S−, (7)

and considering Equations (2) and (6)–(7), Equations (3)–(5) are reduced to

ui (x, y, z)= −

∫
S+

[P F
i j ‖u j‖ +�F

i ‖ϕ‖ +0F
i ‖ψ‖]d S(ξ, η),

−ϕ(x, y, z)= −

∫
S+

[P D
j ‖u j‖ +�D

‖ϕ‖ +0D
‖ψ‖]d S(ξ, η),

−ψ(x, y, z)= −

∫
S+

[P B
j ‖u j‖ +�B

‖ϕ‖ +0B
‖ψ‖]d S(ξ, η).

(8)
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Figure 2. A rectangular crack in plane )0( ! hhz in a magnetoelectroelastic 

bimaterial. 
 

Figure 2. A rectangular crack in the plane z = h(h > 0) in a magnetoelectroelastic bimaterial.

In Equation (8), ‖ui‖, ‖ϕ‖, and ‖ψ‖ are respectively the displacement discontinuities, the electric
potential discontinuity, and the magnetic potential discontinuity across the crack faces, which are called
the extended displacement discontinuities and given by:

‖ui (ξ, η)‖ = ui (ξ, η, h+)− ui (ξ, η, h−), ‖ϕ(ξ, η)‖ = ϕ(ξ, η, h+)−ϕ(ξ, η, h−),

‖ψ(ξ, η)‖ = ψ(ξ, η, h+)−ψ(ξ, η, h−).

In the following derivations, the displacement components are also denoted by u = ux , v = u y , w = uz ,
and the following symbols will be used

zi = si z, ζi = si h, zi j = hi + z j ,

Ri j =

√
(ξ − x)2 + (η− y)2 + z2

i j , z̄i j = hi − z j ,

R̄i j =

√
(ξ − x)2 + (η− y)2 + z̄2

i j , R̃i j = Ri j + zi j ,

R̂i j = R̄i j − z̄i j , (i, j = 1, 2, 3, 4, and i = j = 5),

where si are material constants, which are given in Appendix A.

4. Green’s functions for unit extended point displacement discontinuities

Assume that the planar crack S is a rectangle of length 2a = 2b with the center being at point (0, 0, h),
as shown in Figure 2.
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The fundamental solutions corresponding to extended displacement discontinuities should satisfy the
governing equations of magnetoelectroelastic media subject, respectively, to the following conditions:

lim
a→0

∫
S
{‖u‖, ‖v‖, ‖w‖, ‖ϕ‖, ‖ψ‖}d S = {1, 0, 0, 0, 0}, (9a)

lim
a→0

∫
S
{‖u‖, ‖v‖, ‖w‖, ‖ϕ‖, ‖ψ‖}d S = {0, 1, 0, 0, 0}, (9b)

lim
a→0

∫
S
{‖u‖, ‖v‖, ‖w‖, ‖ϕ‖, ‖ψ‖}d S = {0, 0, 1, 0, 0}, (9c)

lim
a→0

∫
S
{‖u‖, ‖v‖, ‖w‖, ‖ϕ‖, ‖ψ‖}d S = {0, 0, 0, 1, 0}, (9d)

lim
a→0

∫
S
{‖u‖, ‖v‖, ‖w‖, ‖ϕ‖, ‖ψ‖}d S = {0, 0, 0, 0, 1}. (9e)

4.1. Green’s function satisfying Equation (9a). On the plane z = h(h > 0), the discontinuity boundary
condition in the x-axis direction is indeed the Dirac δ-function

‖u(ξ, η)‖ = δ(ξ, η). (10)

Inserting Equations (9a) and (10) and the fundamental solutions for extended point force in Appendix A
into Equation (8) yields

u = −ω51

[
D5

(
1

R̄55 R̂55
−

y2

R̄3
55 R̂55

−
y2

R̄2
55 R̂2

55

)
− D55

(
1

R55 R̃55
−

y2

R3
55 R̃55

−
y2

R2
55 R̃2

55

)]

+

4∑
i=1

ωi1

[
Di

(
1

R̄i i R̂i i
−

x2

R̄3
i i R̂i i

−
x2

R̄2
i i R̂2

i i

)
−

4∑
j=1

Di j

(
1

Ri j R̃i j
−

x2

R3
i j R̃i j

−
x2

R2
i j R̃2

i j

)]
, (11)

v = −xyω51

[
D5

(
1

R̄3
55 R̂55

+
1

R̄2
55 R̂2

55

)
− D55

(
1

R3
55 R̃55

+
1

R2
55 R̃2

55

)]

− xy
4∑

i=1

ωi1

[
Di

(
1

R̄3
i i R̂i i

+
1

R̄2
i i R̂2

i i

)
−

4∑
j=1

Di j

(
1

R3
i j R̃i j

+
1

R2
i j R̃2

i j

)]
, (12)

w = − x
4∑

i=1

ωi1

(
Ai

R̄3
i i

−

4∑
j=1

Ai j

R3
i j

)
, ϕ = x

4∑
i=1

ωi1

(
Bi

R̄3
i i

−

4∑
j=1

Bi j

R3
i j

)
, (13)

ψ = x
4∑

i=1

ωi1

(
Ci

R̄3
i i

−

4∑
j=1

Ci j

R3
i j

)
. (14)
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Substituting Equations (11)–(14) into the constitutive Equation (1b) yields the stress, electric displace-
ment, and magnetic induction

σyz = 3xy

{
c44ω51

(
D5

s5

R̄5
55

− D55
s5

R5
55

)
+ c44

4∑
i=1

ωi1

(
Di

si

R̄5
i i

−

4∑
j=1

Di j
s j

R5
i j

)

+

4∑
i=1

ωi1

[
(c44 Ai − e15 Bi − f15Ci )

1
R̄5

i i

−

4∑
j=1

(c44 Ai j − e15 Bi j − f15Ci j )
1

R5
i j

]}
, (15)

σxz = c44

{
ω51s5

[
D5

(
1

R̄3
55

− y2 3
R̄5

55

)
− D55

(
1

R3
55

− y2 3
R5

55

)]

+

4∑
i=1

ωi1

[
−Di si

(
1

R̄3
i i

− x2 3
R̄5

i i

)
+

4∑
j=1

Di j s j

(
1

R3
i j

− x2 3
R5

i j

)]}

−

4∑
i=1

ωi1

[
(c44 Ai − e15 Bi − f15Ci )

(
1

R̄3
i i

−
3x2

R̄5
i i

)
−

4∑
j=1

(c44 Ai j − e15 Bi j − f15Ci j )

(
1

R3
i j

−
3x2

R5
i j

)]
, (16)

σzz = −4c13x
4∑

i=1

ωi1

[
Di

(
1

R̄3
i i R̂i i

+
1

R̄2
i i R̂2

i i

)
−

4∑
j=1

Di j

(
1

R3
i j R̃i j

+
1

R2
i j R̃2

i j

)]

+ (x2
+ y2)xc13

4∑
i=1

ωi1

[
Di

(
3

R̄5
i i R̂i i

+
3

R̄4
i i R̂2

i i

+
2

R̄3
i i R̂3

i i

)
−

4∑
j=1

Di j

(
3

R5
i j R̃i j

+
3

R4
i j R̃2

i j

+
2

R3
i j R̃3

i j

)]

− x
4∑

i=1

3ωi1

[
si zi i

R̄5
i i

(c33 Ai − e33 Bi − f33Ci )+

4∑
j=1

s j zi j

R5
i j

(c33 Ai j − e33 Bi j − f33Ci j )

]
, (17)

Dz = −4e31x
4∑

i=1

ωi1

[
Di

(
1

R̄3
i i R̂i i

+
1

R̄2
i i R̂2

i i

)
−

4∑
j=1

Di j

(
1

R3
i j R̃i j

+
1

R2
i j R̃2

i j

)]

+ (x2
+ y2)xe31

4∑
i=1

ωi1

[
Di

(
3

R̄5
i i R̂i i

+
3

R̄4
i i R̂2

i i

+
2

R̄3
i i R̂3

i i

)
−

4∑
j=1

Di j

(
3

R5
i j R̃i j

+
3

R4
i j R̃2

i j

+
2

R3
i j R̃3

i j

)]

− x
4∑

i=1

3ωi1

[
si zi i

R̄5
i i

(e33 Ai + ε33 Bi + g33Ci )+

4∑
j=1

s j zi j

R5
i j

(e33 Ai j + ε33 Bi j + g33Ci j )

]
, (18)
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Bz = −4 f31x
4∑

i=1

ωi1

[
Di

(
1

R̄3
i i R̂i i

+
1

R̄2
i i R̂2

i i

)
−

4∑
j=i

Di j

(
1

R3
i j R̃i j

+
1

R2
i j R̃2

i j

)]

+ (x2
+ y2)x f31

4∑
i=1

ωi1

[
Di

(
3

R̄5
i i R̂i i

+
3

R̄4
i i R̂2

i i

+
2

R̄3
i i R̂3

i i

)
−

4∑
j=1

Di j

(
3

R5
i j R̃i j

+
3

R4
i j R̃2

i j

+
2

R3
i j R̃3

i j

)]

− x
4∑

i=1

3ωi1

[
zi i si

R̄5
i i

(
f33 Ai + g33 Bi +µ33Ci

)
+

4∑
j=1

zi j s j

R5
i j

(
f33 Ai j + g33 Bi j +µ33Ci j

)]
. (19)

From above solutions, the Green’s function corresponding to Equation (9b) can be easily obtained by
coordinate transformation.

4.2. Green’s function satisfying Equation (9c). On the crack face, the displacement discontinuity con-
dition in the z-axis direction is

‖w(ξ, η)‖ = δ(ξ, η). (20)

Inserting Equations (9c) and (20) and the fundamental solutions for extended point force in Appendix A
into Equation (8) yields the extended displacements

u = −x
4∑

i=1

ϑi1

[
Di

R̄3
i i

+

4∑
j=1

Di j

R3
i j

]
,

v = −y
4∑

i=1

ϑi1

[
Di

R̄3
i i

+

4∑
j=1

Di j

R3
i j

]
,

w =

4∑
i=1

ϑi1

[
Ai (hi − zi )

R̄3
i i

−

4∑
j=1

Ai j (hi + z j )

R3
i j

]
,

ϕ = −

4∑
i=1

ϑi1

[
Bi (hi − zi )

R̄3
i i

−

4∑
j=1

Bi j (hi + z j )

R3
i j

]
,

ψ = −

4∑
i=1

ϑi1

[
Ci (hi − zi )

R̄3
i i

−

4∑
j=1

Ci j (hi + z j )

R3
i j

]
.

(21)

Similarly, the corresponding stress, electric displacement and magnetic induction are derived

σyz = 3y

{
c44

4∑
i=1

ϑi1

(
−Di

si zi i

R̄5
i i

+

4∑
j=1

Di j
s j zi j

R5
i j

)
−

4∑
i=1

ϑi1

[
(c44 Ai − e15 Bi − f15Ci )

(hi − zi )

R̄5
i i

−

4∑
j=1

(c44 Ai j − e15 Bi j − f15Ci j )
(h j + z j )

R5
i j

]}
, (22)
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σxz = 3x

{
c44

4∑
i=1

ϑi1

(
−Di

si zi i

R̄5
i i

+

4∑
j=1

Di j
s j zi j

R5
i j

)
−

4∑
i=1

ϑi1

[(
c44 Ai − e15 Bi − f15Ci

)(hi − zi )

R̄5
i i

−

4∑
j=1

(
c44 Ai j − e15 Bi j − f15Ci j

)(h j + z j )

R5
i j

]}
, (23)

σzz =

4∑
i=1

ϑi1

{
c13

[
Di

(
−

2
R̄3

i i

+
3(x2

+ y2)

R̄5
i i

)
+

4∑
j=1

Di j

(
−

2
R3

i j

+
3(x2

+ y2)

R5
i j

)]

− si
(
c33 Ai − e33 Bi − f33Ci

)( 1
R̄3

i i

−
3zi (hi − zi )

R̄5
i i

)

−

4∑
j=1

Di j s j
(
c33 Ai j − e33 Bi j − f33Ci j

)( 1
R3

i j

−
3z j (hi + z j )

R5
i j

)}
, (24)

Dz =

4∑
i=1

ϑi1

{
e31

[
Di

(
−

2
R̄3

i i

+
3(x2

+ y2)

R̄5
i i

)
+

4∑
j=1

Di j

(
−

2
R3

i j

+
3(x2

+ y2)

R5
i j

)]

− si
(
e33 Ai + ε33 Bi + g33Ci

)( 1
R̄3

i i

−
3zi (hi − zi )

R̄5
i i

)

−

4∑
j=1

Di j s j
(
e33 Ai j + ε33 Bi j + g33Ci j

)( 1
R3

i j

−
3z j (hi + z j )

R5
i j

)}
, (25)

Bz =

4∑
i=1

ϑi1

{
f31

[
Di

(
−

2
R̄3

i i

+
3(x2

+ y2)

R̄5
i i

)
+

4∑
j=1

Di j

(
−

2
R3

i j

+
3(x2

+ y2)

R5
i j

)]

− si
(

f33 Ai + g33 Bi +µ33Ci
)( 1

R̄3
i i

−
3zi (hi − zi )

R̄5
i i

)

−

4∑
j=1

Di j s j
(

f33 Ai j + g33 Bi j +µ33Ci j
)( 1

R3
i j

−
3z j (hi + z j )

R5
i j

)}
. (26)

The fundamental solutions corresponding to Equation (9d) and Equation (9e) can be obtained by taking
ϑi2 and ϑi3 instead of ϑi1, respectively.

5. Extended crouch fundamental solution

In this section, the extended Crouch fundamental solutions are derived for a three-dimensional two-phase
magnetoelectroelastic medium.
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Consider a rectangular crack of length 2a and width 2b in the plane z = h. Uniformly distributed
extended displacement discontinuities ‖ue

‖, ‖ve
‖, ‖we

‖, ‖ϕe
‖, and ‖ψe

‖ are applied on the crack faces.
Integrating the extended displacement discontinuity Green’s functions derived in last section on the rect-
angular crack with lengthy manipulations yields the extended stress fields

σ e
xz =

(
L X1Ḡ(1)

55 − L X2G(1)
55

)
‖ue

‖ −
(
L X1Ḡ(3)

55 − L X2G(3)
55

)
‖ve

‖

+

4∑
i=1

[(
−L i

11Ḡ(2)
i i +

4∑
j=1

L i j
12G(2)

i j

)
‖ue

‖ −

(
L i

11Ḡ(3)
i i −

4∑
j=1

L i j
12G(3)

i j

)
‖ve

‖

− Ḡ(4)
i i

(
L i

211‖w
e
‖ + L i

212‖ϕ
e
‖ + L i

213‖ψ
e
‖
)

+

4∑
j=1

G(4)
i j

(
L i j

221‖w
e
‖ + L i j

222‖ϕ
e
‖ + L i j

223‖ψ
e
‖
)]
, (27)

σ e
yz =

(
L X1Ḡ(3)

55 − L X2G(3)
55

)
‖ue

‖ −
(
L X1Ḡ(2)

55 − L X2G(2)
55

)
‖ve

‖

+

4∑
i=1

[(
L i

11Ḡ(3)
i i −

4∑
j=1

L i j
12G(3)

i j

)
‖ue

‖ +

(
L i

11Ḡ(1)
i i −

4∑
j=1

L i j
12G(1)

i j

)
‖ve

‖

− Ḡ(5)
i i

(
L i

211‖w
e
‖ + L i

212‖ϕ
e
‖ + L i

213‖ψ
e
‖
)

+

4∑
j=1

G(5)
i j

(
L i j

221‖w
e
‖ + L i j

222‖ϕ
e
‖ + L i j

223‖ψ
e
‖
)]
, (28)

σ e
zz =

4∑
i=1

[(
−L i

Z1Ḡ(4)
i i +

4∑
j=1

L i j
Z2G(4)

i j

)
‖ue

‖ +

(
L i

Z1Ḡ(5)
i i +

4∑
j=1

L i j
Z2G(5)

i j

)
‖ve

‖

+ Ḡ(6)
i i

(
L i

Z11‖w
e
‖ + L i

Z12‖ϕ
e
‖ + L i

Z13‖ψ
e
‖
)

+

4∑
j=1

G(6)
i j

(
L i j

Z21‖w
e
‖ + L i j

Z22‖ϕ
e
‖ + L i j

Z23‖ψ
e
‖

)]
, (29)

De
z =

4∑
i=1

[(
−L i

D1Ḡ(4)
i i +

4∑
j=1

L i j
D2G(4)

i j

)
‖ue

‖ +

(
L i

D1Ḡ(5)
i i +

4∑
j=1

L i j
D2G(5)

i j

)
‖ve

‖

+ Ḡ(6)
i i

(
L i

D11‖w
e
‖ + L i

D12‖ϕ
e
‖ + L i

D13‖ψ
e
‖
)

+

4∑
j=1

G(6)
i j

(
L i j

D21‖w
e
‖ + L i j

D22‖ϕ
e
‖ + L i j

D23‖ψ
e
‖

)]
, (30)
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Figure 3. Boundary element mesh for a rectangular crack. 
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Figure 3. Boundary element mesh for a rectangular crack.

Be
z =

4∑
i=1

[(
−L i

B1Ḡ(4)
i i +

4∑
j=1

L i j
B2G(4)

i j

)
‖ue

‖ +

(
L i

B1Ḡ(5)
i i +

4∑
j=1

L i j
B2G(5)

i j

)
‖ve

‖

+ Ḡ(6)
i i

(
L i

B11‖w
e
‖ + L i

B12‖ϕ
e
‖ + L i

B13‖ψ
e
‖
)

+

4∑
j=1

G(6)
i j

(
L i j

B21‖w
e
‖ + L i j

B22‖ϕ
e
‖ + L i j

B23‖ψ
e
‖

)]
, (31)

where the material related constants Ls and the functions Gs and Ḡs with different superscripts and
subscripts are given in Appendix B. These solutions are called extended Crouch fundamental solutions.

Equations (27)–(31) can be written in a compact form

σ e
i =

5∑
j=1

Fe
i j‖ue

j‖, i, j = 1, 2, 3, 4, 5, (32)

where σ e
1 = σ e

xz , σ e
2 = σ e

yz , σ e
3 = σ e

zz , σ e
4 = De

z , σ e
5 = Be

z , ‖ue
1‖ = ‖ue

‖, ‖ue
2‖ = ‖ve

‖, ‖ue
3‖ = ‖we

‖,
‖ue

4‖ = ‖ϕe
‖, ‖ue

5‖ = ‖ψe
‖, and Fe

i j are called the influence functions of the rectangular element.

6. Extended displacement discontinuity method

If the domain of a crack is divided into N rectangular elements as shown in Figure 3 by using the
extended Crouch fundamental solutions, the extended stress at the centroid of element q can be obtained
by superposing the contribution of all the elements. Then, introducing the boundary conditions on the
crack faces, one has

N∑
e=1

5∑
j=1

Fe
i j (xq − xe, yq − ye, zq − ze)‖ue

i ‖ = σ 0
i (q), q = 1, 2, 3, . . . , N , (33)
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where σ 0
i is related to the applied extended loading on the crack faces

px(x, y)= − σ 0
1 (x, y), py(x, y)= − σ 0

2 (x, y),

pz(x, y)= − σ 0
3 (x, y), ω(x, y)= − σ 0

4 (x, y),

γ (x, y)= − σ 0
5 (x, y). (34)

Solving Equation (33), one obtains the extended displacement discontinuities on the crack faces. Fur-
thermore, the extended stresses at any point in the crack plane can be calculated by

σi (x, y, h)=

N∑
e=1

5∑
j=1

Fe
i j (x − xe, y − ye, 0)‖ue

j‖. (35)

Finally, the extended stress intensity factors are calculated in [Zhao et al. 1997b; Zhao et al. 1998]:

K F
I = lim

ρ→0

√
2πρσzz, K D

I = lim
ρ→0

√
2πρDz, K B

I = lim
ρ→0

√
2πρBz, (36)

where ρ is the distance from the crack tip.

7. Numerical examples and discussions

Consider a rectangular crack of sides 2A × 2B at plane z = h centered at point (0, 0, h), with the sides
parallel to the x- or y-axis. The magnetoelectroelastic medium is made of BaTiO3 as the inclusion with
CoFe2O4 as the matrix. The piezoelectric volume fraction of the inclusion is denoted by Vi . The material
constants are given as follows [Huang et al. 1998]:

BaTiO3 :

c11 = 166GPa, c33 = 162 GPa,

c44 = 43 GPa, c12 = 77 GPa,

c13 = 78 GPa, e31 = − 4.4 C/m2,

e33 = 18.6 C/m2, e15 = 11.6 C/m2,

ε11 = 11.2 × 10−9 C2/(Nm2), ε33 = 12.6 × 10−9 C2/(Nm2),

µ11 = 5.0 × 10−6 Ns2/C2, µ33 = 10.0 × 10−6 Ns2/C2.

(37)

CoFe2O4 :

c11 = 286 GPa, c33 = 269.5 GPa,

c44 = 45.3 GPa, c12 = 173.0 GPa,

c13 = 170.5 GPa, f31 = 580.3 N/(Am),

f33 = 699.7 N/(Am), f15 = 550.N/(Am),

ε11 = 0.08 × 10−9 C2/(Nm2), ε33 = 0.093 × 10−9 C2/(Nm2),

µ11 = 590 × 10−6 Ns2/C2, µ33 = 157 × 10−6 Ns2/C2.

(38)
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The following mixture rule is used to determine the composite material constants corresponding to
the inclusion and matrix [Song and Sih 2003]

3c
=3i Vi +3m(1 − Vi ), (39)

where the superscripts “c”, “i”, and “m” represent the composite, inclusion, and matrix respectively. The
two-phase transversely isotropic magnetoelectroelastic medium is obtained by assigning two different
values of Vi in the upper and lower half-space, which are denoted by V +

i and V −

i , respectively.
It should be pointed out that the value of µ11 used in [Huang et al. 1998] was negative. However, the

negative value is questionable because it causes a negative internal energy and the Stroh formalism cannot
be applied [Pan 2002]. The handbook, [Neelakanta 1995], indicates that the magnetic permeability of
ferromagnetic materials, such as CoFe2O4, should be positive. Therefore, positive values were used in
recent research [Sih et al. 2003]. Recently, this issue was discussed by [Chue and Liu 2005]. For these
reasons, a positive value is also assigned to µ11 in the numerical calculations in the present paper.

Under the electrically and magnetically impermeable boundary condition, the uniformly distributed
extended loadings on the crack faces are

px = 0, py = 0, pz = 100 MPa, ω = 0.1 C/m2, γ = 10/Am. (40)

The extended displacement discontinuity method is used to analyze the problem. The rectangular crack
is divided into N rectangular elements of the same size. In order to decide the appropriate value of the
element number N , we first consider a square crack far away from the interface, that is, the crack is in a
homogeneous medium. The numerical calculations demonstrate that the maximum normalized intensity
factors are the same and equal to 0.8072 when the element number N = 81. When N = 225 and N = 625,
the values of maximum normalized intensity factors are 0.7928 and 0.7914, respectively. The normalized
extended intensity factors F are given by

FF = K F
I /(

√
πBσ 0

z ), FD = K D
I /(

√
πB D0

z ), FB = K F
I /(

√
πB B0

z ). (41)

Though the convergence is not very fast, the difference of the maximum normalized intensity factors is
less than 4% compared with that of purely elastic material in [Murkami 1992]. So the value N = 225 is
used in the present paper for numerical analysis.

Figure 4 shows the normalized intensity factors along the crack front {0< x < A, y = 0, z = h} for
different ratio of A/B. The larger the ratio of A/B is, the larger the normalized intensity factors are. The
numerical results show that the extended intensity factors take the maximum value at the middle point
(A, 0, h). The most important finding is that the three normalized intensity factors become different due
to the interface, which is unlike the case of a crack in a homogeneous medium [Zhao et al. 2006b].

Plotted in Figure 5 are the maximum normalized intensity factors versus h/(2A) for different ratios
of A/B. The three normalized intensity factors increase with the increase of A/B. When the ratio of
h/(2A) is larger than 1.0, the three maximum normalized extended stress intensity factors approach the
same value for a given ratio of A/B. It shows the influence of the interface can be neglected and the
crack can be considered in a homogeneous medium.

Figure 6 displays the normalized intensity factors versus x/A for different volume fractions V −

i and
A/B = 1. It can be seen that the stress and the magnetic induction intensity factors increase as x/A and
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Figure 4. Normalized intensity factor F versus x/A with A/B for V +
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i = 0.3
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Figure 5. The maximum normalized intensity factor F versus h/(2A) for V +

i = 0.5,
V −

i = 0.3 and different value of A/B.

x/A
.125 .250 .375 .500 .625 .750 .875 1.000

No
rm

al
ize

d 
in

te
ns

ity
 fa

ct
or

 F
F,F

D,
F B

.35

.45

.55

.65

.75

.85

FF,Vi
-=0.3

FD,Vi
-=0.3

FB,Vi
-=0.3

FF,Vi
-=0.7

FD,Vi
-=0.7

FB,Vi
-=0.7

 

 

 

 

 

 

 

 

 

Figure 6. Normalized intensity factors versus x/A with  for 

 

F �

iV

.1/and2.0)2/(,5.0    
� BAAhVi

 

Figure 6. Normalized intensity factors F versus x/A with V −

i for V +

i = 0.5, h/(2A)=

0.2 and A/B = 1.



EXTENDED DISPLACEMENT DISCONTINUITY METHOD FOR CRACK ANALYSIS 559

Volume fraction Vi
+

0.0 .1 .2 .3 .4 .5 .6 .7 .8 .9

No
rm

al
ize

d 
in

te
ns

ity
 fa

ct
or

 F
F,F

D,
F B

.65

.75

.85

.95

1.05
FF
FD
FB

 

 

 

 

 

 

 

 

 

 

Figure 7. The maximum normalized intensity factors  versus for 

. 

F �

iV

1/and5.0,2.0)2/(    
� BAVAh i

 

Figure 7. The maximum normalized intensity factors F versus V +

i for h/(2A) = 0.2,
V −

i = 0.5 and A/B = 1.

V −

i increase, but the electric displacement intensity factors decrease as V −

i increase. The normalized
intensity factors take the maximum value at the middle point (A, 0, h) independent of the volume fraction.

The maximum normalized intensity factors versus V +

i are depicted in Figure 7. It shows that the maxi-
mum stress and magnetic induction intensity factors decrease, while the maximum electric displacement
intensity factors increase with the volume fraction V +

i increasing. The opposite trends are shown in
Figure 8 for variation of V −

i . It is interesting to note that the three maximum normalized intensity
factors are the same when V +

i is equal to V −

i , in which case the medium becomes homogeneous.

8. Concluding remarks

The displacement discontinuity method proposed by Crouch is extended to analyze cracks in three-
dimensional two-phase transversely isotropic magnetoelectroelastic media. The numerical results of
rectangular cracks show that the extended method is very efficient.
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Figure 8. The maximum normalized intensity factors F versus V −

i for h/(2A) = 0.2,
V +

i = 0.5 and A/B = 1.
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The three normalized intensity factors are equal for a crack in a homogeneous medium under the
electrically and magnetically impermeable crack condition. For a crack in a two-phase medium, however,
the three normalized intensity factors are unequal and greatly influenced by the size and the location of
the crack and the material properties. This demonstrates that the crack behavior in an inhomogeneous
magnetoelectroelastic material is very complicated under combined mechanical-electrical-magnetic load-
ings.

Although various models, such as the strip polarization saturation model, charge-free zone model,
etc., were proposed [Zhang et al. 2002], a linear analysis is the first and most fundamental step toward
understanding the fracture behaviors of piezoelectric materials, and the intensity factors are the fun-
damental parameters in these nonlinear models. Until now, the problem hasn’t been solved completely.
The fracture behavior of magnetoelectroelastic materials under combined mechanical-electrical-magnetic
loading is more complicated than that of piezoelectric materials under combined mechanical-electrical
loading. There is a long way yet to go to completely solve this problem.

Appendix A: Fundamental solutions

With regard to the problem of a point force, point charge, and point electric current applied at the point
(0, 0, h) in the interior of a two-phase transversely isotropic magnetoelectroelastic media with the in-
terface being parallel to the plane of isotropy, a Cartesian coordinate system is chosen such that the
xoy-plane lies in the interface.

The following material related constants will be used in the fundamental solutions:

αim = kmi si , i = 1, 2, 3, 4, m = 1, 2, 3,

ξi = (c13αi1 + e31αi2 + f31αi3)si − c12,

ω51 = c44s5,

ω52 = e15s5,

ω53 = f15s5,

ϑi1 = (c33αi1 + e33αi2 + f33αi3)si − c13,

ϑi2 = (e33αi1 − ε33αi2 − g33αi3)si − e31,

ϑi3 = ( f33αi1 − g33αi2 −µ33αi3)si − f31,

ωi1 = c44(si +αi1)+ e15αi2 + f15αi3,

ωi2 = e15(si +αi1)− ε11αi2 − g11αi3,

ωi3 = f15(si +αi1)− g11αi2 −µ11αi3,

(A.1)

where si are the roots of the material characteristic equation and kmi are the material related constants
given in [Zhao et al. 2006b].

A.1. Fundamental solutions corresponding to unit point force P3 in the z-direction. Using the deriva-
tion procedures of [Ding et al. 2005], the fundamental solutions are obtained.
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When z ≥ 0, we have

τxm = P3x
4∑

i=1

ωim

(
Ai

R̄3
i i

−

4∑
j=1

Ai j

R3
i j

)
, τym = P3 y

4∑
i=1

ωim

(
Ai

R̄3
i i

−

4∑
j=1

Ai j

R3
i j

)
,

σm = P3

4∑
i=1

ϑim

(
Ai z̄i i

R̄3
i i

−

4∑
j=1

Ai j zi j

R3
i j

)
, (A.2)

and when z ≤ 0,

τ ′

xm = P3x
4∑

i=1

4∑
j=1

ω′

im

A′

i j

R ′3
i j

, τ ′

ym = P3 y
4∑

i=1

4∑
j=1

ω′

im

A′

i j

R ′3
i j

, σ ′

m = P3

4∑
i=1

4∑
j=1

ϑ ′

im

A′

i j z
′

i j

R ′3
i j

, (A.3)

where variables with a prime refer to the half-space z ≤ 0 and those without a prime correspond to the
half-space z ≥ 0. The related coefficients are determined by

4∑
i=1

Ai = 0, 4π
4∑

i=1

ϑi1 Ai = −1,

4π
4∑

i=1

ϑi2 Ai = 0, 4π
4∑

i=1

ϑi3 Ai = 0,

Ai +

4∑
j=1

A j i =

4∑
j=1

A′

j i , Aiαim −

4∑
j=1

A j iα jm =

4∑
j=1

A′

j iα
′

jm,

Aiϑim +

4∑
j=1

A j iϑ jm =

4∑
j=1

A′

j iϑ
′

jm, Aiωi1 −

4∑
j=1

A j iω j1 =

4∑
j=1

A′

j iω
′

j1.

(A.4)

Solutions corresponding to the unit point charge P4 and point current P5 are in the same form as
Equations (A.2)–(A.4), but P3 and Ai should be replaced respectively by P4 and Bi and P5 and Ci . The
coefficients Bi and Ci are determined by

4∑
i=1

Bi = 0, 4π
4∑

i=1

ϑi1 Bi = 0,

4π
4∑

i=1

ϑi2 Bi = 1, 4π
4∑

i=1

ϑi3 Bi = 0,

Bi +

4∑
j=1

B j i =

4∑
j=1

B ′

j i , Biαim −

4∑
j=1

B j iα jm =

4∑
j=1

B ′

j iα
′

jm,

Biϑim +

4∑
j=1

B j iϑ jm =

4∑
j=1

B ′

j iϑ
′

jm, Biωi1 −

4∑
j=1

B j iω j1 =

4∑
j=1

B ′

j iω
′

j1,

(A.5)



562 MINGHAO ZHAO, NA LI, CUIYING FAN AND TONG LIU

4∑
i=1

Ci = 0, 4π
4∑

i=1

ϑi1Ci = 0,

4π
4∑

i=1

ϑi2Ci = 0, 4π
4∑

i=1

ϑi3Ci = 1, (A.6)

Ci +

4∑
j=1

C j i =

4∑
j=1

C ′

j i , Ciαim −

4∑
j=1

C j iα jm =

4∑
j=1

C ′

j iα
′

jm,

Ciϑim +

4∑
j=1

C j iϑ jm =

4∑
j=1

C ′

j iϑ
′

jm, Ciωi1 −

4∑
j=1

C j iω j1 =

4∑
j=1

C ′

j iω
′

j1.

A.2. Fundamental solutions corresponding to unit point force P1 in the x-direction. When z ≥ 0, the
fundamental solutions are given by

τxm = − P1ω5m

[
D5

(
1

R̄55(R̄55 − z̄55)
−

y2

R̄3
55(R̄55 − z̄55)

−
y2

R̄2
55(R̄55 − z̄55)2

)

−D55

(
1

R55(R55 + z55)
−

y2

R3
55(R55 + z55)

−
y2

R2
55(R55 + z55)2

)]

+P1

4∑
i=1

ωim

[
Di

(
1

R̄i i (R̄i i − z̄i i )
−

x2

R̄3
i i (R̄i i − z̄i i )

−
x2

R̄2
i i (R̄i i − z̄i i )2

)

−

4∑
j=1

Di j

(
1

Ri j (Ri j + zi j )
−

x2

R3
i j (Ri j + zi j )

−
x2

R2
i j (Ri j + zi j )2

)]
,

τym = −ω5m P1xy

[
D5

(
1

R̄3
55(R̄55 − z̄55)

+
1

R̄2
55(R̄55 − z̄55)2

)

−

4∑
j=1

D55

(
1

R3
55(R55 + z55)

+
1

R2
55(R55 + z55)2

)]

−P1xy
4∑

i=1

ωim

[
Di

(
1

R̄3
i i (R̄i i − z̄i i )

+
1

R̄2
i i (R̄i i − z̄i i )2

)

−

4∑
j=1

Di j

(
1

R3
i j (Ri j + zi j )

+ +
1

R2
i j (Ri j + zi j )2

)]
,

σm = P1x
4∑

i=1

ϑim

[
Di

R̄3
i i

+

4∑
i=1

Di j

R3
i j

]
,
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and when z ≤ 0

τ ′

xm = − P1ω
′

5m D′

55

[
1

R′

55(R
′

55 − z′

55)
−

y2

R ′3
55(R

′

55 − z′

55)
−

y2

R ′2
55(R

′

55 − z′

55)
2

]

+P1

4∑
i=1

4∑
j=1

D′

i jω
′

im

[
1

R′

i j (R
′

i j − z′

i j )
−

x2

R ′3
i j (R

′

i j − z′

i j )
−

x2

R ′2
i j (R

′

i j − z′

i j )
2

]
,

τ ′

ym = − P1ω
′

5m D′

55xy
[

1
R ′3

55(R
′

55 − z′

55)
+

1
R ′2

55(R
′

55 − z′

55)
2

]

−P1

4∑
i=1

4∑
j=1

D′

i jω
′

im xy
[

1
R ′3

i j (R
′

i j − z′

i j )
+

1
R ′2

i j (R
′

i j − z′

i j )
2

]
,

σ ′

m = P1x
4∑

i=1

4∑
j=1

ϑ ′

im

D′

i j

R ′3
i j

,

where the coefficients Di , Di j , D′

i j are given by

4∑
i=1

αim Di = 0, s5 D5 +

4∑
i=1

si Di = 0,

2πc44s5 D5 − 2π
4∑

i=1

ωi1 Di = − 1, D5 + D55 = D′

55,

αim Di −

4∑
j=1

α jm D j i =

4∑
j=1

α′

jm D′

j i , Di +

4∑
j=1

D j i =

4∑
j=1

D′

j i ,

ω51(D55 − D5)= −ω′

51 D′

55, ωi1 Di −

4∑
j=1

ω j1 D j i =

4∑
j=1

ω′

j1 D′

j i ,

ϑim Di +

4∑
j=1

ϑ jm D j i =

4∑
j=1

ϑ ′

jm D′

jm .

By simple coordinate transformation, solutions to the problem of unit point force P2 in the y-direction
can be easily obtained from the above solutions.

Appendix B: The constants Ls and the functions Gs and Ḡs

The coefficients in Equations (27)–(31) are given by

Q1
i = Di si c44 + c44 Ai − e15 Bi − f15Ci , Q2

i = c13 Di − si (c33 Ai − e33 Bi − f33Ci ), (B.1)

Q3
i = e31 Di − si (e33 Ai + ε33 Bi + g33Ci ), Q4

i = f31 Di − si ( f33 Ai + g33 Bi +µ33Ci ),
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L X1 = c44ω51s5 D5, L X2 = c44ω51s5 D55,

L i
11 = ωi1 Q1

i , L i
21k = ϑik Q1

i ,

L i
Z1 = ωi1 Q2

i , L i
Z1k = ϑik Q2

i , (B.2)

L i
D1 = ωi1 Q3

i , L i
D1k = ϑik Q3

i ,

L i
B1 = ωi1 Q4

i , L i
B1k = ϑik Q4

i , k = 1, 2, 3.

The coefficients
L i j

12, L i j
22k, L i j

Z2, L i j
Z2k, L i j

D2, L i j
D2k, L i j

B2, and L i j
B2k

can be obtained correspondingly by taking

s j , Ai j , Bi j ,Ci j , and Di j

instead of si , Ai , Bi , Ci , and Di in the above equations, respectively.
And the functions Ḡs with different superscripts and subscripts are given by

Ḡ(1)
i i =

b − y
(b − y)2 + z̄2

i i

(
a − x√

(a − x)2 + (b − y)2 + z̄2
i i

+
a + x√

(x + a)2 + (b − y)2 + z̄2
i i

)

+
b + y

(b + y)2 + z̄2
i i

(
a − x√

(a − x)2 + (b + y)2 + z̄2
i i

+
a + x√

(x + a)2 + (b + y)2 + z̄2
i i

)
,

Ḡ(3)
i i =

1√
(a − x)2 + (b − y)2 + z̄2

i i

−
1√

(a + x)2 + (b − y)2 + z̄2
i i

−
1√

(a − x)2 + (b + y)2 + z̄2
i i

+
1√

(a + x)2 + (b + y)2 + z̄2
i i

,

Ḡ(4)
i i =

1
(a − x)2 + z̄2

i i

(
b − y√

(a − x)2 + (b − y)2 + z̄2
i i

+
b + y√

(a − x)2 + (b + y)2 + z̄2
i i

)

−
1

(a + x)2 + z̄2
i i

(
b − y√

(a + x)2 + (b − y)2 + z̄2
i i

+
b + y√

(a + x)2 + (b + y)2 + z̄2
i i

)
,

Ḡ(6)
i i =

(y − b)(a − x)√
(a − x)2 + (b − y)2 + z̄2

i i

(
1

(b − y)2 + z̄2
i i

+
1

(a − x)2 + z̄2
i i

)

+
(y − b)(a + x)√

(a + x)2 + (b − y)2 + z̄2
i i

(
1

(b − y)2 + z̄2
i i

+
1

(a + x)2 + z̄2
i i

)
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−
(y + b)(a − x)√

(a − x)2 + (b + y)2 + z̄2
i i

(
1

(b + y)2 + z̄2
i i

+
1

(a − x)2 + z̄2
i i

)

−
(y + b)(a + x)√

(a + x)2 + (b + y)2 + z̄2
i i

(
1

(b + y)2 + z̄2
i i

+
1

(a + x)2 + z̄2
i i

)
.

The functions Ḡ(2)
i i and Ḡ(5)

i i can be obtained respectively from Ḡ(1)
i i and Ḡ(4)

i i by taking a, b, x , and y
instead of b, a, y, and x , respectively. The functions Gs can be obtained by taking zi j instead of z̄i i in
Ḡs.
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