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INTERFACIAL CRACK KINKING SUBJECTED TO CONTACT EFFECTS

BAOXIANG X. SHAN, ASSIMINA A. PELEGRI AND YI PAN

We investigate the problem of a kinking crack at a bimaterial interface when the two surfaces are in
contact near the crack tip. Using a potential function and the dislocation technique, we relate, by a
singular integral equation, the stress intensity factors (SIF) at the kinking crack tip to the SIF before crack
kinking. We use Gauss–Chebyshev integration formulas to solve this integral equation numerically. We
evaluate the kinking angles from a bimaterial interface under conditions of contact using the maximum
energy release rate criterion and compare these angles with our experiments and those in the literature.
The interfacial crack is demonstrated by simulation and experiments to kink into the more compliant
material at an angle of about 80◦.

1. Introduction

Interfacial fracture mechanics has been studied for several decades, and treatments have steadily grown
more effective as applications have increased [Sih 1977; Muskhelishvili 1977; Sanford 1997a; 1997b;
Hutchinson and Suo 1992]. Using continuum fracture mechanics, there are three candidate criteria for
predicting the growth direction for an interfacial crack: maximum loop stress [Wang 1994; Li et al.
2004], maximum energy release rate [Mulville et al. 1978; Sun and Jih 1987], and zero mode II intensity
stress factor (K I I = 0) [Sih 1977; Hutchinson and Suo 1992; Sanford 1997b; Banks-Sills and Ashkenazi
2000]. The maximum loop stress criterion was demonstrated to be ineffective and inaccurate [Xie et al.
2005]. The criteria of maximum energy release rate and zero mode II intensity stress factor were shown
to predict the same crack propagation direction in most loading conditions [Hutchinson and Suo 1992].
It is thus reasonable to use the maximum energy release rate criterion to predict the direction the crack
propagates. Because this rate can be completely expressed in terms of local stress intensity factors [Rice
1988], it is important, in bimaterial systems with complex geometry, to find how the local SIF relates to
the loading SIF.

Some have tried using finite element methods (FEM) to predict the kinking angles out of an interface
[Leblond and Frelat 2001; Leblond and Frelat 2004]. However, calculating the energy release rate for all
possible kinking angles is very tedious and may be inaccurate due to the singular characteristics of stress
and strain at a crack tip. With help of a complex variable representation, the dislocation method provides
a powerful tool for solving crack problems in both homogeneous solids and nonhomogeneous layered
materials [Atkinson 1966; Lo 1978; Hayashi and Nemat-Nasser 1981; Hills et al. 1996]. Therefore, we
adopt the dislocation technique here to find the relation between the SIF before and after kinking, under
general loading conditions. We then apply the solution to find how cracks kink from a interface between
two materials in contact.

Keywords: complex variables, composites, contact effect, interfacial crack, kinking crack, singular integration.
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Figure 1. Geometry of kinked crack.

When the surfaces near an interfacial crack tip are in contact, the conditions around the tip locally
become pure mode II, at least before the crack kinks [Comninou 1977; Comninou and Dundurs 1979a;
1979b; Fan et al. 1998; Gautesen and Dundurs 1988]. Equivalently, the effect of contact can be included
by applying a pure shear loading at infinity or by setting the loading phase angle to 90◦ [Leblond and
Frelat 2001; 2004].

2. Problem formulations

Consider a two-dimensional infinite bimaterial system, with a semiinfinite edge crack on the interface
and a significantly smaller kinked crack in the more compliant material labeled 2; see Figure 1. Global
loading of this geometry causes a primary semiinfinite interfacial crack to propagate into material 2. As
the linear fracture solution may cause the crack to exhibit an inadmissible flank penetration into the
bimaterial interface, the primary semiinfinite interfacial crack before kinking is represented by a contact
model [Comninou 1977; Comninou and Dundurs 1979a; 1979b] in which a small contact zone exists
around the crack tip; see Figure 2.

In either the linear fracture model or the contact model, the stress intensity factors for the interfacial
crack can be expressed in a complex variable [Rice 1988; Hutchinson and Suo 1992]

K = K I + i K I I = |K |eiψ0, (1)

where i =
√

−1, and where K I and K I I are the mode I and II SIF initially applied at infinity. |K | and
ψ0 are the magnitude and phase angle of the SIF.

When a contact zone occurs around the crack tip, the complex SIF is determined by K I I with a
diminished K I [Whitcomb 1981; Sun and Jih 1987]. Due to the contact between the flanks of the
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Figure 2. Contact model of primary semiinfinite interfacial crack.

interfacial crack, the mode I SIF disappears, that is, K I = 0 or ψ0 = 90◦ [Comninou 1977; Leblond and
Frelat 2001; Leblond and Frelat 2004].

After the primary interfacial crack kinks into one side, the stress intensity factor after kinking K ′ can
be similarly expressed in a complex variable

K ′
= K1 + i K2,

where K1 and K2 are the postkinking mode I and II SIF.
Because the crack tip is confined to a one side after kinking — that is, in a single homogeneous and

isotropic medium — the kinked crack problem can be solved by superposition using the basic linear
fracture solution for an edge dislocation in material 2 interacting with an initial semiinfinite interfacial
crack. As illustrated in Figure 3, the actual kinked crack tip is represented by a virtual dislocation along
the crack tip.

The stresses at point z = te−iω caused by a discrete edge dislocation at z0 = ηe−iω can be expressed
in complex form [Lo 1978; Hayashi and Nemat-Nasser 1981; Wang 1994] as

σθθ (t)+ iσrθ (t)= 2Be−iω(t − η)−1
+ B H1(t, η)+ B H2(t, η),

where
B =

µ2

iπ(κ2 + 1)
eiθ (ur + ivθ ) (2)

is the Burgers vector. The functions H1 and H2 are specified in Appendix A.
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Figure 3. Modeling a kinked crack by dislocation. From left: without kinking; after
kinking, in the traditional representation with a crack; after kinking, in the dislocation
representation without a crack.

After the kinked crack is represented by a distributed dislocation B(η), where η is the distance of a
discrete dislocation from the initial crack tip, the crack-dislocation relation becomes an integral equation
specifying that the net traction is zero on the kinking line (see Figure 3):

2e−iω

1∫
0

B(η)(t − η)−1dη+

1∫
0

B(η)H1(t, η)dη+

1∫
0

B(η)H2(t, η)dη = −(σθθ (t)+ iσrθ (t)). (3)

Because s = 2η− 1 and s0 = 2t − 1, Equation (3) can be equivalently transformed into

2e−iω

1∫
−1

B(s)(s0 − s)−1ds +

1∫
−1

B(s)
H1(s0, s)

2
ds +

1∫
−1

B(s)
H2(s0, s)

2
ds = −(σθθ (s0)+ iσrθ (s0)), (4)

where s is new integration variable, s0 is the point along the kinking crack from the initial crack tip to
the propagated crack tip, and B(s) is the distributed dislocation along the kinking crack.

This integral equation can be solved numerically using a method developed by [Erdogan and Gupta
1972; Sih 1977]. First, the unknown equivalent dislocation function B(s) is factored into a singularity
term and a bounded term P(s) [He and Hutchinson 1989]:

B(s)= (1 − s2)−1/2 P(s).

Then Equation (4) becomes a set of linear equations

n∑
i=1

1
n

P(si )

[
2πe−i$

s0k − si
+
π

2
H2(s0k, si )

]
+

n∑
i=1

1
n

P(si )

[
π

2
H1(s0k, si )

]
= −(σθθ (s0k)+ iσrθ (s0k)), (5)
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where n is the number of sampling point and the highest of order for numerical approximation,

si = cos
(2i −1

2n
π

)
for i = 1, 2, . . . , n, and s0k = cos

(k
n
π

)
for k = 1, 2, . . . , n − 1,

The function P(s) can be expended in Chebyshev polynomials T j (s) of the first kind as

P(s)=

n∑
j=1

C j T j−1(s).

Consequently, Equation (5) becomes the set of linear equations
n∑

j=1

{
C j E j (s0k)+ C j F j (s0k)

}
= −(σθθ (s0k)+ iσrθ (s0k)),

where E j (s0k) and F j (s0k) are the integrated functions that describe the distributed dislocation of stress
at the point s0k . They can be written as

E j (s0k)=

1∫
−1

B(s)
H1(s0k, s)

2
ds,

F j (s0k)= 2e−iω

1∫
−1

B(s)(s0k − s)−1ds +

1∫
−1

B(s)
H2(s0k, s)

2
ds.

Because there are n unknowns but only n − 1 equations in Equation (5), an additional equation needs
be introduced. He and Hutchinson [1989] chose

P(−1)=

n∑
j=1

C j T j−1(−1)= 0.

After the dislocation function is numerically determined from the linear equations, the stress intensity
factor after kinking can be calculated, according to [Lo 1978; He and Hutchinson 1989], from

K ′
= K1 + i K2 = (2π)3/2e−i$ lim

η→0
{(1 − η)1/2 B(η)} = (2π)3/2e−i$ P(1).

This equation relates the SIF after kinking to that before, because as P(1) is connected to the initially
applied SIF K through Equation (5).

In plane strain, the initial energy release rate G of the interfacial crack is related to the initial SIF K
as [He and Hutchinson 1989]

G0 =

(
1 − ν1

µ1
+

1 − ν2

µ2

)(
K K̄

4 cosh2 πε

)
,

where µ1 and ν1 are the shear modulus and Poisson’s ratio of material 1, and µ2 and ν2 are the shear
modulus and Poisson’s ratio of material 2. The material mismatch index ε is defined as

ε =
1

2π
ln

(1 −β

1 +β

)
.
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α and β are Dundur’s material parameters, defined in plane strain as

α =
µ1(1 − ν2)−µ2(1 − ν1)

µ1(1 − ν2)+µ2(1 − ν1)
and β =

1
2
µ1(1 − 2ν2)−µ2(1 − 2ν1)

µ1(1 − ν2)+µ2(1 − ν1)
. (6)

As the crack propagates in a homogeneous medium after kinking, the energy release rate G is given
by [He and Hutchinson 1989]

G =
1 − ν2

2µ2
(K 2

1 + K 2
2 ),

where µ2 and ν2 are the shear modulus and Poisson’s ratio of material 2 and where K1 and K2 are the
postkinking SIFs of mode I and II.

We will next evaluate, for different material combinations, the relative energy release rate G/G0, and
we will predict the kinking angle by the criterion of maximum energy release rate.

3. Numerical solution and results

3.1. Validation of program. The numerical simulation is in MATLAB. Before implementing the numer-
ical analysis, we validate the program by comparing our results with [He and Hutchinson 1989, Table 1]
for α = 0, β = 0 and α = 0.56, β = 0.12. In both cases, the kinking angle is set to 45◦ and the initial
SIF K is set to 1; see the results in Table 1.

Comparing our results with those of [He and Hutchinson 1989], we find that the real parts of P(1)
agree very well. The imaginary parts of P(1) are close in value, but ours takes a negative sign. Our
calculation is further validated by Cotterell and Rice’s equation [1980].

From Table 1, we also see that the values of P(1) differ by less than 0.1 percent in going from N = 40
to N = 100. Thus, for the rest of this paper, we will use N = 40.

3.2. Numerical simulation results. Figure 4 plots how relative energy release rate varies with angle, for
different material combinations. In the simulation, the Poisson’s ratios of both materials are assumed to
be same, and the ratio of material Young’s moduli E1/E2 are chosen as 1, 2, 5, 10 and 100. The figure
demonstrates that in each case the relative release energy rate reaches its maximum at some angle.

α = β = 0
N PR(1) Pm(1)

4 0.04923 −0.02096
8 0.04976 −0.02108
12 0.04989 −0.02107
16 0.04994 −0.02106
20 0.04997 −0.02105
40 0.05001 −0.02102

α = 0.56, β = 0.12
N PR(1) Pm(1)

4 0.04149 −0.01805
8 0.04183 −0.01871
12 0.04193 −0.01879
20 0.04199 −0.01883
40 0.04201 −0.01885
100 0.04202 −0.01885

Table 1. Calculation of P(1) for ω = 45◦ and K = 1.
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Figure 4. Energy release rate versus kinking angle.

Adopting the criterion of maximum energy release rate, we can find the kinking angle for each case.
See the results in Table 2, which also lists, for comparison, the kinking angle evaluated from the criterion
K I I = 0.

4. Comparison with experiments and discussion

For the homogeneous limit (α = β = 0), here, E1/E2 = 1, we compute the kinking angle at 77.1◦ using
the criterion K I I = 0; see Table 2. This result agrees well with the 77.3◦ obtained by correlating of
initial and local SIF by quadratures [Bilby and Cardew 1975] and the 77.8◦ obtained by FEM analysis
[Leblond and Frelat 2001; 2004], both of which use the criterion K I I = 0.

Pelegri and Chen [2000] performed experiments on cross-ply laminated composites (IM7/5260) using
a Mixed Mode Bending (MMB) test facility. The kinking angles were found at different loading ratios.
The experimental results show that the kinking angle is 80◦ when the loading ratio of shear to tension is
4:1. From the fractographic images [Gilchrist and Svensson 1995; Partridge and Singh 1995; Gilchrist
et al. 1996] of loading ratio experiments similar to those of Pelegri, the interfacial cracks show contact
between the crack flanks at a loading ratio of 4:1. Here, the program is implemented to compute the
kinking angle for those experiments. Considering the contact effect in our simulation, we predict the
kinking angle of 80.4◦ when the loading ratio of 4:1, which matches well the experimental result.

E1/E2 1 2 5 10 20 50 100
Kinking angle by maximum G/G0 75.7◦ 77.9◦ 79.3◦ 79.8◦ 80.0◦ 80.2◦ 80.2◦

Kinking angle by K2 = 0 77.1◦ 81.1◦ 84.3◦ 85.5◦ 86.1◦ 86.5◦ 86.7◦

Table 2. Kinking angles in the presence of contact, assuming ν1 = ν2.
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Figure 5. At left, the kinking angle for the cantilever bending experiment and, at right,
for the microscopic three-point experiment.

We experiment with cantilever bending and microscopic three-point bending on cross-ply laminated
composite (IM7/G8548) [Shan and Pelegri 2003]. Figure 5 shows images of the kinking crack in these
two cases. In the cantilever bending experiment, the cantilever beam can withstand the shear resultant
force and moment after its local buckling, so that the inner delamination tip is in local compressive and
mode II dominant conditions, and the two surfaces are in contact near the tip. The dominance of mode
II and the presence of contact are also verified by finite element analysis [Shan and Pelegri 2003], which
Figure 6 shows as a large ratio of K I I /K I . This paper’s program computes the kinking angle to be 80.4◦

for the mode II dominant condition, which fits well with the experimental result of 81.2◦; see Figure
5 at left. Figure 5, at right, illustrates a microscopic experiment by three-point bending; the results are
also dominated by mode II and the presence of contact. The kinking angle of 80.8◦ agrees well with our
numerics.

Inner end

Figure 6. Ratio of stress intensity factors in mode II to mode I by FEM.
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5. Conclusions

We determined the kinking angle for an interfacial crack under the effects of contact by a numerical
analysis using a complex SIF, a dislocation technique, and singular integration. The contact effects
are important for evaluating the competition between the interlayer and intralayered cracks in laminate
materials and composites.

When contact is present, our numerical analysis finds the kinking angle out of the interface into the
more compliant material to be 75.7◦ for homogeneous layered materials and around 80.2◦ for a wide
range of nonhomogeneous material combinations. According to the analytical, FEM, and experimental
results, this angle is independent of the structural geometry, the loading type (be it static, fatigue, or
dynamic), and loading history and has little relation to material elastic constants. Furthermore, the
progressive crack tends to get trapped on the interface regardless of the loading and architectural config-
uration for the laminate composites. This it because the crack is eventually forced against interface and
accordingly meet more resistance to its further propagation.

Our future work will focus on the crack growth law under effects of contact and friction and on how
the crack progresses from pure mode I opening to mixed mode to pure mode II shearing. The size and
pattern of heckles formed during as the crack propagates may serve to measure this phenomenon.
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Appendix A. Derivation of the functions H1 and H2 in the dislocation method

In terms of the Muskhelishvili [1977] potentials, the stresses and displacements in two-dimensional
infinite bimaterial system may be expressed as

(σyy − iσxy) j =8 j (z)+8 j (z)+ z8′

j (z)+9 j (z), (A.1)

(σyy + σxx) j = 2 (8 j (z)+8 j (z)), (A.2)

2µ j

(∂u
∂x

− i
∂v

∂x

)
j
= κ j8 j (z)− (8 j (z)+ z8′

j (z)+9 j (z)), (A.3)

where the subscript j = 1, 2 means “in the region j” and where 8 j and 9 j are the potentials. Also, the
complex z is x + iy, the prime takes derivatives in z, the overbar denotes complex conjugation, κ = 3−4ν
for plane strain, κ = (3 − ν)/(1 + ν) for plane stress, and ν is Poisson’s ratio.

Mukai et al. [1990] introduced two additional jump potentials �S and �D to solve the branching of
interfacial crack of finite length within an infinite large body. Similarly to Mukai’s method, Suo [1989]
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obtained the Muskhelishvili potentials for an infinite large body with a semiinfinite interfacial crack from

�S =

{
81(z)− [8̄2(z)+ z8̄′2(z)+ 9̄2(z)], z ∈ S1,

82(z)− [8̄1(z)+ z8̄′1(z)+ 9̄1(z)], z ∈ S2,
(A.4)

�D =


κ1

2µ1
81(z)+

1
2µ2

[8̄2(z)+ z8̄′2(z)+ 9̄2(z)], z ∈ S1,

κ2

2µ2
82(z)+

1
2µ1

[8̄1(z)+ z8̄′1(z)+ 9̄1(z)], z ∈ S2,

(A.5)

81(z)= Q1

[
1

2µ2
�s1(z)+�D1(z)

]
, (A.6)

91(z)= Q2

[
−κ2

2µ2
�̄S2 + �̄D2

]
−81(z)− z8′

1(z), (A.7)

82(z)= Q2

[
1

2µ1
�S2(z)+�D2(z)

]
, (A.8)

92(z)= Q1

[
−κ1

2µ1
�̄S1 + �̄D1

]
−82(z)− z8′

2(z), (A.9)

where

Q1 =
2µ1µ2

µ1 + κ1µ2
, Q2 =

2µ1µ2

µ2 + κ2µ1
,

and f (z)≡ f (z). If f (z) is analytic for z in region S, then f (z) is analytic for z in region S.
The interaction between an interface crack and a dislocation may be solved by superposing the solu-

tions for (i) a dislocation in S2 near an interface and (ii) an interface crack loaded with the negative of the
stresses produced by (i). By simply replacing α with −α, β with −β and by switching the subscripts
1 and 2 of 8D and 9D from Mukai’s results [1990], we get the potentials

8D
1,singular =9D

1,singular = 0, (A.10)

8D
2,singular =

B
z − s0

, (A.11)

9D
2,singular = B

1
z − s0

+ B
s̄0

(z − s0)2
, (A.12)

8D
1,continuation = B

(
(1 −α)

(1 +β)(z − s0)

)
, (A.13)

9D
1,continuation = A

(
(1 −α)(s̄0 − s0)

(1 −β)(z − s0)2

)
+ Ā

(
(1 −α)

(1 −β)(z − s0)

)
−8D

1,continuation − z8D′

1,continuation, (A.14)

8D
2,continuation = B

(
(β −α)

(1 −β)(z − s̄0)

)
+ B

(
(β −α)(s0 − s̄0)

(1 −β)(z − s̄0)2

)
, (A.15)

9D
2,continuation = Ā

(
−(α+β)

(1 +β)(z − s̄0)

)
−8D

2,continuation − z8D′

2,continuation, (A.16)
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where B is the Burgers vector of Equation (2) and α and β are Dundur’s constants defined in Equation
(6).

When the main crack is introduced, the stresses due to the dislocation near an interface will be removed
from the crack faces by the two potentials 8C and 9C . Many investigators [Suo 1989; Mukai et al. 1990;
Rice et al. 1990] have presented the solutions for crack problems. For a semiinfinite crack on an interface,
the interface boundary conditions at y = 0 are

(σyy − iσxy)1 − (σyy − iσxy)2 = 0 for |x |<∞,(∂u
∂x

− i
∂v

∂x

)
1
−

(∂u
∂x

− i
∂v

∂x

)
2
= 0 for x > 0,

(σyy − iσxy)= f (x) for x < 0.

In terms of the jump potentials the first boundary condition is simply

�S1(x)−�S2(x)= 0 for |x |<∞.

Since �S is analytic everywhere and bounded, by Liouville’s theorem it must be constant. Moreover,
for zero stress at infinity, �C

S = 0.
The second boundary condition in terms of the jump potentials is

�D1(x)−�D2(x)= 0 for x > 0.

The third boundary conditions in terms of the jump potentials is

Q1�D1(x+)+ Q2�D2(x−)= f (x+)= f (x) for x < 0,

Q2�D2(x−)+ Q1�D1(x+)= f (x−)= f (x) for x < 0.

or,

�+

D + m�−

D(x)=
1

Q1
f (x) for x < 0, where m =

Q2

Q1
=

1 +β

1 −β
.

These two last boundary conditions define a Hilbert problem with the solution

�D(z)=
χ(z)
2π i

0∫
−∞

1
Q1

f (x)
χ+(x)(x − z)

dx +χ(z)P(z) (A.17)

in which χ(z)= zγ−1 is the solution of the homogeneous Hilbert problem defined above,

γ =
1
2

−
i

2π
log |m| =

1
2

+ iε, where ε =
1

2π
log

∣∣∣ 1
m

∣∣∣,
and P(z) is equal to zero [Suo 1989; Mukai et al. 1990]. After �D is obtained, the jump potentials can
be inverted back to standard potentials using Equations (A.6)–(A.9). To remove the stresses on the crack
caused by the dislocation solution, the integration in Equation (A.17) is carried out with f (x) opposite
to the tractions due to a dislocation near the interface. These tractions are obtained by substituting the
Equations (A.11), (A.12), (A.15) and (A.16) into Equation (A.1):

(σyy − iσxy)c = B
(

(1 −α)

(1 +β)(x − s0)
+

(1 −α)

(1 −β)(x − s̄0)

)
+ B

(
(1 −α)(s0 − s̄0)

(1 −β)(x − s̄0)2

)
.
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So the jump potential is

�D(z)= −
χ(z)

2π i Q1

0∫
−∞

(σyy − iσxy)c

χ+(x)(x − z)
dx,

and it can be obtained by following Suo’s procedure [1989], giving

�C
D(z)= −B

(1 −α)(1 −β)

Q1

(
F(z, s0)

1 +β
+

F(z, s̄0)

1 −β

)
− B

(1 −α)(1 −β)

Q1

(
(s0 − s̄0)G(z, s̄0)

1 −β

)
,

where

F(z, a)=
1

2(z − a)

(
1 −

χ(z)
χ(a)

)
and G(z, a)=

∂F(z, a)
∂a

. (A.18)

Inverting these to standard potentials gives

8C
1 (z)= −B(1 −α)(1 −β)

[
F(z, s0)

1 +β
+

F(z, s̄0)

1 −β

]
− B(1 −α)(1 −β)

[
(s0 − s̄0)G(z, s̄0)

1 −β

]
8C

2 (z)= −B(1 −α)(1 +β)

[
F(z, s0)

1 +β
+

F(z, s̄0)

1 −β

]
− B(1 −α)(1 +β)

[
(s0 − s̄0)G(z, s̄0)

1 −β

]
9C

1 (z)=−B(1−α)(1+β)

[
(s̄0 − s0)Ḡ(z, s̄0)

1 −β

]
−B(1−α)(1+β)

[
F̄(z, s0)

1 +β
+

F̄(z, s̄0)

1 −β

]
−8C

1 (z)−z8C ′

1 (z)

9C
2 (z)=−B(1−α)(1−β)

[
(s̄0 − s0)Ḡ(z, s̄0)

1 −β

]
−B(1−α)(1−β)

[
F̄(z, s0)

1 +β
+

F̄(z, s̄0)

1 −β

]
−8C

2 (z)−z8C ′

2 (z)

The final potentials that solve the interaction between a discrete dislocation and an interface crack are

8=8D
+8C

=8D
singular +8

D
continuation +8C

9 =9D
+9C

=9D
singular +9

D
continuation +9C ,

where the dislocation (D) potentials and the crack (C) potentials are all defined above. Thus, the traction
at z on θ = −ω can be written as

σθθ (t)+ iσrθ (t)= 2Be−iω(t − η)−1
+ B H1(t, η)+ B H2(t, η),

where

H1(t, η)= H10(t, η)+ H11(t, η),

H2(t, η)= H20(t, η)+ H21(t, η),



INTERFACIAL CRACK KINKING SUBJECTED TO CONTACT EFFECTS 603

and

H10 = −δ

[
1

z − s̄0
+
(s̄0 − s0)

(z − s0)2
+ e−2iω (s̄0 − s0)

(z − s̄0)2

]
,

H20 = −δ

[
1

z − s0
+
(s0 − s̄0)

(z − s̄0)2
+ e−2iω (s0 − s̄0)(z + s̄0 − 2z)

(z − s̄0)3

]
−

λ

z − s̄0
e−2iω,

H11 = −(1 −α)(1 +β)L
[

F(z, s0)

1 +β
+

F(z, s̄0)

1 −β
,
(s0 − s̄0)G(z, s̄0)

1 −β

]
,

H21 = −(1 −α)(1 +β)L
[
(s0 − s̄0)G(z, s̄0)

1 −β
,

F(z, s0)

1 +β
+

F(z, s̄0)

1 −β

]
,

where

L(φ(z), ϕ(z))= φ(z)+ϕ(z)+ e−2iω
[
(z − z)φ′(z)+

1 +β

1 −β
ϕ̄(z)−φ(z)

]
and

δ =
α−β

1 −β
,

λ=
α+β

1 +β
.

The functions H10 and H20 represent the effects of a dislocation below the interface where the material
does not crack. The functions H11 and H21 are additional terms needed to satisfy the traction-free
condition on the semiinfinite crack.

The traction expression is very similar to what had been reported by Hutchinson and Suo [1992]. Our
expressions for H10 and H20 are the same as theirs, but our H11 and H21 are different, in that theirs are
missing all terms related to (s0 − s̄0)G(z, s̄0)/(1 −β).

Appendix B. Formula for asymptotic stresses of an interfacial crack

When a crack branches into material 2, one can formulate σ 0
θθ (t)+ iσ 0

rθ (t) in terms of potential functions
[Rice 1988; He and Hutchinson 1989] as

σ 0
θθ (t)+ iσ 0

rθ (t)= φ′

0(z)+ φ̄
′

0(z)+ e−2iω (
zφ′′

0 (z)+χ
′

0(z)
)
,

where

φ′

0(z)=
1

2
√

2π cosh(πε)
eεπ K̄ z−(1/2+iε),

χ ′

0(z)=
1

2
√

2π cosh(πε)

(
e−επK z−1/2+iε

− eεπ
(1

2
− iε

)
K̄ z−(1/2+iε)

)
.

Sun and Qian [1996] demonstrated that this expression of the asymptotic stresses around an interfacial
crack tip is appropriate for calculating the stress field in either the traditional linear fracture model or the
contact model.
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