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SHIELDS BY IMPACTOR WITH JET THRUSTER

GABI BEN-DOR, ANATOLY DUBINSKY AND TOV ELPERIN

High-speed penetration into soil, rock, concrete, and ice by impactors equipped with a jet thruster is
optimized using analytical and numerical methods. It is shown that using a jet thruster with optimum
burning programs bears considerable promise for increasing the depth of penetration. In this study, we
used modified Young’s penetration equations with a smooth approximation of the dependence between
the depth of penetration and impact velocity for the description of impactor-shield interaction.

1. Introduction

Optimization of jet propulsion in media with drag was considered mainly with applications to planes and
missiles. Surveys of the obtained results and references can be found in the studies by Leitmann [1962],
Kosmodemiansky [1966], and Tertychny-Dauri [2004]. Using jet thrusters for increasing the depth of
penetration into solid media was analyzed in only a few publications. Sagomonyan [1988] formulated
two problems. In the first problem, a jet thruster was assumed to operate during a fixed time interval, and,
in order to maximize the depth of penetration (DOP) of penetrator into soil, it was necessary to determine
the moment at which the jet thruster must be switched on. In the second problem, a jet thruster could
operate along a fixed length of the trajectory, and, in order to provide the maximum DOP, it was necessary
to determine the depth at which the jet thruster must be switched on. The second problem was solved for
a penetrator with a conical nose, assuming that the mass of the penetrator remains constant. Gould [1997]
suggested engineering designs whereby a rocket motor is attached to the penetrator and operates during
penetration. Ben-Dor et al. [2007] considered maximization of the DOP as an optimization problem for
a penetrator with a variable mass. They noticed a similarity between this problem and maximization of
the distance of a horizontal flight in the atmosphere. Various formulations of the latter problem were
considered in the past [Hibbs 1952; Cicala and Miele 1956; Miele 1957; Miele 1962; Krotov 1995].
However, it transpired that this similarity had limited applications because of different drag laws in the
atmosphere and soil. Only general properties of the solutions obtained for an arbitrary dependence of
drag force upon the instantaneous mass and velocity, D = D(m, v), can be used for solving penetration
optimization problems. Consequently, optimization of the penetrator with a jet thruster must be analyzed
separately. In the study by Ben-Dor et al. [2007], the authors employed the simplest penetration model
in which the drag force is a linear function of a squared velocity. Combining analytical and numerical
methods, they determined the optimum burning programs and compared the obtained results with more
simple burning programs for controlling the motion of a penetrator.
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In the present study, we further develop the approach suggested in [Ben-Dor et al. 2007] for a penetra-
tion model with a drag force depending upon the instantaneous velocity and the instantaneous mass of the
impactor, whereby, as often happens in practice, the dependence of the drag force in different intervals of
its arguments may be determined by different formulas. As a base model, we employed the well known
set of models suggested by Young [1997] which is widely used for calculating the DOP in soil, rock,
concrete, ice, and frozen soil. The shortcoming of these models is a nonsmooth variation of the DOP
with impact velocity which is especially inconvenient in solving optimization problems. Consequently,
we suggested a new approximation which is practically as simple and accurate as the original one but
has continuous first and second derivatives. The latter renders this approximation more convenient, not
only for the goals of the present study, but also for general applications. For a drag force determined by
this modified Young’s model (MYM), we analytically found the optimal burning programs for the case
without an upper bound on the mass flux of the thruster. We suggested a numerical procedure based on
dynamic programming for the optimization of the burning program for the general case of D = D(m, v)
and a tailored version of this procedure for (MYM). Calculations presented here demonstrate that the
appropriate choice of parameters for the jet thruster allows achieving a considerable increase of the DOP.

2. Formulation of the problem

Consider a high speed normal penetration of a rigid sharp striker (a body of revolution) with a jet thruster
into a semiinfinite shield along the axis h. The coordinate h, the instantaneous depth of penetration, is
defined as the distance between the nose of the impactor and the front surface of the shield.

Since the effect of gravity during high speed penetration in a dense medium can be neglected, motion
of the impactor is governed by the following equation of motion of a projectile with a variable mass:

m
dv
dt

+ c
dm
dt

= −D(m, v), D(m, v) > 0, (1)

where v is the velocity of the impactor, c is the relative exit velocity of gases at the nozzle of a jet thruster,
m is the instantaneous mass of the impactor that varies in the range between the initial value mimp to the
final value mres, that is,

mres ≤ m ≤ mimp, (2)

and D is the drag force depending not only on m and v, but also on parameters determining mechanical
properties of the shield and the shape of the projectile.

It is assumed that the thruster is capable of delivering all mass fluxes in the range between zero and
the maximum value µmax:

−µmax ≤
dm
dt

≤ 0. (3)

The constraint imposed on the acceleration is as follows:

|dv/dt | ≤ χmaxg, (4)

where g is the acceleration of gravity, and χmax is the given upper bound for the overload of the impactor.
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Since d/dt = (d/dh) · (dh/dt) = vd/dh = v(dm/dh) · (d/dm), Equation (1) can be rewritten as
follows:

v
dm
dh
(mv′

+ c)= −D(m, v), v′
=

dv
dm

. (5)

The DOP, H , for a given impact velocity, vimp, is defined as the depth at which the velocity of the
impactor vanishes. Equation (5) implies the following expression for H :

H =

∫ mimp

mres

(mv′
+ c)v

D(m, v)
dm. (6)

We consider v to be a function of m. This is convenient because penetration is associated with a decrease
of m, and v is a single-valued function of m except for the case in which m = const (inertial, or passive
motion of the penetrator). The following conditions are valid for the initial and terminal points of the
impactor’s path:

v(mimp)= vimp, v(mres)= 0. (7)

Using Equation (5) we obtain that

dm
dt

= v
dm
dh

= −
D(m, v)
mv′ + c

, (8)

and Equation (3) can be rewritten as

0 ≤
D(m, v)
mv′ + c

≤ µmax. (9)

Using the relationship dt = −(c + mv′)dm/D(m, v) obtained from Equation (8) we can rewrite Equation
(3) in the form: ∣∣∣∣ D(m, v)v′

mv′ + c

∣∣∣∣ ≤ χmaxg. (10)

We also assume that
v ≥ 0, v ≤ vmax, (11)

where vmax is the maximum velocity of the impactor.
The problem is to determine the function v(m) that provides the maximum DOP, H , in Equation (6),

taking into account the constraints given by Equations (7), (9), (10) and (11). Function D(m, v) and the
parameters µmax, χmax, vmax, mimp, mres, and vimp are assumed to be given.

Inequalities in Equation (9) imply two situations: the possibility of the vertical subarcs, m = const
when v′

= ∞, and the restrictions mv′
+ c ≥ D(m, , v)/µmax and mv′

+ c ≥ 0 when v′ <∞. Clearly, the
latter inequality can be omitted and we can write this constraint as follows:

mv′
+ c ≥ D(m, v)/µmax, if v′ <∞. (12)

For m = const (v′
= ∞), the constraint in Equation (10) can be simplified:

D(m, v)/m ≤ χmaxg, if m = const . (13)
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3. Generalized Young’s penetration model

Numerous simplified models were proposed for high speed penetration into different media. An overview
of these models may be found, for instance, in the recent monograph [Ben-Dor et al. 2006] and the review
[Ben-Dor et al. 2005]. In this study are employed the well known Young’s penetration equations [Young
1997] which determine the DOP into soil, rock, and concrete (SRC) shields as well as into ice and frozen
soil (IFS) in the following unified form:

P(vimp)

k
=

{
P̃a(vimp) if vimp < ṽ∗

P̃b(vimp) if vimp ≥ ṽ∗,
(14)

where

P̃a(vimp)= α̃1 ln(1 + α̃2v
2
imp), P̃b(vimp)= k1(vimp − v0), (15)

k = k0θ(m), k0 = S̃ Ñ/ Ãκ1, (16)

θ(m)=

{
σmκ1+κ2 if SRC

mκ1 ln(50 + 0.29m2) if IFS,
(17)

P is the DOP, S̃ is a coefficient depending on the mechanical properties of the shield, Ñ depends on
the shape of the impactor, Ã is the cross sectional area of the impactor, v0 = 30.5, α̃2 = 0.000215,
ṽ∗ = 2v0 = 61, other coefficients are presented in Table 1. It is assumed that the mass of the projectile
is constant. The parameters of the model are chosen such that the variables are measured in SI units
[Young 1997]. Unfortunately, this widely used model is inconvenient in theoretical analysis because it
employs the dimensional coefficients and because it is described by a discontinuous function.

Indeed, Young’s dependence in the range between P/k = P̂ and vimp for SRC is described by a
function that is discontinuous at vimp = ṽ∗, P̃a(ṽ∗) = 0.000470, Pb(ṽ∗) = 0.000549. Inaccuracy in
calculation is a plausible reason for this discontinuity, and can be corrected by choosing α̃1 such that
P̃a(ṽ∗)= P̃b(ṽ∗). Then we obtain that

α̃1/k1 = v0/ln(1 + α̃2v
2
∗
)= 51.89. (18)

The corrected values α̃1 that enforce the continuity of P̂(vimp) are presented in Table 1. However, in
our study we need a more smooth approximation of the function P̂(vimp), namely, it must have the

Shield’s material m κ1 κ2 σ α̃1 k1 α̃1, corrected

Soil
2 ≤ m < 27 0.7 0.4 0.27 0.0008 0.000018 0.0009340

m ≥ 27 0.7 0 1 0.0008 0.000018 0.0009340

Rock, Concrete
5 ≤ m < 182 0.7 0.15 0.46 0.0008 0.000018 0.0009340

m ≥ 182 0.7 0 1 0.0008 0.000018 0.0009340

Ice, Frozen Soil 0.6 0.00024 0.0000046 0.0002387

Table 1. Parameters of the models.



OPTIMIZATION OF PENETRATION INTO GEOLOGICAL SHIELDS 711

continuous second derivative for all vimp > 0. Toward this end, we modify the model for the relatively
small vimp keeping the Young’s approximation for large vimp. We look for this approximation of the
function P(vimp) in the following form:

P(vimp)

k
=

{
Pa(vimp) if vimp < v∗

P̃b(vimp) if vimp ≥ v∗,
(19)

where

Pa(vimp)=
(
α2v

2
imp +α1vimp +α0

)
v2

imp, vimp ≤ v∗ (20)

v∗ = sv0, s ≥ 2. (21)

The constraint in Equation (21) follows from the fact that the function P̃b(vimp) is defined only for
vimp ≥ ṽ∗ = 2v0.

The problem is to find such α0, α1, α2, and v∗ (or s) that

Pa(v∗)= P̃b(v∗), P ′

a(v∗)= P̃ ′

b(v∗), P ′′

a (v∗)= P̃ ′′

b (v∗), v∗ = sv0, (22)

where

P ′

a(vimp)= 4α2v
3
imp + 3α1v

2
imp + 2α0vimp, P̃ ′

b(vimp)= k1,

P ′′

a (vimp)= 12α2v
2
imp + 6α1vimp + 2α0, P̃ ′′

b (vimp)= 0.
(23)

In addition, by physical reasoning, Pa must be an increasing function.
Equation (22) yields a system of linear equations with respect to α0, α1, and α2 which has the following

solution:

α0 =
3k1(s − 2)

s2v0
, α1 =

k1(8 − 3s)
s3v2

0
, α2 =

k1(s − 3)
s4v3

0

. (24)

Let us prove that for any s ≥ 2, the function Pa(vimp) increases when 0< vimp ≤ sv0. This occurs if
P ′

a(vimp) > 0 in the same range of vimp, or if ω(V ) > 0 for 0< V ≤ 1, where

ω(V )=
1

k1v0V
P ′

a(sv0V )= 4(s − 3)V 2
+ 3(8 − 3s)V + 6(s − 2), V =

vimp

sv0
. (25)

Let 2 ≤ s < 3. Since ω(0)≥ 0 and ω(1)= s > 0, the convex function ω(V ) > 0 for 0< V ≤ 1.
The discriminant of the quadratic equation ω(V )= 0 is 1(s)= 3s(16−5s). Since 1< 0 and s −3> 0

when s > 16/5, then ω(V ) > 0 for s > 16/5 = 3.2.
Let 3 ≤ s < 3.2. Then there are two different roots of the equation ω(V ) = 0, V1 and V2. The Viet

formula implies that both the roots are positive. The smaller root, V1, is

V1(s)= [3(3s − 8)−
√
1(s)]/[8(s − 3)].

It is easy to prove that V1 > 1 if 3 ≤ s < 3.2. Since ω(0) > 0 and all the roots are larger than 1, ω(V ) > 0
for 0< V ≤ 1.

In order to complete the analysis, let us consider ω(V ) for two remaining values s. If s = 3 then
ω(V )= 3(2 − V ) > 0, and if s = 3.2 then ω(V )= 0.8(V − 3)2 > 0, for 0< V ≤ 1.

Thus we proved that Pa(vimp) is an increasing function for 0< vimp ≤ sv0 when s ≥ 2.
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Smooth approximation of the function P = P(vimp) in Equation (19) allows one to determine the
dependence of the drag force, D, on the instantaneous velocity, v, that yields the following correlation
for motion of the impactor with a constant mass m:

D =
m
k

×

{
Da if v < v∗,

Db if v ≥ v∗,
(26)

where
Da(v)= v/P ′

a(v)= (4α2v
2
+ 3α1v+ 2α0)

−1,

Db(v)= v/P̃ ′

b(v)= v/k1.
(27)

The validity of this statement can be verified directly by determining the DOP from the equation of
motion of the impactor, mvdv/dh = −k D. Equation (22) implies that the function D has a continuous
derivative with respect to v. Note that a similar approach was used in [Eisler et al. 1998] for the case in
which the dependence of the DOP on vimp is determined by one analytical expression.

By physical reasoning, Da(v) must be a positive increasing function for 0 < vimp ≤ sv0. Since
v/P ′

a(v)= 1/Da(v)= (s/k1)ω(V ), where V = v/(sv0), it is sufficient to show that ω(0) > 0, ω(1) > 0
and ω′(V )= 8(s − 3)V + 3(8 − 3s) < 0 for 0< V ≤ 1. The first and the second inequalities are valid
for s > 2 because ω(0) = 6(s − 2) > 0 and ω(1) = s > 0. Since ω′(V ) is a linear function, the third
inequality is equivalent to the conditions ω′(0)= 3(8 − 3s)≤ 0, ω′(1)= −s ≤ 0 and ω′(0)+ω′(1) 6= 0.
Consequently, s ≥ 8/3 are the permissible values for s.

In order to obtain the most convenient approximation we set s = 8/3 when α1 = 0. Then

D =
m

kk1
×

{
1/(γ0 − γ2v

2) if v < v∗,

v if v ≥ v∗,
(28)

where

γ0 =
2α0

k1
=

6(s − 2)
s2v0

= 0.01844,

γ2 = −
4α2

k1
=

4(3 − s)
s4v3

0

= 0.929318 · 10−6,

v∗ = sv0 = 81.33.

(29)

The modified Young’s approximation and the proposed approximation are compared in Figure 1. In-
spection of Figure 1 shows that the difference between them is negligibly small.

We assume that Equation (28) for the drag force remains valid for motion of the penetrator with a
variable mass.

We assume also that the mass of the impactor does not exceed m ≥ 27 kg or m ≥ 182 kg in the case
of penetration into soil or rock and concrete, correspondingly. This restriction can be relaxed using a
smoother approximation of the function θ(m).

4. Analytical investigation of the limiting case

In order to estimate the upper bound for increasing the DOP by using the jet thruster, let us consider
the problem with the minimum number of constraints. In this version of the statement of the problem,
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Figure 1. Comparison of the corrected Young’s model and the proposed smooth model.

Equation (6) remains valid, and the constraints given by Equation (7), the first equation in Equation (11),
and Equation (12) with µmax = ∞, that is,

mv′
+ c ≥ 0, (30)

are taken into account.
We consider first penetration into nonfrozen soil, rock, or concrete. Then the formula for θ(m) in

Equation (17) reads:
θ(m)= σmκ , κ = κ1 + κ2, (31)

where the values κ1, κ2, and σ are presented in Table 1. We assume that m varies in the range where σ
is constant.

Using Equations (16) and (31), Equation (28) can be written as follows:

D =
m1−κ

σk0k1
×

{
1/(γ0 − γ2v

2) if v < v∗,

v if v ≥ v∗.
(32)

Using the results of [Cicala and Miele 1956] (see also [Miele 1962]) the optimum curve must consist
of the following subarcs:

subarc 1: �(m, v)= 0, where

�(m, v)= (v− c)D(m, v)+ v(cd D/dv− md D/dm), (33)

subarc 2: the subarc m = const, and

subarc 3: the subarc ṁ = −µmax where ṁ = dm/dt .

Subarc 1 represents the solution of the Euler–Lagrange equation; subarc 3 is described by Equation (30)
after replacing ≥ by =.

The above subarcs can be joined in the following sequences:
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(a) if �> 0 in some point then the only sequence m = const ⇒ ṁ = −µmax is possible in this point;

(b) if �< 0 then the inverse sequence ṁ = −µmax ⇒ m = const is permissible;

(c) if �= 0 then the joints �= 0 ⇔ m̄ = const and �= 0 ⇔ ṁ = −µmax are possible.

The arrows indicate the direction of the motion of the penetrator along the subarcs on the m, v plane.
Substituting D from Equation (32) into Equation (33), we obtain:

�=
κm1−κ

σk0k1
×

{
−γ2(γ0 − γ2v

2)−2�a(v) if v < v∗,

�b(v) if v ≥ v∗,
(34)

where
�a(v)= v3

− 3ĉv2
− γ̂0v+ γ̂0ĉ, (35)

with �b(v)= v2, ĉ = c/κ , and γ̂0 = γ0/γ2. Since

�a(−∞) < 0, �a(0) > 0,

�a(v∗)= −�b(v∗)(γ0 − γ2v
2)2/γ2 < 0, �a(+∞) > 0,

(36)

the cubic equation �a(v)= 0 has 3 real roots, but only one root, v×, is located between 0 and v∗:

v× = ĉ + 2
(
γ̂0 + 3ĉ2

3

)1/2

cos
(
ζ

3
+

4π
3

)
, ζ = cos−1

(
3ĉ2

γ̂0 + 3ĉ2

)3/2

. (37)

The dependence v× versus ĉ = c/κ is shown in Figure 2.
Taking into account this result, and that �b(v) > 0 for v ≥ v∗, we conclude that �(v) < 0 when

0 ≤ v < v×, �(v×)= 0, and �(v) > 0 when v > v×. Therefore, the conditions �(v) < 0, �(v)= 0, and
�(v) > 0 correspond to the conditions v̄ < v̄×, v̄ = v̄×, and v̄ > v̄×, respectively.

The equation of the arc 1 reads:
v = v×. (38)
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Figure 2. Solution of the equation �(v)= 0 as a function of the parameter ĉ = cκ .
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Consider a point moving along the curve v = v×, from the location with coordinates (mb, v×) to the
location with coordinates (ma, v×), where mres ≤ ma < mb ≤ mimp. Then the increase of the functional
given by Equation (6) with D determined by Equation (32) along this path reads:

1H/(k0k1)= 0m(ma,mb)= cv×(γ0 − γ2v
2
×
)

∫ mb

ma

dm
m1−κ

= cv̂×(γ0 − γ2v
2
×
)(mκ

b − mκ
a). (39)

Along the line v = v× < v∗, Equation (1) reads:

c
dm
dt

= −
m1−κ

k0k1(γ0 − γ2v
2
×)
. (40)

The solution to Equation (40) with the initial conditions m(tb)= mb is as follows:

m = [mκ
b − τ(t − tb)]1/κ , τ =

κ

ck0k1(γ0 − γ2v
2
×)
. (41)

Increase of the mass of the penetrator from mb to ma occurs up to the time t = ta where ta = tb +

(mκ
b − mκ

a)/τ .
Subarc 2 corresponds to the motion with a constant mass. Assume that the velocity of the impactor

decreases from v = vb to v = va while its mass remains constant, m = m0. Then the increase of the
functional given by Equation (6) is as follows:

1H/(k0k1)= 0(1)v (m0, va, vb)

= mκ
0

∫ vb

va

v(γ0 − γ2v
2)dv

= 0.25mκ
0(v

2
b − v2

a)[2γ0 − γ2(v
2
b + v2

a)] if vb ≤ v×,

(42)

and

1H/(k0k1)= 0(2)v (m0, va, vb)= mκ
0

∫ vb

va

dv = mκ
0(vb − va) if vb ≥ v×. (43)

Along subarc 3, ṁ =−µmax =−∞. The equation of this subarc in the coordinates (m, v) is determined
by Equation (30) after replacing ≥ by =:

mv+ c = 0. (44)

The solution of this ODE with separable variables passing through the point (mimp, v0) can be written as
follows:

v = v0 − c ln(m/mimp). (45)

This trajectory corresponds to the step change of the mass of the penetrator (the pulse burning). This
change of the mass and of the velocity of the penetrator occurs without change of its location.

Analysis of the conditions presented at the beginning of this section shows that three versions of
burning program (BP) are possible, depending on the values of the parameters ĉ and vimp.
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Figure 3. Stages of optimal burning programs for penetration into nonfrozen soil, rock,
and concrete shields, β̄min = 0.

Consider the case when vimp > v∗. Taking into account that v∗ > v×, the optimal BP includes the
following subarcs (Figure 3a) in the coordinates (m, v):

AE : m = mimp, v : vimp → v∗,

EC : m = mimp, v : v∗ → v×,

C D : v = v×, m : mimp → mres,

DB : m = mres, v : v× → 0.

(46)

The corresponding expression for the DOP reads:

H/(k0k1mκ
imp)= 0(2)v (1, v∗, vimp)+0

(1)
v (1, v×, v∗)+0m(m̄res, 1)+0(1)v (m̄res, 0, v×), (47)

with m̄res = mres/mimp. In the case vimp = v∗, the segment AE vanishes.
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If v× < vimp < v∗, then the optimal BP includes the subarcs (Figure 3b):
AC : m = mimp, v : vimp → v×,

C D : v = v×, m : mimp → mres,

DB : m = mres, v : v× → 0,

(48)

and the DOP is as follows:

H/(k0k1mκ
imp)= 0(1)v (1, v×, vimp)+0m(m̄res, 1)+0(1)v (m̄res, 0, v×). (49)

In the case vimp = v×, the segment AC vanishes.
Motion of a penetrator which is described by Equations (46) and (48) includes (in a general case) the

following stages: passive penetration when a jet thruster is turned off until the velocity slows down to the
magnitude v× (segment AC of the trajectory), motion with a constant velocity v× with an operating jet
thruster until complete exhaustion of fuel supply (segment C D of the trajectory), and passive penetration
until a penetrator slows down to zero velocity (segment DB of the trajectory).

Consider now the case when vimp < v× and the curve determined by Equation (45) with v0 = vimp

intersects with the line v = v× in the point (m×, v×), where m× > mres (Figure 3c). Then the optimal
BP includes three subarcs:

AC : v = v0 − c ln(m/mres), m : mimp → m×,

C D : v = v×, m : m× → mres,

DB : m = mres, v : v× → 0,

(50)

where m× = mimp exp((1 − v×)/c).
Equation (50) describes the following stages of the controlled motion of a penetrator: operation of a jet

thruster in the impulse regime whereby the penetrator’s velocity instantaneously changes from the initial
value, vimp, to v× by spending a mass of fuel equal to mimp − m× without the motion of a penetrator
(subarc AC); operation of a jet thruster for providing a constant velocity to the penetrator, v×, until
exhaustion of the fuel supply (segment C D); and passive penetration until a penetrator slows down to
zero velocity (segment DB of the trajectory).

The corresponding expression for the DOP is as follows:

H/(k0k1mκ
imp)= 0m(m̄res, m̄×)+0

(1)
v (m̄res, 0, v×), (51)

with m̄× = m×/mimp.
If vimp < v× and m× ≤ mres then the optimal BP includes two subarcs (Figure 3d):{

AC : v = v0 − c ln(m/mres), m : mimp → mres,

C B : m = mres, v : v1 → 0,
(52)

where v1 = vimp − c ln m̄res.
Here, a jet thruster operates in the impulse regime until exhausting the whole fuel supply. In this case

the velocity of the penetrator instantaneously changes from the initial velocity to v1 (segment AC of the
trajectory). Afterwards, this penetrator continues its motion until it slows down to zero velocity (segment
C B of the trajectory).
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 Figure 4. Normalized optimal DOP into nonfrozen soil, rock, and concrete shields ver-

sus impact velocity; H is DOP for the optimal burning program, H0 is DOP for a passive
trajectory, β̄min = 0, κ = 0.7.

The DOP is determined using only the subarc C B:

H/(k0k1mκ
imp)= 0(1)v (m̄res, 0, v1). (53)

The depth of passive penetration of the impactor with the mass mimp is as follows:

H0

k0k1mκ
imp

=

{
0
(1)
v (1, 0, vimp) if vimp ≤ v∗,

0
(2)
v (1, v∗, vimp)+0

(1)
v (1, 0, v∗), if vimp > v∗.

(54)

Some of the above relationships can be simplified by taking into account that v× ≈ v∗ for c > 2000 m/s
(Figure 2).

We use the ratio
η = H/H0, (55)

which depends on vimp, c, m̄res, and κ , for comparing the DOP with the optimal BP and the depth
of passive penetration (Figure 4). Although η can attain very large values for relatively small impact
velocities, the absolute values of the DOP, H , are reasonable. The results for the relatively high impact
velocities are the most interesting because of the feasibility for increasing the absolute DOP by using the
jet thruster.

The optimum BP for the impact velocities, vimp > v∗ ≈ 81 m/s, is simple: passive penetration up to
velocity v×, motion with constant velocity v× while the propellant is available (the consumption of the
propellant is described by Equation (41)) with ma = mres and mb = mimp, m = [mκ

res − τ(t − tres)]
1/κ),

and passive penetration until rest. This BP is valid if the constraints on mass fluxes and penetrator’s
acceleration are not taken into account. Let us determine the conditions under which these constraints
do not affect this optimum BP.

The constraints given by Equation (3) are relevant only on the path of the trajectory where v = v×.
Equation (1) implies that dm/dt = −D(m, v×)/c = −(τ/κ)m1−κ . Substituting this relationship into
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 Figure 5. Dependence λ= λ(m) in the model of penetration into ice and frozen soil.

Equation (3) we obtain the inequality m ≤ (κµmax/τ)
1/(1−κ) that must be satisfied for mres ≤ m ≤ mimp.

Since the mass decreases on this interval, the above inequality can be substituted by the following:

mimp ≤ (κµmax/τ)
1/(1−κ). (56)

The constraints given by Equation (3) are relevant only on the segment of the trajectory with a constant
mass, m = m̃. Equation (1) implies that dv/dt = −D(m̃, v)/m̃. Substituting this relationship into
Equation (3) we obtain:

D(mimp, v)≤ mimpgχmax if v× ≤ v ≤ vimp,

D(mres, v)≤ mresgχmax if 0 ≤ v ≤ v×.

Since D is an increasing function of v, these constraints are valid if

D(mimp, vimp)≤ mimpgχmax and D(mres, v×)≤ mresgχmax.

The two latter inequalities imply that

mimp ≥
vimp

k0k1gχmax
, mres ≥

1
k0k1(γ0 − γ2v

2
×)gχmax

. (57)

Let us consider the case of penetration into ice and frozen soil shields. Then

θ(m)= m0.6 ln(50 + 0.29m2)

and

D =
m0.4

k0k1 ln(50 + 0.29m2)
×

{
1/(γ0 − γ2v

2) if v < v∗,

v if v ≥ v∗.
(58)
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Substituting D from this equation into Equation (33) we obtain:

�=
m0.4

[0.6 + λ(m)]
k0k1 ln(50 + 0.29m2)

×

{
−γ2(γ0 − γ2v

2)−2�a(v) if v < v∗,

�b(v) if v ≥ v∗,
(59)

where

�a(m, v)= v3
− 3ĉv2

− γ̂0v+ γ̂0ĉ,

�b(v)= v2, γ̂0 = γ0/γ2,

ĉ =
c

0.6 + λ(m)
, λ(m)=

0.58m2

(50 + 0.29m2) ln(50 + 0.29m2)
.

(60)

The equation �(m, v) = 0 determines the subarc v = v×(m) where v×(m) is determined by Equation
(37) with ĉ = ĉ(m) from Equation (60). In contrast to the case of SRC shields, the subarc is curvilinear
in this case.

Let us investigate now the behavior of the function λ(m). Changing the variable 50 + 0.29m2
= x we

reduce the problem to analyzing the function

2(x)= λ

(√
x − 50
0.29

)
=

2(x − 50)
x ln x

. (61)

Let us calculate the derivative:

2′(x)=
2

x ln x
20(x),

20(x)= 50(ln x + 1)− x,

2′

0(x)=
50
x

− 1.

(62)

For x > 50, 2′

0(x) < 0. Hence, 20(x) decreases in this semiinfinite interval. Since 20(50) > 0 and
20(350) < 0 we conclude that the equation 20(x)= 0 has a single root which can be easily determined,
x = x0 ≈ 341.7. This point is the maximum of the function 2(x) that increases from 2(50) = 0 to
2(x0)≈ 0.293 and then decreases to 0. Therefore, 0< λ(m)≤ 0.293, and the maximum is attained for
m = m0 ≈ 31.7 kg (Figure 5). Equation (60) shows that 1.12c < ĉ ≤ 1.67c and, for c > 2000 m/s, the
value v× is very close to v∗ and practically does not vary (Figure 2). Consequently, the subarc which
is determined by equation �(m, v) = 0 is only slightly different from a straight line. Therefore, the
trajectory which is close to the optimum for all considered shield materials is the following (vimp > v∗ ≈

81 m/s): passive penetration until to velocity v∗ is attained, motion with a constant velocity v∗ while
the propellant is available, and passive penetration until rest. The analysis shows that the effect of the
material of the shield on the coefficient η is insignificant.

5. Application of dynamic programming for numerical investigation of the problem

Equations (6), (7), (10), (11), (12), and (13) describe the variational problem considered here in the
general case, and imply the following expressions which can be written using, for convenience, the
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dimensionless variables that are defined below:

H̄ =

∫ 1

m̄res

(m̄v̄′
+ c̄)v̄

D̄(m̄, v̄)
dm̄, (63)

v̄(1)= 1, v̄(m̄res)= 0, 0 ≤ v̄(m̄)≤ vmax, m̄res ≤ m̄ ≤ 1, (64)

m̄v̄′
+ c̄ ≥ β̄min D̄(m̄, v̄) if v̄′ <∞, (65)∣∣∣∣ D̄(m̄, v̄)v̄′

m̄v̄′ + c̄

∣∣∣∣ ≤ χ̄max if v̄′ <∞, (66)

D(m̄, v̄)/m̄ ≤ χ̄max if m̄ = const, (67)

where

v̄ =
v

vimp
, c̄ =

c
vimp

, v̄max =
vmax

vimp
, m̄res =

mres

mimp
,

m̄ =
m

mimp
, β̄min =

vimpmimp

Lµmax
, χ̄max =

Lgχmax

v2
imp

, h̄ =
h
L
,

H̄ =
H
L
, v̄′

=
d v̄
dm̄

,

D̄(m̄, v̄)=
L

v2
impmimp

D(mimpm̄, vimpv̄), (68)

and L is some characteristic length.
The problem is reduced to the optimization of the functional H̄ in Equation (63), whereas the solution

must satisfy the constraints given by Equations (64)–(66).

Dynamic programming for the general model of a drag force. Dynamic programming is an appropriate
method for determining the optimal BP. Note that optimization of the flight of an aircraft with a jet engine
was mentioned in one of the first books on dynamic programming [Bellman et al. 1958] as an example of a
possible application of dynamic programming. This method allows determining a global extremum while
taking into account constraints. In the following, we describe an application of dynamic programming
to the above formulated optimization problem that has some characteristic properties.

In order to solve the variational problem for the functional given by Equation (63), the function v̄(m̄)
can be approximated as a piecewise linear function determined by the values (Figure 6)

v̄(0) = 0, v̄(1), . . . , v̄( j), . . . , v̄(Nm−1), v̄(Nm)

w̄(0), w̄(1), . . . , w̄( j), . . . , w̄(Nm−1), w̄(Nm) = 1

in Nm + 1 equally spaced mesh points of interpolation

m̄(0)
= m̄res, m̄(1), . . . , m̄( j), . . . , m̄(Nm−1), m̄(Nm) = 1,

where m̄( j)
= m̄res + j1m̄,1m̄ = (1 − m̄res)/Nm, j = 0, 1, 2, . . . , Nm . The unknown values of the

function, v̄( j) and w̄( j) are chosen among the finite set of values 0,1v̄, 21v̄, . . . , Nv 1v̄, where 1v̄ =
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Figure 6. Discretization of the problem.

v̄max/Nv and vmax is a given upper bound for the velocity of the penetrator. Penetration of the impactor
is associated with the trajectory

(m̄(Nm), w̄(Nm))→ (m̄(Nm), v̄(Nm))→ (m̄(Nm−1), w̄(Nm−1))→ (m̄(Nm−1), v̄(Nm−1))→ · · ·

→ (m̄(1), w̄(1))→ (m̄(1), v̄(1))→ (m̄(0), w̄(0))→ (m̄(0), v̄(0)).

Since the velocity of the impactor cannot increase without burning fuel, v̄( j)
≤ w̄( j) for all j .

The equation of the straight line between the points (m̄( j−1), w̄( j−1)) and (m̄( j), v̄( j)) can be written
as follows:

v̄ = e( j)m̄ + f ( j), e( j)
=
v̄( j)

− w̄( j−1)

m̄( j) − m̄( j−1) ,

f ( j)
=

m̄( j)w̄( j−1)
− m̄( j−1)v̄( j)

m̄( j) − m̄( j−1) , (69)
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j = 1, 2, . . . , Nm . Then the integral in Equation (63) along the piecewise linear contour can be written
as follows:

H̄ = Q(0)
v +

Nm∑
j=1

(Q( j)
m + Q( j)

v ), (70)

where Q( j)
m and Q( j)

v are the components of the integral over vertical and nonvertical segments of the
trajectory, correspondingly (Figure 6),

Q( j)
v =

∫ w̄( j)

v̄( j)
G( j)
v (v̄)d v̄,

G( j)
v (v̄)=

m̄( j)v̄

D̄(m̄( j), v̄)
, j = 0, 1, 2, . . . , Nm,

(71)

Q( j)
m =

∫ m̄( j)

m̄( j−1)
G( j)

m (m̄)dm̄,

G( j)
m (m̄)=

(e( j)m̄ + c̄)(e( j)m̄ + f ( j))

D̄(m̄, e( j)m̄ + f ( j))
, j = 1, 2, . . . , Nm .

(72)

Integrals in Equation (71) can be often calculated in explicit form. Otherwise, one can use, for instance,
the trapezoid rule formula with points of interpolation, v̄( j)

ξ , in nodes of the (m̄, v̄) mesh. Then

Q( j)
v /1v̄ = 0.5

[
G( j)
v (v̄

( j)
0 )+ G( j)

v

(
v̄
( j)
n( j)
v

)]
+

n( j)
v −1∑
ξ=1

n( j)
v >1

G( j)
v

(
v̄
( j)
ξ

)
, (73)

where n( j)
v is the integral part (w̄( j)

− v̄( j))/1v̄ and

v̄
( j)
ξ = v̄( j)

+ ξ1v̄, ξ = 0, 1, . . . , n( j)
v . (74)

In a similar manner, integrals in Equation (72) can be represented as

Q( j)
m /1m̄( j)

= 0.5
[
G( j)

m (m̄( j)
0 )+ G( j)

m
(
v̄
( j)
n( j)

m

)]
+

n( j)
m −1∑
ξ=1

n( j)
m >1

G( j)
m

(
v̄
( j)
ξ

)
, (75)

where n( j)
m + 1 is the selected number of points of interpolations at the interval [m̄( j−1), m̄( j)

],

m̄( j)
ξ = m( j)

+ ξ1m̄( j), ξ = 0, 1, . . . , n( j)
m , 1m̄( j)

=1m/n( j)
m . (76)

Inequalities in Equations (65) and (66) can be written in the points of interpolations in the following
form:

A( j)
ξ ≥ β̄min, |e( j)

| ≤ χ̄max|A
( j)
ξ |, (77)
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where

A( j)
ξ =

e( j)m̄( j)
ξ + c̄

D̄(m̄( j)
ξ , e( j)m̄( j)

ξ + f ( j))
, j = 1, 2, . . . , Nm, ξ = 0, 1, . . . , n( j)

m . (78)

Inequality (67) implies the following constraints:

D̄(m̄( j), v̄
( j)
ξ )/m̄( j)

≤ χ̄max, j = 1, 2, . . . , Nm, ξ = 0, 1, . . . , n( j)
v . (79)

We do not allow regimes whereby fuel is exhausted while the velocity of the penetrator remains zero,
that is, the following condition must be satisfied:

v̄( j)
+ w̄( j−1) > 0, j = 1, 2, . . . , Nm . (80)

Unlike the standard approach (see, for example, [Pedregal 2003]), we allow vertical segments in the
optimal curve, use a more accurate approximation of the criterion on the subintervals, and take into
account the constraints in the intermediate points of the subintervals. The second factor enhances the
reliability of the analysis.

The case of the generalized Young’s penetration model. In the case of the generalized Young model we
obtain:

D̄(m̄, v̄)=
Lψ(v̄)

k0k1v
2
impϕ(m̄)

, (81)

where

ψ(v̄)=

1/(γ0 − γ2v
2
impv̄

2) if v̄ < v̄∗,

vimpv̄ if v̄ ≥ v̄∗,
(82)

ϕ(m̄)=

{
σmγ1+γ2

imp m̄γ1+γ2−1 if SRC,

mγ1
impm̄γ1−1 ln(50 + 0.29m2

impm̄2) if IFS,
(83)

v̄∗ = v∗/vimp, and it is assumed that the substitution m = mimpm̄ is made in Table 1.
For the vertical segments of the trajectory, the analysis can be performed in the exact analytical form.

Clearly, the integral in Equation (71) can be calculated:

Q( j)
v =

k0k1v
2
impm̄( j)ϕ(m̄( j))

L

∫ w̄( j)

v̄( j)

v̄d v̄
ψ(v̄)

, j = 0, 1, 2, . . . , Nm, (84)

where ∫ w̄( j)

v̄( j)

v̄d v̄
ψ(v̄)

=


8(v̄( j), w̄( j)) if w̄( j) < v̄∗,

8(v̄( j), v̄∗)+9(v̄∗, w̄
( j)) if v̄( j)

≤ v̄∗ ≤ w̄( j),

9(v̄( j), w̄( j)) if v̄∗ < v̄
( j),

(85)



OPTIMIZATION OF PENETRATION INTO GEOLOGICAL SHIELDS 725

8(V̄a, V̄b, )=

∫ V̄b

V̄a

(γ0 − γ2v
2
impv̄

2)v̄d v̄

= 0.25(V̄ 2
b − V̄ 2

a )
[
2γ0 − γ2v

2
imp(V̄

2
b + V̄ 2

a )
]
,

9(V̄a, V̄b)=
1
vimp

∫ V̄b

V̄a

d v̄ = (V̄b − V̄a)/vimp.

(86)

Instead of Equation (79), the constraints in Equation (67) can be written as follows:

w̄( j)
≤ ψ−1

(k0k1v
2
impm̄( j)ϕ(m̄( j))χ̄max

L

)
, j = 0, 1, 2, . . . , Nm, (87)

where

ψ−1(z)=


√
γ0z − 1
γ2v

2
impz

if z ≤ vimpv̄∗,

z/vimp if z > vimpv̄∗,

(88)

6. Results of numerical optimization

Figure 7 shows typical results of calculations for which we selected the following data: penetration into
nonfrozen soil, rock, and concrete shields, mimp = 400 kg, mres = 200 kg, vimp = 700 m/s>v∗, χmax = ∞.

Figure 7a, b shows optimal BPs. For small values of β̄min when the constraint on the fuel flow rate
is irrelevant, the regime of motion is as follows: inertial motion until velocity v̄× is attained; motion
with a constant velocity v̄× until exhausting fuel supply, and, finally, inertial motion until rest. From
some value, the effect of β̄min on the optimal BP becomes pronounced: the regime with a maximum fuel
flow rate appears between the initial passive regime and the regime with a constant velocity v̄×. Further
increase of β̄min results in the following changes: transition from a passive penetration to the motion
with the maximum fuel flow rate at larger velocities, the regime of motion with a constant velocity v̄×

gradually vanishes, and the regime with the maximum fuel flow rate switches to the regime of inertial
penetration with mass m̄res. From some magnitude of β̄min, a solution does not exist. The latter means
that the penetrator slows down to zero velocity before exhausting the fuel supply for any BP.

In Figure 7c, we showed the dependencies of the maximum normalized DOP, η= H/H0, as a function
of parameter β̄min for different values of the dimensionless relative exit velocity of gases at the nozzle
of the thruster, c; clearly, H0 is the same when the variants with different β̄min and c are compared. The
maximum effect of using a jet thruster is observed for small β̄min. An increase of β̄min implies stronger
constraints, namely, reducing the upper bound for the admissible fuel consumption rate of the thruster.
The curves η = η(β̄min) are located higher, with an increase of c, that is, a negative effect of β̄min can be
compensated by increasing c. The fact that some curves of the dependencies η = η(β̄min) are terminated
implies that the capabilities of the thruster are inadequate, and penetration terminates before exhausting
fuel supply.
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 Figure 7. Typical optimal solution for relatively high impact velocities (penetration into

nonfrozen soil, rock, and concrete shields, mimp = 400 kg, mres = 200 kg, vimp = 700 m/s);
(a–b) optimal burning programs; (c) normalized optimal DOP versus β̄min. (H is DOP
for the optimal burning program, H0 is DOP for a passive trajectory.)

7. Concluding remarks

We suggested a mechanical model of a penetrator equipped with a jet thruster and demonstrated that ap-
propriate choice of the parameters of a jet thruster allows increasing the depth of penetration considerably
into different media. We showed that for relatively small impact velocities (about 100 m/s), penetration at
the maximum depth is attained with velocities lower than the impact velocity. Nelson [2002] emphasized
that there is a limitation on increasing impact velocity in order to attain a higher penetration depth because
of the constraints on the impact velocity required for the survival of a penetrator on impact. Using a jet
thruster is one of the possible solutions to overcome this constraint.
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