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OPTIMAL BUCKLING DESIGN OF ANISOTROPIC RINGS/LONG CYLINDERS
UNDER EXTERNAL PRESSURE

KARAM Y. MAALAWI

Structural buckling failure due to high external hydrostatic pressure is a major consideration in designing
rings and long cylindrical shell-type structures. This paper presents a direct approach for enhancing
buckling stability limits of thin-walled rings/long cylinders that are fabricated from multiangle fibrous
laminated composite lay-ups. The mathematical formulation employs the classical lamination theory for
calculating the critical buckling pressure, where an analytical solution that accounts for the effective axial
and flexural stiffness separately as well as the inclusion of the coupling stiffness terms is presented. The
associated design optimization problem of maximizing the critical buckling pressure has been formulated
in a standard nonlinear mathematical programming problem with the design variables encompassing the
fiber orientation angles and the ply thicknesses as well. The physical and mechanical properties of the
composite material are taken as preassigned parameters. The proposed model deals with dimensionless
quantities in order to be valid for thin shells having different thickness-to-radius ratios. Useful design
charts are given for several types of anisotropic rings/long cylinders showing the functional dependence
of the buckling pressure on the selected design variables. Excellent results have been obtained for cases
of filament wound rings/long cylinders fabricated from three different types of materials: E-glass/vinyl-
ester, graphite/epoxy and S-glass/epoxy. It was shown that significant improvement in the overall stabil-
ity level can be attained as compared with a baseline shell design. In fact, the developed methodology
has been proved to be a useful design tool for selecting an optimal stacking sequence of a thin-walled
anisotropic ring/long cylinder having arbitrary thickness-to-radius ratio.

1. Introduction

Many mechanical and structural elements made of fiber reinforced composites are increasingly utilized
in aerospace, marine and civil engineering applications [Vinson 1992; Daniel and Ishai 2006]. The
most important benefits from using such advanced materials in the various structural types are the at-
tainment of high stiffness-to-weight ratio and long fatigue life. One common application is the design
of composite cylindrical shells under the action of external hydrostatic pressure, which might cause
collapse by buckling instability [Simitses 1996; Sridharan and Kasagi 1997]. Examples are the under-
ground and underwater pipelines, rocket motor casing, boiler tubes subjected to external steam pressure,
and reinforced submarine structures. The composite cylindrical vessels for underwater applications
[Davies and Chauchot 1999] are intended to operate at high external hydrostatic pressure (sometimes
up to 60 MPa). For deep-submersible long-unstiffened vessels, the hulls are generally realized using
multilayered, cross-ply, composite cylinders obtained following the filament winding process [Graham
1995]. On the other hand, previous numerical and experimental studies have shown that failure due to

Keywords: buckling instability, structural optimization, fibrous composite, laminated ring/cylindrical shell, external
hydrostatic pressure.
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structural buckling is also a major risk factor for thin laminated cylindrical shells. Anastasiadis and
Simitses [1993] studied the buckling of long laminated cylindrical shells under external radial pressure
using higher order deformation theory. Their formulation, however, was restricted to symmetric lay-ups
with respect to the mid-surface, to eliminate the coupling terms, as well as constant-directional pressure.
More conservative results for a true fluid pressure were given by Rasheed and Yousif [2001; 2005] who
applied standard energy formulation to derive the kinematics and equilibrium equations and the classical
lamination theory to express the needed constitutive equations. They developed a powerful generalized
closed form analytical formula for calculating stability limits of thin anisotropic rings/long cylinders
subject to hydrostatic pressure. Another refined treatment of the inplane buckling of rings was given by
Hodges [1999] and Hodges and Harursampath [2002]. Formulation was based on a nonlinear theory for
stretching and bending of anisotropic beams having constant initial curvature in their plane of symmetry
with the only restriction of small strain in the prebuckling state.

Considering next structural optimization, several papers appeared on the topic of buckling and sta-
bility optimization. Maalawi [2002] presented a piecewise structural model for buckling optimization
of elastic columns under mass equality constraint. He showed that the most effective design variables
that have a bearing on buckling optimization are the cross sectional area, radius of gyration and length
of each segment composing the column. Another work by Maalawi and El Chazly [2002] dealt with
both stability and dynamic optimization of multielement beam type structures. They formulated the
associated optimization problems in a standard mathematical programming solved by the interior penalty
function technique. More recently, Librescu and Maalawi [2007] considered optimization of aeroelastic
stability of composite wings. They applied the concept of material grading with the implementation
of both continuous and piecewise structural models. For fibrous laminated composite structures, the
optimization of ply angles and thicknesses could allow the properties of the laminate to be tailored to
a specific application. ZitzEvancih [1985] applied NASA buckling equations for the optimization of
orthotropic cylinders against buckling. Balanced symmetric plies, consisting of 0◦, ±45◦ and 90◦ fiber
orientations, were used to construct the laminates. The relative volume ratio of the laminates to each other
and the stacking sequence were used as the optimization design variables. Chattopadhyay and Ferreira
[1993] performed a study to investigate the maximum buckling load of a cylinder subject to ply stress
constraints using material and geometric design variables. A closed form shell equation was utilized for
the buckling load calculation. Laminates were constrained to be symmetric, and the number of plies was
included in the design variables. Results for graphite/epoxy, glass/epoxy and Kevlar/epoxy models were
found using the computer code CONMIN. Considering optimization of underwater cylindrical vessels,
Tanguy et al. [2002] dealt with the optimal design of deep submarine vehicles. They developed a genetic
algorithm procedure coupled with an analytical model to determine the laminate stacking sequences that
maximize the critical external buckling pressure. They also showed that the measured buckling pressures
for glass/epoxy and carbon/epoxy cylinders appear to be in good agreement with numerical results and
demonstrated the gains due to the optimized laminations.

The aim of the present study is to achieve enhanced stability limits of anisotropic ring/long cylindrical
shell structures subjected to hydrostatic external pressure. Based on the analytical buckling model devel-
oped by Rasheed and Yousif [2005], a useful optimization tool has been built for designing efficient con-
figurations with improved buckling stability. This allows the search for the stacking sequences that maxi-
mize the buckling pressure and at the same time takes into account the manufacturing requirements. The
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corresponding increases in the buckling pressures calculated with respect to a baseline design have been
evaluated for several configurations, including cases of orthotropic, filament wound rings/long cylinders
fabricated from three different types of composite materials, namely E-glass/vinyl-ester, graphite/epoxy
and S-glass/epoxy. It is assumed that the volume fractions of the constituent materials of the composite
structure remain constant during optimization, so that the total structural mass is held at its reference
value corresponding to the baseline design. The final results demonstrated the usefulness of the given
methodology in attaining substantial improvement in the overall stability level of thin-walled anisotropic
rings/long cylinders having arbitrary thickness-radius ratio, which is a major contribution of this paper.

2. Structural analysis

In this section, the basic structural analysis of multiangle laminated composite lay-ups that are widely
used in filament wound rings/long cylinders are considered. In order to restrict the time of calculation to
acceptable values for the developed optimization tool, the analytical formulation shall be based on the
derivation in two fruitful papers by Rasheed and Yousif [2001; 2005], which are based on the assumption
of small hoop strain and rotation of circumferential elements. Such an approach provides good sensitiv-
ity to lamination parameters, and allows the search for the needed optimal stacking sequences, which
maximize the buckling pressure in a reasonable computational time.

Following the standard procedures of the classical lamination theory [Soden et al. 1998; Reddy
2004], the matrix equation, which relates the resultant, distributed forces (Nxx , Nss, Nxs) and moments
(Mxx ,Mss,Mxs) to the strains (ε0

xx , ε
0
ss, γ

0
xa) and curvatures (κxx , κss, κxs) at the middle surface of the

shell structure, can be written as

Nxx

Nss

Nxs

Mxx

Mss

Mxs


=



A11 A12 A16 B11 B12 B16

A12 A22 A26 B12 B22 B26

A16 A26 A66 B16 B26 B66

B11 B12 B16 D11 D12 D16

B12 B22 B26 D12 D22 D26

B16 B26 B66 D16 D26 D66





ε0
xx
ε0

ss
γ 0

xs
κxx

κss

κxs


, (1)

where (x, s, z) are the axial, tangential and radial coordinates, respectively, and the matrix elements
(Ai j , Bi j , Di j ) are called the extensional, coupling and bending stiffness coefficients, respectively. They
are all defined in Appendix A, along with the necessary kinematical relations and constitutive equations
utilized in deriving (1). Actually, the kinematical relations follow the same expressions derived for thin
isotropic rings [Brush and Almroth 1975; Simitses 1976]. Both cases of laminated composite rings
and long cylindrical shells are considered. It was shown by Rasheed and Yousif [2005] that the only
significant strain components in both cases are the hoop strain ε0

ss and the circumferential curvature κss

of the mid-surface; see Appendix A. The reduced form of (1) for the two cases was shown to be(
Nss

Mss

)
=

(
Aani Bani

Bani Dani

) (
ε0

ss
κss

)
. (2)

In the case of thin rings the axial and shear forces (Nxx , Nxs) must vanish along the free edges. The
bending and twisting moments (Mxx ,Mxs) may also be neglected. Therefore, the first, third, fourth and



778 KARAM Y. MAALAWI

sixth rows of (1) are solved for the strains and curvatures in terms of (ε0
ss, κss) to give the following

matrix relation

S1


ε0

xx
γ 0

xs
κxx

κxs

 = −S2

(
ε0

ss
κss

)
,

or 
ε0

xx
γ 0

xs
κxx

κxs

 = −S−1
1 S2

(
ε0

ss
κss

)
, (3)

where

S1 =


A11 A16 B11 B16

A16 A66 B16 B66

B11 B16 D11 D16

B16 B66 D16 D66

 , and S2 =


A12 B12

A26 B26

B12 D12

B26 D26

 .

Substituting (3) back into (1), we can show that(
Aani Bani

Bani Dani

)
ring

=

(
A22 B22

B22 D22

)
− ST

2 S−1
1 S2. (4)

For the case of a long cylinder, the out-of-plane displacements are restrained, that is,

ε0
xx = γ 0

xs = κxs = 0.

Therefore, the only strains to be taken into considerations are the in-plane hoop strain ε0
ss and the cir-

cumferential curvature κss . Accordingly, the reduced matrix of (2) takes the following form(
Aani Bani

Bani Dani

)
cylinder

=

(
A22 B22

B22 D22

)
. (5)

3. Analytical buckling model

The governing differential equations of anisotropic rings/long cylinders subjected to external pressure
are similar to those of the isotropic case [Brush and Almroth 1975; Simitses 1976].

They are cast in the following:

M ′

ss + R(N ′

ss −βNss)= βpR2,

M ′′

ss − R
(
Nss + (βNss)

′
+ p(w0 + v′

0)
)
= pR2,

(6)

where the prime denotes differentiation with respect to angular position ϕ, and

β =
1
R
(v 0 −w′

0).

Definitions of other parameters are given in Appendix A. Rasheed and Yousif [2001; 2005] presented two
solutions for (6): one for the prebuckled state and the other termed as the bifurcation solution obtained
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Figure 1. Characteristic buckling mode of a laminated long cylinder [Simitses 1996].

by perturbing the displacements about the prebuckling solution. They finally arrived at a closed form
solution for the critical buckling pressure given by

pcr = 3
Dani

R3

(
1 −

ψ2

α

1 +α+ 2ψ

)
, ψ =

1
R

Bani

Aani
, α =

1
R2

Dani

Aani
, (7)

where the stiffness coefficients Aani, Bani and Dani can be calculated from (4) for the case of circular
rings and from (5) for long cylinders. It is to be noticed here that the formula given in (7) for calculating
pcr is only valid for thin rings/cylinders with thickness-to-radius ratio h/R ≤ 0.1 [Rasheed and Yousif
2001]. A typical buckling mode of laminated long cylinder is shown in Figure 1.

The reduced forms of (7) for some limiting cases where ψ = 0 and α � 1 are given in Table 1.

4. Optimization problem statement

The associated optimization problem shall seek maximization of the external hydrostatic pressure pcr

at which buckling instability might occur. Optimization variables include the total number of plies n,

Limiting Cases
Critical buckling pressure pcr = 3D/R3

Bending stiffness, D

Thin isotropic rings [Brush and Almroth 1975]. Eh3/12
Thin isotropic long cylinders [Simitses 1976]. Eh3/12(1 − ν2)

Thin orthotropic rings [Anastasiadis and Simitses 1993] E22h3/12
Thin orthotropic long cylindrical shells with fibers parallel
to the shell axis x [Anastasiadis and Simitses 1993] E22h3/12(1 − ν12ν21)

Table 1. Buckling pressure formulas for limiting cases ψ = 0 and α � 1.
E, ν = isotropic modulus of elasticity and Poisson’s ratio, E22 = hoop modulus,
ν12 = Poisson’s ratio for axial load, ν21 = ν12 E22/E11 (in cases with fibers perpendicular
to the shell axis, E22 should be replaced by E11)

.
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thickness hk and fiber orientation angle θk of the individual k-th ply. Side constraints are always imposed
on the design variables for geometrical, manufacturing or logical reasons to avoid having unrealistic odd
shaped optimum designs.

4A. Definition of the baseline design. It is convenient first to normalize all variables and parameters
with respect to a baseline design, which has been selected to be a unidirectional orthotropic laminated
ring/long cylinder with the fibers parallel to the shell axis x . Optimized shell designs shall have the
same material properties, mean radius R and total shell thickness h of the baseline design. Therefore,
the preassigned parameters, which are not subject to change in the optimization process, ought to be the
type of material of construction, mean radius and total thickness of the shell.

Using the formulas given in Table 1 for cases of orthotropic shells, we define expressions for calcu-
lating the critical buckling pressure Pcro of the baseline design in Table 2, which depend upon the type
of composite material utilized and the shell thickness-to-radius ratio h/R as well.

4B. Proposed optimization model. The search for the optimized lamination can be performed by cou-
pling the analytical buckling shell model to a standard nonlinear mathematical programming procedure.
The design variable vector Xd , which is subject to change in the optimization process, is defined as
Xd = (ĥk, θk)k=1,2,...,n , where the dimensionless thickness of the k-th lamina is defined by ĥk = hk/h.
Therefore, the buckling optimization problem considered herein may be cast in the following standard
mathematical programming form:

Maximize p̂cr

subject to hL ≤ ĥk ≤ hU ,

θL ≤ θk ≤ θU k = 1, 2, . . . , n
n∑

k=1

ĥk = 1,

where p̂cr = pcr/pcro is the dimensionless critical buckling pressure and hL , hU are the lower and upper
bounds imposed on the individual dimensionless ply thicknesses. According to the filament-winding
manufacturing process, each ply is characterized by its filament-winding angle θk with respect to the

Orthotropic mechanical pcrox(h/R)3 (GPa)
properties∗ (GPa)

Material Type E11 E22 G12 ν12 Rings Cylinders

E-glass/vinyl-ester 41.06 6.73 2.5 0.299 1.683 1.708
graphite/epoxy 130.0 7.0 6.0 0.28 1.75 1.757
S-glass/epoxy 57.0 14.0 5.7 0.277 3.50 3.567

Table 2. Material properties and critical buckling pressure of the baseline design (pcro).
∗Taken from [Rasheed and Yousif 2001].
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cylinder axis x . The stacking sequence is denoted by [θ1/θ2/ · · · /θn], where the angles are given in
degrees, starting from the outer surface of the shell. In addition, in a real-world manufacturing process,
the filament-winding angles θk must be chosen from a limited range of allowable lower (θL) and upper
(θU ) values according to technology references. It is important to mention here that the volume fractions
of the constituent materials of the composite structure are assumed not to significantly change during
optimization, so that the total structural mass remains constant at its reference value of the baseline
design. The effect of changing the volume fractions is now under study by the author, where the concept
of material grading will be considered [Librescu and Maalawi 2007].

This optimization problem may be thought as a search in a 2n-dimensional space for a point corre-
sponding to the maximum value of the objective function such that it lies within the region bounded by
subspaces representing the constraint functions [Vanderplaats 1994; Venkataraman 2002]. The usefulness
and efficiency of penalty methods (see Appendix B) for solving this kind of optimization problems have
been explored intensively in the literature [Maalawi and El Chazly 2002]. The constraints are taken
into account indirectly by transforming the constrained problem into a series of unconstrained problems.
Several software packages are available now for solving mathematical programming problems. The
MATLAB optimization toolbox [Venkataraman 2002] offers routines that implement the interior penalty
function method, which has a wide applicability in many engineering applications, via a built-in function
named “fminsearch”.

5. Results and discussions

The given approach discussed in previous sections shall be applied here to several cases of study of
thin-walled anisotropic rings/long cylinders subjected to external hydrostatic pressure. The materials of
construction are chosen to be E-glass/vinyl-ester, graphite/epoxy and S-glass/epoxy. The functional be-
havior of the candidate objective function, as represented by maximization of the dimensionless buckling
pressure p̂cr , is thoroughly investigated in order to see how it is changed with the optimization variables
in the selected design space. The final optimum designs recommended by the model will directly depend
on the mathematical form and behavior of the objective function.

5A. Two-layer anisotropic long cylinder. The first case study to be considered herein is a long thin-
walled cylindrical shell fabricated from E-glass/vinyl-ester composites with the lay-up composed of only
two plies (n = 2) having equal thicknesses (ĥ1 = ĥ2 = 0.5) and different fiber orientation angles. Figure 2
shows the developed level curves of the dimensionless buckling pressure p̂cr (also named isomerits or
isobars) in the θ1-θ2 design space. It is seen that the objective function is well behaved in the selected
design space with a symmetrical-shaped contours about the two lines θ1 = 0 and θ2 = 0 corresponding
to the baseline design in which p̂cr = 1.0, representing a point of global minima.

With the special case of ±63◦ angle-ply E-glass/vinyl-ester cylinder, the present model gives p̂cr =

4.23, that is, pcr = 4.23 × 1.708 × (h/R)3 GPa, depending on the shell thickness-to-radius ratio (refer
to Table 2). The actual dimensional values of the critical buckling pressure for the different thickness
ratios have been calculated from just one point in the design space of Figure 2: a significant contribution
and gain from the given optimization formulation. The corresponding values are given in Table 3 for
the cases of baseline design, helically wound [±63◦

] and [±90◦
] hoop layers. It is seen that the results

compare very well with those given by Rasheed and Yousif [2001]. The unconstrained maximum value
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Figure 2. Dimensionless buckling pressure p̂cr in the [θ1/θ2] design space. Two-ply
cylinder made of E-glass/vinyl-ester (ĥ1 = ĥ2 = 0.5).

of the critical buckling pressure occurs at any one of the corners of Figure 2 corresponding to the four
design points [θ1/θ2] = [±90◦/± 90◦

] where p̂cr = 6.1.
To examine the effect of using another type of constructional material, we show in Figure 3 the

developed isomerits for a two-ply long cylinder fabricated from graphite/epoxy composites. As seen
the shape of the level curves is similar to that of Figure 2, but with higher stability levels, reaching a
maximum value of p̂cr = 18.57 for a hoop wound construction.

Table 4 presents the solutions for the [±45◦
] angle-ply and the [90◦

] cross-ply constructions for dif-
ferent thickness-to-radius ratios. Results are compared with those in [Rasheed and Yousif 2001], which

Baseline [0◦
] Helically wound [±63◦

] Hoop plies [±90◦
]

p̂cr = 1.00 4.23 6.10
h/R

1/15 506.07 2140.69 3087.05
1/20 213.50 903.11 1302.35
1/25 109.31 462.39 666.80
1/50 13.66 57.80 83.35

Table 3. Critical buckling pressure for E-glass/vinyl-easter cylinders with different lay-
ups (pcr = p̂cr × 1.708(h/R)3 GPa).
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Figure 3. p̂cr -isomerits for a graphite/epoxy, two-layer cylinder in [θ1/θ2] design space
(ĥ1 = ĥ2 = 0.5).

were based on the assumption that adjacent [±θ ] layers are merged together with the stiffness coefficients
taken as average values from the (+θ) and (−θ) plies. These solutions are also valid for lay-ups [0◦

3]s ,
[90◦

3]s , [45◦

2/− 45◦

2]s and [45◦/− 45◦/45◦/− 45◦
]s , which were numbered 1, 8, 20 and 21 in the papers

by Anastasiadis and Simitses [1993] and Rasheed and Yousif [2001].
The case of a helically wound lay-up construction [+θ/− θ ] with unequal play thicknesses ĥ1 and

ĥ2, such that their sum is held fixed at a value of unity, has also been investigated. Computer solutions
have shown that no significant change in the resulting values of the critical buckling pressure can be
remarked in spite of the wide change in the ply thicknesses. This is a natural expected result since

Baseline [0◦
] Helically wound [±45◦

] Hoop plies [±90◦
]

p̂cr = 1.00 5.9 18.57
h/R

1/15 520.59 3071.50 9667.40
1/50 14.06 82.93 261.02
1/120 1.02 5.99 18.88

Table 4. Critical buckling pressure for graphite/epoxy cylinders with different lay-ups
(pcr = p̂cr × 1.757(h/R)3 GPa).
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Figure 4. p̂cr - isomerits for three-ply graphite/epoxy cylinder [θ1/θ2/θ1].

the stiffness coefficients Aani, Bani and Dani remain unchanged for such lay-up construction. Also, it
should be mentioned here that the optimal buckling pressure for a cylinder having stacking sequence
[+θ1/− θ1/+ θ2/− θ2] is identical to that obtained before for stacking sequence [θ1/θ2], as given in
Figures 2 and 3.

5B. Three-layer anisotropic long cylinder. Figure 4 shows the developed isomerits for a cylinder con-
structed from three equally-thicked layers with stacking sequence denoted by [θ1/θ2/θ1]. The same
behavior can be observed as before, but with slight flattening in the θ2-direction. The contours are fully
symmetrical about the mid-point corresponding to the minimal baseline value of unity. Two distinct
zones can be seen: the closed middle one containing the global minima, and the open one covering the
two ranges θ1 < −30◦ and θ1 > 30◦ in which the critical buckling pressure is not much affected by
variation in the ply angle θ2.

Other computational results for cross-ply lamination are given in Table 5, where substantial increase
in the critical bucking pressure by changing the ply angles can be observed. Similar solutions were
obtained for the stacking sequences [0◦

2/90◦
]s and [90◦

2/0
◦
]s , which corresponds to lay-up numbers 2

and 7 considered by Anastasiadis and Simitses [1993].

5C. Four-layer sandwiched anisotropic cylinder. The same graphite/epoxy cylinder is reconsidered
here with changing the stacking sequence to become ±20◦ equal-thickness layers sandwiched in between
outer and inner 90◦ hoop layers with unequal thicknesses ĥ2 = ĥ3, ĥ1 6= ĥ4, such that the thickness equality
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Figure 5. Design space for a sandwich lay-up graphite/epoxy cylinder [90◦/± 20◦/90◦
].

constraint
4∑

k=1

ĥk = 1

is always satisfied. Figure 5 shows the developed p̂cr -isomerits in the ĥ1-ĥ2 design space. The contours
inside the feasible domain, which is bounded by the three lines ĥ1 = 0, ĥ2 = 0 and ĥ1 + 2ĥ2 = 1 (that
is, ĥ4 = 0), are obliged to turn sharply to be asymptotes to the line ĥ4 = 0, in order not to violate the
thickness equality constraint. This is why they appear in the figure as zigzagged lines.

It is clear now that all tabulated results given by Rasheed and Yousif [2001] can be directly obtained
from just one design point in Figure 5, namely (ĥ1, ĥ2)= (0.25, 0.25) at which p̂cr = 16.43 (see Table 6).
As a general observation, as the thickness of the hoop layers increase, a substantial increase in the critical

Baseline [0◦

3] [0◦/90◦/0◦
] [90◦/0◦/90◦

]

p̂cr = 1.00 1.651 17.92
h/R

1/15 520.59 859.57 9331.19
1/50 14.06 23.21 251.94

1/120 1.02 1.68 18.23

Table 5. Critical buckling pressure for graphite/epoxy cylinders [θ1/θ2/θ1]

(pcr = p̂cr × 1.757(h/R)3 GPa).
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Figure 6. Butterfly-like zone containing the local minimal stability limits in [θ1/θ2]

design space for two-layer, E-glass/vinyl-easter ring (ĥ1 = ĥ2 = 0.5).

buckling pressure will be achieved; for example, at (ĥ1, ĥ2)= (0.33, 0.17), p̂cr = 17.92 representing a
percentage increase of (17.92 − 16.43)/16.43 = 9.1%.

5D. Anisotropic thin rings. In this section, some study cases of thin rings will be examined to see the
effect of anisotropy for different angle-ply stacking sequences. The first example considers a ring fabri-
cated from E-glass/vinyl-ester having two equal-thickness layers with stacking [θ1/θ2]. Figure 6 shows
the developed p̂cr -isomerits, which are symmetrical about the two lines θ1 = 0 and θ2 = 0 corresponding
to the baseline value of unity. The region in the middle resembles a butterfly containing four local minima
[±30◦/± 30◦

], where p̂cr = 0.94 representing about 6% degradation in the stability level. The butterfly
bounding contour determines stacking sequences having buckling pressure equals to that of the baseline
design (namely, p̂cr = 1). The unconstrained global maximum value of the critical buckling pressure
occurs at any one of the four design points [θ1/θ2] = [±90◦/± 90◦

] where p̂cr = 6.1. The constrained

h/R 1/15 1/20 1/25 1/50

pcr (GPa) 8553.0 3609.3 1847.5 231.0

Table 6. Critical buckling pressure for graphite/epoxy cylinders [90◦/±20◦/90◦
] ( p̂cr =

16.43, pcro = 1.757(h/R)3 GPa, pcr = p̂cr · pcro).
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[+63◦
] [+63◦/− 63◦

] [+63◦/− 63◦
]3 [+63◦/− 63◦

]∞
p̂cr = 1.754 2.166 3.134 3.234

h/R

1/20 369.00 455.67 659.32 680.35
1/50 23.62 29.16 42.20 43.54
1/100 2.95 3.65 5.27 5.44

Table 7. Critical buckling pressure for E-glass/vinyl-easter thin rings (pcr = p̂cr × 1.683(h/R)3 GPa).

solutions for the special case of ±63◦ angle-ply, which was considered by Rasheed and Yousif [2005],
are summarized in Table 7, including also the extreme cases of full anisotropy represented by the lay-up
with only [+63◦

] plies for the entire thickness and the fully orthotropic lamination consisting of many
too thin alternating balanced plies [+63◦/− 63◦

], which produce the highest possible buckling capacity.
A last example considers a thin ring fabricated from S-glass/epoxy with the mechanical properties

given in Table 2. The lay-up consists of three [+45◦/− 45◦
] balanced plies, each with equal thickness,

that is, [hk/hk]k=1,2,3 where hk is the thickness of a single lamina. Figure 7 depicts the developed p̂cr -
isomerits in the ĥ1-ĥ2 design space. As seen, the feasible domain is bounded by the three straight lines
ĥ1 = 0, ĥ2 = 0 and ĥ1 + ĥ2 = 0.5, where an infinite number of level curves are obliged to turn to be tangent
to the latter one in order not to violate the thickness equality constraint. The global optimal solution has
shown to be of equal ply thickness: ĥk = 0.167, k = 1, 2, 3, where p̂cr = 1.2593. The calculated
dimensional value of the maximum buckling pressure is given in Table 8 for different thickness to radius
ratios.

6. Conclusions

In this paper, a practical approach for enhancing the buckling stability limits of thin-walled anisotropic
rings/long cylinders has been developed. The formulation of an optimal lamination design against buck-
ling has been thoroughly investigated, where useful design charts are given for several types of anisotropic
rings/long cylinders showing the functional dependence of the critical buckling pressure on the stacking
sequence and ply thickness as well. An analytical buckling model has been implemented, which provides
good sensitivity to lamination parameters, allowing the search for the needed optimal stacking sequences
in an acceptable computational time. The proposed model deals with dimensionless quantities in order
to be applicable for handling thin shells having arbitrary thickness-to-radius ratios, which is a major
contribution of this work. Results have indicated that the optimized laminations induce significant in-
creases, always exceeding several tens of percent, of the buckling pressures with respect to the reference

h/R 1/15 1/20 1/25 1/50 1/100

pcr (KPa) 1305.94 550.94 282.1 35.26 4.41

Table 8. Maximum buckling pressure for S-glass/epoxy rings [+45◦/− 45◦
]3 ( p̂cr =

1.2593, pcro = 3.5(h/R)3 GPa, pcr = p̂cr · pcro).
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Figure 7. Global optimal stability limit in ĥ1-ĥ2 design space for a six-layer, S-
glass/epoxy ring with a stacking sequence [+45◦/− 45◦

]3.

or baseline design. It is assumed that the volume fractions of the composite material constituents do
not significantly change during optimization, so that the total structural mass remains constant. Three
types of composites were considered: E-glass/vinyl-ester, graphite/epoxy and S-glass/epoxy. It has been
shown that the overall stability level of the laminated composite shell structures under considerations can
be substantially improved by finding the optimal stacking sequence without violating any imposed side
constraints. The stability limits of the optimized shells have been substantially enhanced as compared
with those of the reference or baseline designs. The case of cylinders of finite length as well as the use
of material grading concept for maximizing buckling stability boundaries under equality mass constraint
shall be considered in the future.

Appendix A

Based upon the classical lamination theory [Reddy 2004], this appendix includes a brief derivation of
the laminate stiffness parameters, which allows for a general stacking sequence optimization.

Constitutive relations. One difference between laminated composites and traditional engineering ma-
terials is that a composite response to loads is direction dependent. In order to analyze the response
of a composite, we must be able to predict the behavior of individual unidirectional lamina, which is
characterized by having all fibers oriented in the same direction. This model allows one to treat the
lamina as an orthotropic material. In reality fibers are not perfectly straight or uniformly oriented within
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the lamina. There are generally several layers of fibers nested within a single lamina. The structural
model used to represent the composite laminate is schematically shown in Figure A-1.

1, 2 and 3 are denoted the principal directions of an orthotropic lamina, defined as follows:

- Direction 1: principal fiber direction, also called fiber longitudinal direction,

- Direction 2: in-plane direction perpendicular to fibers, transversal direction, and

- Direction 3: out-of-plane direction perpendicular to fibers, normal direction.

The reduced form of Hooke’s law for an orthotropic homogeneous lamina in a plane stress state may
be written as σ11

σ22

τ12

 =

Q11 Q12 0
Q12 Q22 0
0 0 Q66

 ε11

ε22

γ12

 , (A.1)

where Q is referred to as the reduced stiffeners matrix of the k-th lamina, defined in terms of material
properties:

Q11 =
E11

1 − ν12ν21
, Q22 =

E22

1 − ν12ν21
, Q12 =

ν12 E22

1 − ν12ν21
, Q66 = G12,

where ν12 E22 = ν21 E11.
As seen from the above equations, there are four independent elastic constants: the Young’s moduli

in the 1 and 2 directions, E11 and E22, the shear modulus, G12, and the major Poisson’s ratio, ν12, upon
which the stiffness matrix of a homogeneous orthotropic composite material is calculated.

�

�

�
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Figure A-1. Laminated composite ring/cylindrical shell under external pressure (u dis-
placement in the axial direction x , v in the tangential direction s, w in the radial
direction z).
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For a generally orthotropic material, (A.1) must be transformed to reflect rotated fiber orientation
angles. The following matrix relation reflects this transformation [Daniel and Ishai 2006]:

σxx

σss

τxs

 =

 Q11 Q12 Q16
Q12 Q22 Q26
Q16 Q26 Q66

 εxx

εss

γxs

 . (A.2)

The elements of the k-th lamina stiffness matrix Q, which is now referred to the reference axes of the
cylindrical shell (x, s, z), are given by

Q11 = U1 + U2 cos 2θ + U3 cos 4θ, Q22 = U1 − U2 cos 2θ + U3 cos 4θ,

Q12 = U4 − U3 cos 4θ, Q16 = 0.5 U2 sin 2θ + U3 sin 4θ,

Q26 = 0.5 U2 sin 2θ − U3 sin 4θ, Q66 = 0.5 (U1 − U4)− U3 cos 4θ,

where the invariant terms Ui are solely function of the material properties. They are defined by the
following expressions [Reddy 2004]:

U1 = 0.125 (3Q11 + 3Q22 + 2Q12 + 4Q66), U2 = 0.5 (Q11 − Q22),

U3 = 0.125 (Q11 + Q22 − 2Q12 − 4Q66), U4 = 0.125 (Q11 + Q22 + 6Q12 − 4Q66).

For classical lamination theory, it is assumed that n layers of material are perfectly bonded together, with
infinitely thin, nonshear deformable boundaries. Using Kirchoff plate theory [Simitses 1976], which
assumes that the in-plane displacements vary linearly through the thickness of the laminate, the displace-
ments of a material point distance z from the middle surface are

u(x, s, z)= u0(x, s)− z
∂w0

∂x
,

v(x, s, z)= v 0(x, s)− z
(∂w0

∂s
−
v 0

R

)
,

(
s ∼= Rϕ,

z
R

� 1
)
,

w(x, s, z)= w0(x, s),

where u0(x, s), v 0(x, s) and w0(x, s) are the displacements of a generic point (x, s) on the shell middle
surface (z = 0) in x, s and z directions, respectively.

The strain-displacement relations in terms of the middle surface strains and shell curvatures are given
in the following:

εxx = ε0
xx + zκxx ,

εss = ε0
ss + zκss,

γxs = γ 0
xs + zκxs,

or

εxx

εss

γxs

 =

ε0
xx
ε0

ss
γ 0

xs

 + z

κxx

κss

κxs

 , (A.3)
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where the middle surface strains and curvatures are [Brush and Almroth 1975]

ε0
xx =

∂u0

∂x
,

ε0
ss =

∂v 0

∂s
+
w0

R
+

1
2

(∂w0

∂s
−
v 0

R

)2
,

γ 0
xs =

∂u0

∂s
+
∂v 0

∂x
,

κxx = −
∂2w0

∂x2 ,

κss = −
∂

∂s

(∂w0

∂s
−
v 0

R

)
,

κxs = 2
∂

∂x

(∂w0

∂s
−
v 0

R

)
.

Substituting for the total strains from (A.3) into (A.2) we haveσxx

σss

τxs


k

=

Q11 Q12 Q16
Q12 Q22 Q26
Q16 Q26 Q66


k

ε0
xx
ε0

ss
γ 0

xs

 + z

κxx

κss

κxs

 . (A.4)

The resultant forces and moments per unit length applied at the middle surface are defined by the
integrals

Forces:

Nxx

Nss

Nxs

 =

∫ h/2

−h/2

σxx

σss

τxs

dz =

n∑
k=1

∫ zk

zk−1

σxx

σss

τxs

 dz , (A.5)

Moments:

Mxx

Mss

Mxs

 =

∫ h/2

−h/2

σxx

σss

τxs

 zdz =

n∑
k=1

∫ zk

zk−1

σxx

σss

τxs

 zdz. (A.6)

Substituting for the stress-strain relationships of (A.4) into (A.5) and (A.6), we get

Nxx

Nss

Nxs

Mxx

Mss

Mxs


=



A11 A12 A16 B11 B12 B16

A12 A22 A26 B12 B22 B26

A16 A26 A66 B16 B26 B66

B11 B12 B16 D11 D12 D16

B12 B22 B26 D12 D22 D26

B16 B26 B66 D16 D26 D66





ε0
xx
ε0

ss
γ 0

xs
κxx

κss

κxs


,

where Ai j are called the extensional stiffnesses given by Ai j =

n∑
k=1

(Qi j )k(zk − zk−1). Bi j are called the
bending-extensional stiffnesses given by

Bi j =
1
2

n∑
k=1

(Qi j )k(z
2
k − z2

k−1) .

Di j are called the bending stiffnesses

Di j =
1
3

n∑
k=1

(Qi j )k(z
3
k − z3

k−1),

where n is the number of different plies in the stacking sequence.
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Appendix B: The interior penalty function technique

In this method the original objective function F(Ex) is augmented with terms, called penalty terms, such
that as Ex approaches a constraint surface one term increases indefinitely. Since the algorithm seeks to
minimize the value of the objective function, it will try not to penetrate any constraint surface. Thus all
constraints are taken into consideration by representing them by penalty terms in the objective function
expression. The most commonly used interior penalty function [Vanderplaats 1994] is cast in the form

8(Ex, r)= F(Ex)− r
M∑

j=1

1
G j (Ex)

,

where8(Ex, r) is the modified objective function, G j (Ex) is the j -th constraint function and r is a multiplier.
A sequence of unconstrained minimization problems is solved with successively decreasing values of r .
The MATLAB optimization toolbox [Venkataraman 2002] offers routines that implement the interior
penalty function method via a built-in function named fminsearch.
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