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ANISOTROPY IN HYPOELASTIC SOFT-TISSUE MECHANICS, I: THEORY

ALAN DAVID FREED

A hypoelastic constitutive theory is derived with an eye towards modeling the passive response of soft
anisotropic biological tissues. Anisotropy is handled through a material tensor whose construction is
independent of the constitutive formulation. Anisotropy tensors are provided for tissues that have a
single dominant fiber family with an elliptic fiber projection onto the transverse plane, and their limiting
cases. The tissue is comprised of two constituents: a matrix phase and a fiber phase. The theory is derived
in the polar configuration, for ease of handling the derivatives, and then mapped into the commonly used
Eulerian configuration. Kirchhoff stress and its conjugate strain-rate are the state variables.

1. Introduction

In a landmark paper for the field of biomechanics, Fung [1967] empirically fit the tensile load-deflection
curve of rabbit mesentery with the linear, first-order, differential equation

dσ

dλ
= α + βσ or equivalently

dσ

dt
= (α + βσ)

dλ

dt
, (1)

where σ denotes stress, λ denotes stretch, and α and β represent material constants. This is Fung’s law.
The second formula, which follows from the first via the chain rule, is in the format of a hypoelastic
constitutive equation. Although originally expressed as a differential equation, Fung’s law is almost
always referred to in its integrated form

σ =
α

β
(eβε

− 1), (2)

where ε = λ − 1 denotes strain.
Since then, numerous constitutive formulae have been put forward by various researchers in the field of

biomechanics in an effort to extend Fung’s one-dimensional law to three dimensions; see Fung’s textbook
[1993] and the literature reviews [Humphrey 2002; Sacks 2000; Viidik 1973; Weiss and Gardiner 2001].
These three-dimensional theories have been derived as hyperelastic constitutive expressions, in spite of
the fact that Fung’s original one-dimensional formulation was hypoelastic in construction [Fung 1967].
Even Fung’s own three-dimensional extension of Equation (1) was a hyperelastic theory [Fung 1973],
that is,

σi j + pIi j = C ′

i jklεkl + exp(a J1 + bJ2)Ci jklεkl, (3)

where σi j are components of stress, εi j are components of strain, J1 and J2 are the first and second
strain invariants, a and b are constants, C ′

i jkl and Ci jkl are elastic moduli, and p is a Lagrange multiplier
that forces an isochoric response. The only nonhyperelastic theory that has been put forward for soft
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tissues was derived by Criscione et al. [2003a], where hyper- and hypoelastic models were combined to
describe glutaraldehyde fixed bovine pericardial sacs [Criscione et al. 2003b]. They demonstrated that a
hyperelastic material model, alone, is not capable of describing this tissue, because the work done does
depend upon the path taken.

A hyperelastic material defines stress through some potential function in strain or deformation [Ogden
1984]. This potential function has its origin in thermodynamics and produces a theory where the value
of stress depends only on the current state of strain and not on the path traversed to reach that state. A
hypoelastic material defines stress-rate as some linear function of strain-rate [Truesdell 1955], where
various objective rates have been used in the literature. Hypoelastic materials have the potential of
reaching states of stress that do depend upon the path of strain taken. Noll (see Truesdell [1955]) proved
a theorem that states: “Every isotropic elastic body is also an isotropic hypoelastic body.” Hypoelasticity
is therefore a generalization of hyperelasticity. In contrast, Criscione et al. [2003a] state: “Together they
(hyperelasticity and hypoelasticity) define all elastic-type relations, yet they are mutually exclusive.”
Obviously, these two statements are inconsistent. The word hypoelastic is being used differently in these
manuscripts. We will use the term hypoelastic in the sense of Truesdell.

This paper provides a rational extension of Fung’s law (1) through an application of Truesdell’s hypo-
elastic theory [1955] to a class of anisotropic materials that potentially includes soft biological tissues.
The theory is also novel in the method by which anisotropy is introduced into it and by the choice of
strain rate that is used as its independent variable.

1.1. Preliminaries. Scalars are typeset in italics, for example, y. Vectors are typeset in lower-case bold
italics, for example, y = yi ei . And tensors are typeset in upper-case bold italics, for example, Y =

Yi j ei ⊗ e j , wherein ⊗ signifies a tensor product. Components yi and Yi j are also typeset in italics, and
they are quantified in a rectangular Cartesian basis {e1, e2, e3}. Exceptions to this notation are minimal,
but they do arise, both from the use of conventional notations and from the need to introduce multiple
variables of similar nature. Components map from one set of coordinates {e1, e2, e3} into another set
of coordinates {ẽ1, ẽ2, ẽ3} according to the transformation rules ỹi = Qia ya and Ỹi j = Qia Q jbYab with
Qik Q jk = Qki Qk j = δi j , where δi j is the Kronecker delta function. Repeated indices are summed from
1 to 3 in accordance with Einstein’s summation convention.

The identity tensor I = δi j ei ⊗ e j = ei ⊗ ei maps vectors into themselves, for example, y = I · y with
the dot denoting a contraction over a pair of indices such that yi = δi j y j . Dot notation is used whenever
two vectors are contracted together, for example, when defining the vector norm ‖ y‖2

2 = y · y = yi yi .
However, dot notation is suppressed whenever a tensor contracts with a vector, for example, y = I y, or
whenever two tensors are contracted together, for example, Y Z = Yik Zk j ei ⊗ e j . Here contractions are
implicit.

The tensor Y = Yi j ei ⊗ e j has a transpose Y T
= Y j i ei ⊗ e j and an inverse Y−1

= Y −1
i j ei ⊗ e j ,

whenever it exists, such that YY−1
= Y−1Y = I where Y −1

i j 6= (Yi j )
−1. The symmetric tensor operator,

sym Y =
1
2(Yi j + Y j i )ei ⊗ e j , and the antisymmetric tensor operator, skew Y =

1
2(Yi j − Y j i )ei ⊗ e j ,

satisfy Y = sym Y + skew Y . The trace operator tr Y = Yi i is the diagonal sum. And, from of the
Cayley-Hamilton theorem, the determinant obeys the identity det Y =

1
3(tr Y 3

−
3
2 tr Y tr Y 2

+
1
2(tr Y)3).

Any modern textbook that addresses the mechanics of continuous media can be used as a reference.
A particularly good text has been written by Holzapfel [2000].
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2. Kinematics

Consider a mass point in a Cartesian coordinate frame (1, 2, 3) with unit vectors {e1, e2, e3} whose
original location in some reference configuration κ0 affiliated with time t = 0, say, is given by a position
vector X = X i ei . Let its current location in configuration κ , which is affiliated with time t , be given by
another position vector x = xi ei that moves with a velocity of v = vi ei wherein vi = ẋi = ∂xi/∂t .

It is supposed that the motion of this mass point through space can be described by a one-parameter
family (in time) of locations x = χi (X, t)ei that is considered to be continuous and sufficiently differ-
entiable (in space) to allow a deformation gradient to be defined according to F = Fi j ei ⊗ e j wherein
Fi j = ∂χi (X, t)/∂ X j . The inverse to the deformation gradient F−1 exists because J = det F > 0 from
the conservation of mass.

Because the tensor F FT is positive-definite, F has a polar decomposition of

F = V R = RU, (4)

with properties V = V T , U = U T , R−1
= RT such that det R = +1, where R is a proper orthogonal

tensor, and where V and U are commonly referred to as the left (or Eulerian) and right (or Lagrangian)
stretch tensors, respectively, which are symmetric positive-definite. Also associated with the deformation
gradient are the left B [Finger 1894] and right C [Green 1841] deformation tensors quantified by B =

F FT
= V 2 and C = FT F = U2, which are symmetric positive-definite with components Bi j = Fik F jk

and Ci j = Fki Fk j .
An infinitesimal material vector dX is pushed forward into an infinitesimal spatial vector dx according

to the mapping

dx = FdX so that dS2
= dX · dX and ds2

= dx · dx = dX · CdX, (5)

where dS and ds are the Euclidean norms of vectors dX and dx, respectively, both of which are positive.
It is apparent from the last formula of the above expression that tensor C plays the role of a metric
quantifying the deformation that occurs at a mass point, expressed in the Lagrangian viewpoint.

Akin to the deformation gradient tensor F is the velocity gradient tensor L = L i j ei ⊗ e j with com-
ponents L i j = ∂vi/∂x j , so that L = Ḟ F−1. Its symmetric and antisymmetric parts, D = sym L and
W = skew L, are called the stretching D and vorticity W tensors, respectively, with W quantifying the
rate of rotation occurring about the principal axes of D. In the literature tensor D is also referred to as
either the strain-rate tensor or the rate-of-deformation tensor.

2.1. Polar fields. By selecting what Dienes [1987; 2003] calls the polar configuration κ̄ , a material
modeler can construct constitutive equations that depend only on stretch and its rate; not on rotation
or its rate. This is advantageous when developing mathematical models suitable for finite deformation
analysis. All constitutive equations in the PRONTO two-dimensional and three-dimensional finite-element
codes [Flanagan and Taylor 1987], for example, are solved in the polar configuration κ̄ , and then mapped
into the spatial configuration κ for the displaying of results.

Dienes [1987; 2003] refers to any spatial field, for example, vector y or tensor Y , that is mapped into
κ̄ (by means of the rotation tensor R defined in Equation (4)) as a polar field; specifically,

ȳ = RT y and Ȳ = RT Y R. (6)
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Figure 1. Mappings between the reference κ0, polar κ̄ , and current κ configurations of a body.

Dienes [1979; 1986] distinguishes polar fields, for example, ȳ and Ȳ , from their Eulerian counterparts,
that is, y and Y , with a bar — a notation that we adopt. A direct consequence of his definition is that
e1 = Rē1, e2 = Rē2, and e3 = Rē3, where rotation R maps polar axes {ē1, ē2, ē3} into spatial axes
{e1, e2, e3}. How the three configurations κ0, κ̄ , and κ relate to one another is depicted in Figure 1.

Material derivatives of polar fields are described by [Dienes 1979]

˙̄y = RT ŷ wherein ŷ = ẏ −� y, and ˙̄Y = RT Ŷ R wherein Ŷ = Ẏ −�Y + Y�, (7)

where ẏ = ∂ y/∂t + ∇ y · v defines the material derivative of spatial field y, which contains partial
derivatives in both time ∂ y/∂t = (∂yi/∂t)ei and space ∇ y =

∂yi
∂x j

ei ⊗ e j , and where �= ṘRT is the
spin tensor, which is the rate of rigid-body rotation about a material point that, like W , is antisymmetric.
The spatial derivatives ŷ and Ŷ are objective rates with Ŷ being commonly called the Green-Naghdi rate
[Green and Naghdi 1965]. Instead, following the naming convention of Dienes [1987; 2003], we shall
call ˙̄Y the material rate of polar tensor Ȳ , and Ŷ the polar rate of spatial tensor Y . Freed and Diethelm
[2007] have recently extended this class of mappings to include integrals and derivatives of fractional
(noninteger) order, which they then used in the construction of a viscoelastic model for isotropic tissues.

There are a variety of objective time derivatives that have been used in constitutive modeling (see
Atluri [1984] for a review). Physical reasons for selecting the polar rate over other objective rates and,
in particular, over the Jaumann rate Ẏ − WY + Y W , has been the topic of many research papers [Atluri
1984; Dienes 1979; 1979; 1986; 1987; 2003; Flanagan and Taylor 1987; Freed and Diethelm 2007;
Johnson and Bammann 1984; Szabó and Balla 1989].

Remark 1. In accordance with Equations (4), (6), and (7), Dienes [1979; 1986; 1987; 2003] argues that
there is in fact just one physical stretch tensor, it being V , since V̄ = RT V R ≡ U and ˙̄V = RT V̂ R ≡ U̇ ,
wherein

V̂ = V̇ −�V + V� with evolution V̇ = LV − V� so that V̂ = (D + Z)V . (8)

In other words, the right-stretch tensor U and the polar stretch tensor V̄ are synonyms for the same
tensor field. Similarly, Dienes argues that there is just one physical deformation tensor, it being B, since
B̄ = RT B R ≡ C and ˙̄B = RT B̂ R ≡ Ċ , wherein

B̂ = Ḃ −�B + B� with evolution Ḃ = L B + BLT so that B̂ = (D + Z)B + B(D − Z), (9)
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or equivalently, B̂ = 2V DV . Consequently the right-deformation tensor C and the polar deformation
tensor B̄ are synonyms for the same tensor field.

We have introduced another antisymmetric tensor in Equations (8) and (9), it being Z = W −�, which
we call swirl. It is the actual vorticity that occurs within a material element, that is, the rigid-body spin �
has been removed from the overall rotation of vortex W . Its influence can be neglected when analyzing
most engineered materials, because they cannot sustain finite deformations, but soft tissues can.

In light of Remark 1, we will hereafter break with traditional notation and terminology, somewhat,
and adopt the notation and terminology of Dienes when addressing the polar configuration κ̄ . We will,
however, retain conventional usage whenever a particular field or equation applies to the Lagrangian
configuration κ0. In this regard, a concerted effort has been made herein to distinguish between tensor
equations defined on κ0 from those that are defined on κ̄ .

3. Conjugate stress-strain pairs

The rate at which work is being done on a material element of unit volume, when expressed in either the
Eulerian κ or Lagrangian κ0 configuration, is well-known and given by the respective formulae [Holzapfel
2000; Ogden 1984]

Ẇ = tr(T D) =
1
2 tr(SĊ), (10)

where T is the Kirchhoff stress of the Eulerian frame, and S is the second Piola-Kirchhoff stress of the
Lagrangian frame, which relate to the true stress of Cauchy σ via the well-known identities T = Jσ and
S = J F−1σ F−T , recalling that J = det F.

Upon inserting the polar decomposition of F, that is, RV̄ , into the work expression for the κ0 con-
figuration, noting that S = F−1T F−T

≡ V̄−1 RT T RV̄−1
and Ċ = UU̇ + U̇U ≡ V̄ ˙̄V +

˙̄V V̄ because
C = U2, one can reexpress Equation (10) for the κ̄ configuration as

Ẇ =
1
2 tr

(
V̄−1 RT T RV̄−1(V̄ ˙̄V +

˙̄V V̄
))

= tr
(
RT T R 1

2

( ˙̄V V̄−1
+ V̄−1 ˙̄V

))
= tr

(
T̄ ˙̄E

)
= tr

(
T̄ sym ˙̄E

)
≡ tr

(
T̄ ˙̄E

)
, (11)

where the symmetric polar stress T̄ and its rate ˙̄T obey the mappings

T̄ = RT T R and ˙̄T = RT T̂ R,

the nonsymmetric polar strain Ē and its rate ˙̄E =
˙̄V V̄−1

obey the mappings

Ē = RT E R and ˙̄E = RT Ê R,

with sym Ê = D and skew Ê = Z, so that

Ē =

∫ t

0
RT (0, τ )(L −�)(τ )R(0, τ )dτ =

∫ t

0
RT (0, τ )(D + Z)(τ )R(0, τ )dτ

and

E =

∫ t

0
R(τ, t)(L −�)(τ )RT (τ, t)dτ =

∫ t

0
R(τ, t)(D + Z)(τ )RT (τ, t)dτ,
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because R(0, t) = R(τ, t)R(0, τ )1, while the symmetric polar strain Ē and its rate ˙̄E obey the mappings2

Ē = RT E R and ˙̄E = RT Ê R ≡ RT DR, (12)

so that

Ē =

∫ t

0
RT (0, τ )D(τ )R(0, τ )dτ and E =

∫ t

0
R(τ, t)D(τ )RT (τ, t)dτ. (13)

In summary, Ē = sym Ē , ˙̄E = sym ˙̄E , E = sym E , and Ê = sym Ê . The polar rate of strain Ê = L −�

has symmetric and antisymmetric parts that are described by sym Ê = D and skew Ê = Z.
The above development demonstrates that {T̄ , Ē}, {T̄ , Ē}, {T , E}, and {T , E} are admissible conju-

gate pairs for stress and strain in the polar κ̄ and spatial κ configurations, and that they are associated

with the respective strain rates of ˙̄E, ˙̄E =
˙̄V V̄−1

, Ê ≡ D, and Ê = L −� ≡ D + Z. None of these
pairs are found in Farahani and Naghdabadi [2003], who recently reviewed the literature of conjugate
stress-strain pairs in κ0.

3.1. Updating polar stress. When constructing numerical algorithms for solving constitutive equations
in the polar configuration κ̄ , it becomes necessary to establish a means for pushing the polar stress
forward from the polar configuration κ̄N of the N -th step, say, into the polar configuration κ̄N+1 of the
N + 1-st step. This process is most easily understood via the diagram presented in Figure 2. Found in
this diagram are three, well-known, polar decompositions: FN = RN U N , FN+1 = RN+1U N+1, and
FN+1 = FN

N+1 FN , wherein FN
N+1 represents the deformation gradient between κN and κN+1. Also

present is the polar decomposition FN
N+1 = RN

N+1U N
N+1 that leads to U N

N+1 = RN U N+1U−1
N RT

N because
RN+1 = RN

N+1 RN .
Given a state of polar stress T̄ N for the κ̄N configuration that has been stored for later use by an

integrator affixed to the κ̄N+1 configuration, for example, the retrieved stress must first be pushed forward
from κ̄N into κ̄N+1 before it can be utilized in this new configuration. This is achieved via the mapping

T̄ N
N+1 = ḠN

N+1T̄ N (ḠN
N+1)

T wherein ḠN
N+1 = U N+1U−1

N ≡ V̄ N+1V̄−1
N ≈ Ī + 1t ˙̄E N , (14)

where T̄ N
N+1 represents the polar stress T̄ of state κ̄N pushed forward into state κ̄N+1. This mapping

is akin to the well-known mapping that pushes the second Piola-Kirchhoff stress S forward into the
Kirchhoff stress T via T = FSFT . The difference between this scheme and the updated-Lagrangian
scheme is that Equation (14) maps the polar stress T̄ from κ̄N into κ̄N+1; whereas the updated-Lagrangian
method maps the Kirchhoff stress T from κN into κN+1 as T N

N+1 = FN
N+1T N (FN

N+1)
T [Belytschko et al.

2000]. The approximation for Ḡ in the above formula follows from a Taylor expansion of V̄ about tN

with 1t = tN+1 − tN , while recalling that ˙̄E =
˙̄V V̄−1

and noting that Ī = RT I R = RT R = I .

1Any material rotation R(0, t) from κ0 to κ can be decomposed into two sequential rotations: the first rotation R(0, τ )

goes from κ0 to κτ , while the second rotation R(τ, t) goes from κτ to κ with 0 ≤ τ ≤ t and R(τ, τ ) = I for all τ . The
product R(τ, t)R(0, τ ) of two orthogonal tensors is another orthogonal tensor; however, R(τ, t)R(0, τ ) 6= R(0, τ )R(τ, t), that
is, matrix multiplication does not commute between orthogonal tensors.

2Definitions for Ē and E first appeared in Freed and Diethelm [2007]. Earlier, Hill [1968] proved that ˙̄E approximates

Hencky’s definition for strain rate whenever ‖EG
˙̄E EG‖ is sufficiently small with EG =

1
2 (C − I) being the Green strain.
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Figure 2. Mappings between the Lagrangian κ0, updated Lagrangian κN , and Eulerian
κN+1 configurations, and their relationships to the polar configurations κ̄N , κ̄N+1, and
κ̄ N

N+1 that associate with the updated Lagrangian and Eulerian configurations, and the
incremental advancement between them, respectively.

4. Simple shear

To demonstrate that the symmetric polar strain Ē and its spatial counterpart E are tractable strain mea-
sures, let us consider a simple shear flow whose deformation history is described by

χ1 = X1 + γ X2, χ2 = X2, and χ3 = X3,

leading to a deformation gradient with components

F =

 1 γ 0
0 1 0
0 0 1

 so that F−1
=

 1 −γ 0
0 1 0
0 0 1

 ,

wherein γ quantifies the extent of shear, as shown in Figure 3. Simple shear is isochoric, that is, det F = 1
independent of material constitution.

This deformation gradient is affiliated with a material rotation of

R =
1√

4 + γ 2

 2 γ 0
−γ 2 0
0 0

√
4 + γ 2

 ,

1

2

1
1γ

Figure 3. Simple shear of a unit (dotted) square sheared by γ into a (solid) parallelogram.



918 ALAN DAVID FREED

which satisfies the required identity that det R = 1. Utilizing this description for R, derived by Ogden
[1984], leads to simpler expressions for fields described in terms of R than one would otherwise arrive at
if sines and cosines were used, as appear in classic rotation matrices [Dienes 1979; Flanagan and Taylor
1987].

The velocity gradient L = Ḟ F−1 and stretching D = sym L tensors have components

L =

 0 γ̇ 0
0 0 0
0 0 0

 and D ≡ Ê =
γ̇

2

 0 1 0
1 0 0
0 0 0

 ,

while the vorticity W = skew L, spin �= ṘRT , and swirl Z = W −� tensors have components

W =
γ̇

2

 0 1 0
−1 0 0
0 0 0

 , �=
2γ̇

4 + γ 2

 0 1 0
−1 0 0
0 0 0

 , and Z =
γ 2γ̇

2(4 + γ 2)

 0 1 0
−1 0 0
0 0 0

 ,

where W and � are seen to be equal only when γ = 0, while Z approaches W and � approaches 0 with
increasing values of |γ |.

The symmetric, polar, strain rate ˙̄E defined in Equation (12) is therefore given by

˙̄E =
γ̇

2(4 + γ 2)

 −4γ 4 − γ 2 0
4 − γ 2 4γ 0

0 0 0

 ≡

 ˙̄ε ˙̄θ 0
˙̄θ −˙̄ε 0
0 0 0

 ,

where, to simplify notation, we have introduced terms

˙̄θ =
4 − γ 2

2(4 + γ 2)
γ̇ and ˙̄ε =

−2γ

4 + γ 2 γ̇ .

Integrating from 0 to γ produces

Ē =

 ε̄ θ̄ 0
θ̄ −ε̄ 0
0 0 0

 , wherein ε̄ = ln
( 4

4 + γ 2

)
and θ̄ = 2 tan−1

(γ

2

)
−

γ

2
, (15)

which quantifies the polar strain Ē for simple shear. By rotating the polar strain tensor of Equation (15)
into the Eulerian frame, according to Equation (12), one gets the physical strain measure

E =

 ε θ 0
θ −ε 0
0 0 0

 wherein ε =
1

4 + γ 2

(
(4−γ 2)ε̄+4γ θ̄

)
and θ =

1
4 + γ 2

(
(4−γ 2)θ̄ −4γ ε̄

)
. (16)

No other strain field, that we are aware of, has these components for simple shear. Having said this, the
isotropic hypoelastic material considered by Dienes [1979] has a stress response in simple shear that is
proportional to the strain components listed in Equation (16), with the shear modulus being the constant
of proportionality. However, Dienes [1986] does not define polar strain as we have done in Equation (13);
rather, he advocates using Signorini-strain, that is, ES =

1
2(B − I) [Signorini 1930]. Other differences
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Figure 4. Polar components of strain in simple shear, where Ē12 = θ̄ and Ē11 = ε̄.

between Dienes’ formulae and ours for simple shear originate with the different, but equivalent, ways
that we assign components to the rotation tensor R.

The polar strain components for simple shear are plotted in Figure 4, while their associated spatial
components are plotted in Figure 5. Of these, the curves for ε and θ presented in Figure 5 represent
physical components, while those for ε̄ and θ̄ presented in Figure 4 are nonphysical in nature. The two
normal strains ε̄ and ε are even functions of shear γ , while the two shear strains θ̄ and θ are odd functions
of γ . Accordingly, only the right half of the response plane needs to be shown. The shear strain E12 is
seen to dip below γ /2 over much of the range plotted in Figure 5, yet it asymptotes with γ /2 at both
small and large values of shear strain; essentially whenever |γ | < 0.5 or |γ | > 100. In contrast, the
normal strain E11 grows very slow at large values of γ , for example, whenever |γ | > 100, giving it a
local appearance of having reached an asymptote.
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Figure 5. Spatial components of strain in simple shear, where E12 = θ and E11 = ε.
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5. Material anisotropy

The fibrous structures of biological tissues are not strongly aligned; rather, they are dispersed over angles
of splay [Finlay et al. 1995]. The use of a distribution density function for the handling of fiber splay
in connective tissues was introduced by Lanir [1983]. Since then single-family fiber splays have been
adopted by Hurschler et al. [1997] for tendon and ligament, Billiar and Sacks [2000] and Freed et al.
[2005] for heart valves, and Usyk et al. [2000] for ventricular myofibers; double-family fiber splays have
been adopted by Gasser et al. [2006] for arteries; and triple-family fiber splays have been adopted by Nash
and Hunter [2000] for myocardial laminae. In the papers by Freed et al. [2005] and Gasser et al. [2006],
the distribution function describing anisotropy was extracted from the overall constitutive formulation
yielding a material or structural tensor. In what follows, this material tensor is given additional physical
insight through a derivation based on Riemannian Geometry.

In Equation (5), the symmetric positive-definite Lagrangian tensor C is shown to be a metric tensor
that quantifies deformation. In what follows, a new symmetric positive-semidefinite tensor, call it C f , is
introduced that can be thought of as being a metric-like tensor that quantifies just the anisotropic contri-
butions of deformation caused by fiber reinforcement, that is, the isotropic contributions to deformation
are removed.

Let us begin by postulating the existence of a masking tensor M = Mi j ei ⊗ e j defined in κ0 (it is a
material tensor; hence it does not change over time) that strips away all isotropic contributions otherwise
present in dX by scaling only those components of a displacement that align with the material directions
of anisotropy in κ0, as defined by the transformation law

d4= MdX with d62
= d4 · d4= dX · A0dX wherein A0 = MT M, (17)

where d6 is some nonnegative fraction of dS that quantifies the relative anisotropic stiffening in material
direction dX , that is, 0 ≤ d6 ≤ dS. Consequently, the anisotropy tensor A0 = A0

i j ei ⊗ e j is symmetric
positive-semidefinite with components A0

i j = Mki Mk j . The lower bound of d6 = 0 occurs in those
directions dX where a material has no anisotropic stiffening. Here its stiffness is considered to be due
solely to its isotropic constituents. The upper bound of d6 = dS occurs in those directions dX where
the material has its greatest anisotropic stiffening. Here its stiffness is considered to be due solely to
its anisotropic constituents. All other directions, that is, where 0 < d6 < dS, are considered to have a
mixture of isotropic and anisotropic stiffening effects with the anisotropic contribution scaling according
to ratio d6/dS ∈ (0, 1).

Because the masking tensor M is a material tensor defined in the reference configuration κ0, it maps
into the current configuration κ through a simple rotation such that

dξ = RM RT dx with dσ 2
= dξ · dξ = dX · C f dX wherein C f

= U A0U,

and, in doing so, analogous to d6, dσ is bound to the interval 0 ≤ dσ ≤ ds. Here we see that the
anisotropy tensor A0 now takes on the role of a geometric metric within C f , making C f a metric of
the anisotropic deformation. Tensor C f possesses the property that C f

→ C whenever A0 → I , which
occurs at all isotropic barriers.
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Remark 2. The fact that d6/dS ∈ [0, 1] requires that the maximum eigenvalue of tensor A0 be 1. This
physical constraint is equivalent to the mathematical constraint that

‖A0‖2 = 1, (18)

where ‖A0‖2 is the L2 norm of A0.

5.1. Transverse isotropy. Materials described by a unit vector a0 that aligns with a single fiber orien-
tation in some reference configuration κ0 have an anisotropy tensor that is given by3 Spencer [1972]

A0 = a0 ⊗ a0, (19)

which satisfies the constraint listed in Equation (18), because ‖a0‖2 = 1 by definition. The eigenvalues for
this material tensor A0 are {1, 0, 0}. Highly aligned fiber orientations, as implied by transverse isotropy,
are intentionally designed into many man-made materials; whereas fiber architectures in biological tis-
sues usually have splayed or distributed fiber orientations.

5.1.1. Conic splay. Gasser et al. [2006] derived an anisotropy tensor from a statistical assessment of
fiber splay, where a projection of the fibers onto the transverse plane is uniformly distributed by angle
(the fiber distribution is a cone of orientation vectors) with unit vector a0 denoting their mean orientation.
Their anisotropy tensor has the form

A0 = δ I + (1 − δ)a0 ⊗ a0, (20)

where our presentation of their formula has been normalized so that ‖A0‖2 = 1. Our δ relates to their
κ =

1
4

∫ π

0 ρ(2) sin3(2)d2 via the formula δ = κ/(1−2κ), where ρ(2) is an orientation density function
for fiber splay, with κ ∈ [0, 1/3] and therefore δ ∈ [0, 1]. The dispersion parameter δ is bound from below
by transverse isotropy (that is, the limiting case of δ = 0, which simplifies Equation (20) to Equation
(19)), and it is bound from above by isotropy in 3-space (that is, whenever δ = 1). The eigenvalues for
this material tensor A0 are {1, δ, δ}.

The dispersion parameter δ is to be regarded as a phenomenological material constant. It is a material
property derived from a statistical assessment of fiber distribution, just like the shear modulus µ is a
material property derived from a statistical assessment of the spatial geometry of the molecular backbone
in elastomers [Treloar 1975]. No specific knowledge pertaining to the statistical underpinnings of either
δ or µ is required for their use in applications.

5.1.2. Fan splay. Freed et al. [2005] derived another anisotropy tensor from a different statistical assess-
ment of fiber dispersion. Here splay was considered to occur as a two-dimensional fan contained within
3-space whose planar normal aligns with unit vector b0. Fibers reside within this plane with a mean
orientation of a0. Hence, by definition, a0 · b0 = 0 and ‖a0‖2 = ‖b0‖2 = 1. The anisotropy tensor for
this geometry, when their formula has been normalized so that ‖A0‖2 = 1, can be rewritten as

A0 = δ I + (1 − δ)a0 ⊗ a0 − δb0 ⊗ b0, (21)

3Ateshian [2007] has extended transverse isotropy to address the fact that thin filaments can only carry tensile loads. His
adaptation into this framework lies beyond the scope of this paper.
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where, like Equation (20), the dispersion parameter δ is bound from below by transverse isotropy; see
Equation (19). However, unlike Equation (20), δ is now bound from above by an isotropy in 2-space.
The eigenvalues for this material tensor A0 are {1, δ, 0}.

5.1.3. Orthotropic splay. As alluded to in Freed et al. [2005], the two cases of conic and fan splay can
be unified into an orthotropic anisotropy tensor for a single dispersed fiber family given by

A0 = δ I + (1 − δ)a0 ⊗ a0 + (ε − δ)b0 ⊗ b0,

where 0 ≤ ε ≤ δ ≤ 1. Here the projection of fibers onto the transverse plane about a0 produces an ellipse
whose minor axis is in the direction of b0 with a length of ε, and whose major axis is in the direction of
a0 × b0 with a length of δ. The limiting case of ε = 0 reduces to fan splay (Equation (21)); the limiting
case of ε = δ reduces to conic splay (Equation (20)); and the limiting case of ε = δ = 0 reduces to
transverse isotropy (Equation (19)). The eigenvalues for this material tensor A0 are {1, δ, ε}.

These are but a few of the possible anisotropy tensors that can be derived and utilized within the
framework of the following proposition. The above cases apply whenever a single family of fibers
exists whose geometric interpretation of anisotropy can be described with an elliptic projection onto the
transverse plane.

6. Hypothesis

Proposition 1. The isotropic constituent (for example, the ground substance matrix) and the anisotropic
constituent (for example, the collagen fiber) that comprise soft tissues are considered to be cohabitant,
in a continuum sense, at every mass point throughout a tissue. In these materials, the Kirchhoff stress T
is considered to be a sum of fiber and matrix stresses governed by the rule of mixtures

T + ℘ I = φT f
+ (1 − φ)T m, (22)

while the metric for deformation C is considered to decompose according to the sum

C = U2
= U A0U + U(I − A0)U, (23)

which is given the notation

C = C f
+ Cm, wherein C f

= U A0U and Cm
= U(I − A0)U, (24)

where C f and T f are the deformation and stress tensors associated with the anisotropic fibers, Cm and
T m are the deformation and stress tensors associated with the isotropic matrix, and A0 is the anisotropy
tensor of (17) — all five of these tensors are symmetric — and where φ is the volume fraction occupied by
the anisotropic constituents, and ℘ is a Lagrange multiplier used to enforce an isochoric constraint, that
is, det C = 1.

Regarding stresses, Equation (22) is the well-known rule-of-mixtures formula from composites theory
[Spencer 1972]. It is adopted here for the same reason that Humphrey and Rajagopal [2002] adopted
it; specifically, to make boundary value problems tractable. Formula (22) enables residual stresses to be
assigned to the fiber and matrix phases via initial conditions, for example, as T f

0 and T m
0 =

−φ
1−φ

T f
0 , so

that T 0 = 0 at time t = 0.
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However, regarding deformations, the above proposition differs from all existing hypotheses known
to the author. There are two commonly used kinematic splits found in the literature. They are the
multiplicative decompositions of the deformation gradient tensor (elastic-plastic theories that originate
with Lee [1969]) and the mass-weighted sums of constituent velocity vectors (mixture theories that
originate with Truesdell [1957]), respectively. In contrast, here the geometric metric, which we take
to be I because Cartesian tensor fields are used, is additively split into two parts, that is, isotropic
and anisotropic, so that the positive-definite metric of deformation C becomes a sum of two positive-
semidefinite tensors C f and Cm defined according to Equation (24).

Remark 3. Because the anisotropy tensor A0 is a material tensor, its mapping from κ0 into κ̄ is not
affected by stretch U , and one has Ā ≡ A0. However, it is affected by rotation R when mapped from
either κ0 or κ̄ into κ , wherein the anisotropy tensor becomes A = R ĀRT

≡ R A0 RT . In other words,
unlike metals, for example, anisotropy in soft tissues is not considered to be deformation induced.

6.1. Polar representation. In general tensor analysis the deformation tensor is given by the formula
C = FT g F, wherein g is the geometric metric tensor of κ [Sokolnikoff 1964]. The deformation metric
can be rewritten as C ≡ B̄ = V̄ RT g RV̄ = V̄ ḡV̄ for κ̄ , where ḡ = RT g R defines a polar metric. Tensors
Ī − Ā ≡ I − A0 and Ā ≡ A0 in Equation (23) are analogous to metric ḡ; however, they are not true
metric tensors, like ḡ is, in the sense that Ī − Ā and Ā are not positive definite; they are only positive
semidefinite. If the base vectors {ē1, ē2, ē3} happen to be affiliated with a curvilinear coordinate system,
then Cm would become V̄ ( ḡ − Ā)V̄ and Ā → ḡ at isotropic barriers, with the Riemannian metric ḡ now
replacing the Cartesian metric Ī . But, in this document, Cartesian tensors are used.

Isotropic and anisotropic contributions to the polar strain-rates ˙̄E and ˙̄E can be readily constructed by
replacing Ċ with Ċ

m
and Ċ

f
in Equation (10), recalling that tensor A0 ≡ Ā is temporally constant, and

then recasting these expressions, as was done in the derivation within Equation (11), which leads to

˙̄E =
˙̄E

f
+

˙̄E
m
, wherein ˙̄E

f
= Ā ˙̄E and ˙̄E

m
= ( Ī − Ā)

˙̄E, (25)

and therefore

˙̄E =
˙̄E

f
+

˙̄E
m
, wherein ˙̄E = sym ˙̄E,

˙̄E
f
= sym ˙̄E

f
, and ˙̄E

m
= sym ˙̄E

m
, (26)

while the isotropic and anisotropic contributions to polar stress obey T̄ +℘ Ī = φT̄ f
+ (1−φ)T̄ m

, which
follows straightaway from Equations (6) and (22).

7. Hypoelasticity

We begin our discussion of general hypoelasticity by considering an isotropic material and finish our
discussion by extending that construction into a simple anisotropic material model that has potential in
the modeling of the passive response of soft biological tissues.

7.1. Isotropic materials. An analytic expression for the polar strain Ē(V̄ ), as suggested by Equation
(12), does not currently exist, to the best of our knowledge; nevertheless, this does not preclude one from
using its rate ˙̄E as the primitive kinematic variable in constitutive formulations. Specifically, instead
of the more common hyperelastic constitutive constructions [Holzapfel 2000; Ogden 1984], constitutive
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equations for elasticity can be cast in rate form, whose formulae belong to the material class4 [Dienes
1979]

T̂ = ψ(T , D) = ψ(RT̄ RT , R ˙̄E RT ) = Rψ(T̄ ,
˙̄E)RT or equivalently ˙̄T = ψ(T̄ ,

˙̄E). (27)

A hypoelastic solid, in the sense of Truesdell [1955], is that subset to this material class which restricts
the tensor-valued material function ψ to be a linear function in strain rate; here, either D or ˙̄E depending
on one’s choice of reference frame. Flanagan and Taylor [1987] have published an algorithm that can be
used to solve constitutive formulae belonging to the material class ˙̄T = ψ(T̄ ,

˙̄E).
Leonov [2000] derived a theorem that states: Hypoelastic constitutive equations are physically mean-

ingful (that is, they obey the second law of thermodynamics) if, and only if, they admit a potential.
Consequently, Equation (27) becomes physically meaningful if, and only if, ψ = ∂9/∂

˙̄E so that

˙̄T =
∂9(T̄ ,

˙̄E)

∂
˙̄E

. (28)

It necessarily follows that the potential function 9 must now be quadratic in ˙̄E in order for the response
to be hypoelastic (that is, stress-rate is linear in strain-rate). In this regard, 9 is not so different from a
conventional hyperelastic strain-energy potential.

Any material that is an isotropic function of two symmetric tensor fields, as in Equation (28), can be
expressed as a function of ten scalar invariants [Spencer 1972]; specifically: tr(T̄ ), tr(T̄ T̄ ), tr(T̄ T̄ T̄ ),
tr( ˙̄E), tr( ˙̄E ˙̄E), tr( ˙̄E ˙̄E ˙̄E), tr(T̄ ˙̄E), tr(T̄ ˙̄ET̄ ), tr( ˙̄ET̄ ˙̄E), and tr(T̄ ˙̄ET̄ ˙̄E). Imposing the hypoelastic con-
straint that 9 be quadratic in ˙̄E, while also assuming that 9 be at most linear in T̄ , in accordance
with Fung’s law (Equation (1)), allows one to write down a general potential function that has merit for
modeling biological tissues; it being,

9 =
1
2

(
α1 tr( ˙̄E)2

+ α2 tr( ˙̄E ˙̄E) + α3 tr(T̄ ) tr( ˙̄E)2
+ α4 tr(T̄ ) tr( ˙̄E ˙̄E) + 2α5 tr(T̄ ˙̄E) tr( ˙̄E) + α6 tr( ˙̄ET̄ ˙̄E)

)
,

(29)
wherein the α1, . . . , α6 are material constants, thereby resulting in the general constitutive equation

˙̄T =
(
(α1 + α3 tr T̄ ) tr ˙̄E + α5 tr(T̄ ˙̄E)

)
Ī + (α2 + α4 tr T̄ )

˙̄E + α5 tr( ˙̄E)T̄ + α6 sym(T̄ ˙̄E), (30)

whose structure Truesdell [1955] calls a “hypoelastic material of grade one”. For isochoric flows and
for materials whose bulk modulus greatly exceeds its shear modulus, like soft tissues [Fung 1973], this
potential function can be further simplified to

9 = µ tr( ˙̄E ˙̄E) +
α

3
tr(T̄ ) tr( ˙̄E ˙̄E) + β tr( ˙̄ET̄ ˙̄E) − ℘̇(tr ˙̄E − 0), (31)

because tr ˙̄E ≡ tr D = 0, which in turn produces the constitutive equation

˙̄T + ℘̇ Ī = 2(µ − αp)
˙̄E + 2β sym(T̄ ˙̄E), (32)

4Truesdell [1955] used the upper-convected derivative of Oldroyd [1950] for establishing stress rate in his original formula-
tion of hypoelasticity, although no mention was made by Truesdell of Oldroyd’s pioneering work in the field.
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where µ is the shear modulus, α and β are dimensionless material constants, p = −
1
3 tr T̄ is the hydro-

static pressure, and ℘̇ is a Lagrange multiplier that is distinct from pressure p. This Lagrange multiplier
is a workless constraint, that is, tr ¯̇E = 0, whose value is indeterminate, and can only be fixed after a
boundary value problem has been specified.

Equations (30) and (32) rotate into the Eulerian frame κ by premultiplying them with R, and postmul-
tiplying them with RT , thereby producing

T̂ =
(
(α1 + α3 tr T ) tr D + α5 tr(T D)

)
I + (α2 + α4 tr T )D + α5 tr(D)T + α6 sym(T D) (33)

and
T̂ + ℘̇ I = 2(µ − αp)D + 2β sym(T D), (34)

respectively, where now p = −
1
3 tr T ≡ −

1
3 tr T̄ . Equations (32) and (34) are isotropic three-dimensional

generalizations of Fung’s one-dimensional law (Equation (1)) for the κ̄ and κ configurations, respectively.

Remark 4. By assigning α ≡ β, the material model listed in Equations (32) and (34) for the κ̄ and κ

configurations, respectively, predicts the same stiffening ratios for α (β ≡ α) and µ as the neo-Hookean
solid does for its shear modulus µ [Treloar 1975], as they pertain to differences between the experiments
of uniaxial and equibiaxial extension (that is, the modulus coefficients are 3 and 6, respectively).

7.2. Soft tissues. Existing elastic material models for soft tissues are predominantly hyperelastic in con-
struction, and typically consider the stress carried by collagen fibers to be modeled as some generalization
of an integrated Fung-like solid (see the review articles of Humphrey [2002], Sacks [2000], Viidik [1973],
and Weiss and Gardiner [2001]). In particular, stress is taken to be proportional to some deformation
tensor, for example, B, with its coefficient of proportionality being a scalar-valued measure of strain
written as a Fung-like exponential, as in Equation (2), whose argument is expressed in terms of various
components or invariants of strain, as in Equation (3). A notable exception to these theories is the theory
of Criscione et al. [2003a] who derived a transversely isotropic pseudo-elastic model for describing the
passive response of biomembranes.

In this paper, we break with this longstanding tradition by extending Truesdell’s [1955] isotropic,
hypoelastic, constitutive theory into an anisotropic constitutive theory that is capable of modeling the
passive response of soft tissues. Specifically, we consider a class of materials whose anisotropic and
isotropic constituents are governed by the respective constitutive formulae

˙̄T
f
=

∂9 f
(
T̄ f

,
˙̄E

f )
∂

˙̄E
f and ˙̄T

m
=

∂9m
(
T̄ m

,
˙̄E

m)
∂

˙̄E
m , (35)

with there being no coupling between the arguments of the two material functions 9 f and 9m . Conse-
quently, results from the prior section addressing isotropic hypoelastic materials can be applied straight-
away, because of Prop. 1, to that of an anisotropic solid which belongs to this class of materials.

In accordance with the constitutive assumption in Equation (35), and assuming an isochoric response,
one obtains the general potential

9 i
= µi tr( ˙̄E

i
˙̄E

i
) +

αi

3
tr(T̄ i

) tr( ˙̄E
i
˙̄E

i
) + βi tr( ˙̄E

i
T̄ i ˙̄E

i
), i ∈ { f, m},
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that leads to the constitutive formulation

˙̄T
i
= 2

(
µi +

αi

3
tr T̄ i) ˙̄E

i
+ 2βi sym(T̄ i ˙̄E

i
), i ∈ { f, m}, (36)

each of which has three parameters: µi has units of stress and is the small-strain shear modulus of phase
i , while αi and βi are dimensionless parameters that govern the rate of exponential growth in stress with
increasing strain in phase i , wherein αi is a bulk-like parameter in that it accounts for influences caused
by variations in phase pressure. Combining these formulae, in accordance with Prop. 1, implies that the
overall polar stress is governed by the differential equation

˙̄T + ℘̇ Ī = φ
˙̄T

f
+ (1 − φ)

˙̄T
m
, (37)

where ℘̇ is a Lagrange multiplier used to enforce the constraint tr ˙̄E = 0, and where φ is the fiber volume
fraction.

As with isotropic materials, one can rotate this polar equation for hypoelastic, soft, biological tissues,
Equation (36), into the spatial frame κ , resulting in

T̂
i
= 2

(
µi +

αi

3
tr T i)Ê

i
+ 2βi sym(T i Ê

i
), i ∈ { f, m},

while Equation (37) maps into κ as

T̂ + ℘̇ I = φT̂
f
+ (1 − φ)T̂

m
,

wherein, from Equations ((6), (25) and (26)) and Remark 3, the various polar rates of strain obey

Ê = Ê
f
+ Ê

m
≡ D with Ê

f
=

1
2

(
A(L −�) + (LT

+�)A
)
≡

1
2

(
A(D + Z) + (D − Z)A

)
,

and therefore Ê
m

= D − Ê
f

recalling that A = R ĀRT
≡ R A0 RT from Remark 3.

Applications of this theory to specific tissues will follow in future papers.

8. Summary

A constitutive theory designed for modeling the passive behavior of soft biological tissues has been
derived. It contains several novel features. Foremost, a hypoelastic construction has been adopted, as in
Fung’s original one-dimensional model, instead of the hyperelastic constructions that pervade the litera-
ture. Anisotropy has been introduced as a geometric property separate from constitutive construction, and
a measure for strain rate that arises naturally from the work potential has been used as the independent
variable of the theory. The theory was derived in the polar configuration to ensure objectivity, and then
mapped into the spatial (Eulerian) configuration.
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