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SPLINE-BASED INVESTIGATION OF NATURAL VIBRATIONS OF
ORTHOTROPIC RECTANGULAR PLATES OF VARIABLE THICKNESS

WITHIN CLASSICAL AND REFINED THEORIES

YAROSLAV M. GRIGORENKO, ALEXANDER YA. GRIGORENKO AND TATYANA L. EFIMOVA

A spline-collocation approach is proposed for studying the natural vibrations of orthotropic rectangular
plates of variable thickness. The approach is based on the spline-approximation method and the method
of discrete orthogonalization coupled with the step-by-step search method. The study is carried out
within the framework of the classical and refined theories of plates. The dynamic response of the plates
is studied depending on the variation of the plate thickness, the mechanical parameters, and the type of
boundary conditions.

1. Introduction

Plates, as rational structural elements, are widely used in some fields using modern techniques (mainly
aircraft construction and shipbuilding). In connection with the wide application of composite materials
and structural peculiarities, studying the mechanical behavior of anisotropic plates of varying thickness
is currently of great importance. The essential point in securing the reliability of plate-shaped elements
is the determination of the natural frequencies and modes with high accuracy. Such knowledge is needed
in order to describe the response of the plates to operating conditions. For plates with constant thickness
and hinged opposite edges, the solution can be constructed in closed form [Graff 1991; Varvak and
Ryabov 1971]. The natural vibrations of orthotropic plates with other boundary conditions have been
studied quite actively and are the subject of a number of publications [Leissa 1969; 1981; 1987].

Solutions for forced and natural vibrations of orhotropic plates were obtained in [Sakata and Hosokawa
1988] in the form of double trigonometric series. Lagrangian multipliers were used in [Ramkumar et al.
1987] to solve a similar problem, with allowance being made for shear strains in the first several modes.
The superposition method was used in [Gorman 1990] to tabulate natural frequencies for a certain range
of stiffness ratios. In [Yu and Cleghorn 1993], the superposition method and affine transformations were
used to determine the natural frequencies of partially clamped and partially simply supported orthotropic
plates. The Kantorovich method was used in [Bercin 1996] to study the natural vibrations of clamped
plates. The natural vibrations of complex anisotropic plates were studied in [Bhat 1985; Kurpa and Chis-
tilina 2003] using variational methods and the R-function method. The natural vibrations of rectangular
plates of varying thickness were addressed by many authors. For example, the papers [Chen 1976; 1977]
are concerned with the general natural-vibration problem for plates of varying thickness. The transverse
vibrations of plates with exponentially varying thickness are studied in [Bhat 1987] and inhomogeneous
rectangular plates with parabolically varying thickness in [Tomar et al. 1982]. The natural vibrations

Keywords: Kirchhoff’s theory, Mindlin’s theory, anisotropic rectangular plates, spline approximations, natural frequencies,
natural vibration modes.
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of simply supported plates with linearly varying thickness were investigated in [Appl and Bayers 1965;
Bhat 1985; Bhat et al. 1990; Nog and Araar 1989].

The natural vibrations of rectangular plates with varying thickness were studied using Mindlin’s theory
with lesser activity than in similar investigations fulfilled within the framework of the classical theory
of plates. Let us note some works, such as [Mindlin 1951; Mizusava 1993; Mizusava and Condo 2001;
Roufacil and Dawe 1980], dedicated to this scientific trend. The collocation method based on orthogonal
polynomials was used in [Mikami and Yoshimura 1984] to analyze vibrations of a plate with linearly
varying thickness. In [Al-Kaabi and Aksu 1958; Bercin 1996], a method based on the variational pro-
cedure in combination with the finite-difference method was used to solve the problems for plates with
linearly and parabolically varying thickness. To study the natural vibrations of wedge-like plates with
varying thickness, some variants of the spline-element method were used. Note that the above-mentioned
publications are devoted to isotropic plates.

The analysis presented allows us to conclude that there is a variety of different approximate approaches
to the study of natural vibrations of rectangular plates with boundary conditions, which do not allow us
to obtain the solutions in closed form. Recently, computational mathematics, mathematical physics, and
mechanics have employed spline widely functions to solve such problems. This is due to the following
advantages of the spline-approximation method over other ones: stability of splines against local pertur-
bations, that is, the behavior of a spline in the neighborhood of a point does not affect the overall behavior
of the spline (as do, for example, polynomial approximations); better convergence of spline-interpolation
compared with polynomial interpolation; and simple and convenient computer implementation of spline
algorithms. The use of spline functions in variational, projective, and other discrete-continuous methods
allows us to obtain appreciable results compared to the use of classical polynomials and substantially
simplify their numerical implementation, leading to highly accurate solutions.

In [Mizusava 1993; Mizusava and Condo 2001], in order to solve one-dimensional boundary-value
problems or those reduced to them, which describe bending, stability, and vibrations of plates and shells,
the solution is approximated by splines of the third or fifth power and the problem is reduced to a
system of algebraic equations. This is more advantageous than other methods from the viewpoint of
calculation time and accuracy. In a number of two-dimensional problems concerning the stress-strain
state and vibrations of plates and shells under certain boundary conditions, the problem is reduced to a
one-dimensional one by using some variational or projective method. Such a problem can be solved by
the spline-approximation method.

To solve a two-dimensional linear boundary-value problem and boundary-value problem for eigen-
values, the approach, based on a reduction of a two-dimensional problem to a one-dimensional one by
the spline-collocation method in one coordinate direction or by other stable numerical method, has an
effective application, along with the above-mentioned approaches to solve the problems in the theory of
plates and shells. Here we extend the spline-collocation method proposed in [Grigorenko and Trigubenko
1990] to study the natural vibrations of rectangular orthotropic plates of varying thickness with complex
boundary conditions within the framework of different models. The spline-collocation method was used
previously in [Grigorenko and Yaremchenko 2004; Grigorenko and Zakhariichenko 2003; 2004].
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2. Basic relations and constitutive equations

We will solve the natural-vibration problem for a rectangular orthotropic plate with thickness h(x, y),
varying along two coordinate directions, in a rectangular coordinate system (the coordinate plane x Oy
is the mid-surface of the plate, 0 ≤ x ≤ a, 0 ≤ y ≤ b, −h/2 ≤ z ≤ h/2).

2A. Formulation of the problem within the framework of Kirchhoff theory. We assume that normals
to the plate mid-surface under deformation remain straight and perpendicular to this surface and that the
normal stresses on elemental areas, which are parallel to the mid-surface, are small and can be neglected.
Then, the equations of motion can be written [Lekhnitskii 1957; Varvak and Ryabov 1971] as

∂Qx

∂x
+
∂Q y

∂y
= ρh

∂2w

∂t2 ,
∂Mx

∂x
+
∂Mxy

∂y
= Qx ,

∂My

∂y
+
∂Mxy

∂x
= Q y, (2-1)

where x , y are the Cartesian coordinates (0 ≤ x ≤ a, 0 ≤ y ≤ b), t is time, w is the deflection of the plate,
ρ is the density of a material, and Qx and Q y are shear forces. The moments Mx , My , Mxy satisfy the
relations

Mx = −

(
D11

∂2w

∂x2 + D12
∂2w

∂y2

)
, My = −

(
D12

∂2w

∂x2 + D22
∂2w

∂y2

)
, Mxy = −2D66

∂2w

∂x∂y
, (2-2)

where the stiffness characteristics Di j of the plate are defined by Di j = Bi j h3(x, y)/12. Here B11 =

E1/(1 − ν1ν2), B12 = ν2 E1/(1 − ν1ν2)= ν1 E2/(1 − ν1ν2), B22 = E2/(1 − ν1ν2), B66 = G12, where E1,
E2, ν1, and ν2 are the elastic and shear moduli and Poisson’s ratios.

The system of equations in (2-1) and (2-2) yields an equivalent differential equation for the deflection:

D11
∂4w

∂x4 + D22
∂4w

∂y4 + 2(D12 + 2D66)
∂4w

∂x2∂y2 + 2
∂D11

∂x
∂3w

∂x3 + 2
∂D22

∂y
∂3w

∂y3

+ 2
∂

∂y
(D12 + 2D66)

∂3w

∂x2∂y
+ 2

∂

∂x
(D12 + 2D66)

∂3w

∂x∂y2

+

(∂2 D11

∂x2 +
∂2 D12

∂y2

)∂2w

∂x2 +

(∂2 D12

∂x2 +
∂2 D22

∂y2

)∂2w

∂y2 + 4
∂2 D66

∂x∂y
∂2w

∂x∂y
+ ρh

∂2w

∂t2 = 0. (2-3)

It is assumed that all points of the plate vibrate harmonically with a frequency ω, that is, w(x, y, t)=

ŵ(x, y)eiωt (the symbol ˆ is omitted hereafter).
Let us rearrange Equation (2-3) to the form

∂4w

∂x4 = a1
∂3w

∂x3 + a2
∂4w

∂x2∂y2 + a3
∂3w

∂x2∂y
+ a4

∂2w

∂x2 + a5
∂3w

∂x∂y2

+ a6
∂2w

∂x∂y
+ a7

∂4w

∂y4 + a8
∂3w

∂y3 + a9
∂2w

∂y2 + a10w, (2-4)
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where the coefficients ai = ai (x, y), i = 1, . . . , 9, a10 = a10(x, y, ω) are defined by

a1 = −
2

D11

∂D11

∂x
, a2 = −

2
D11

(D12 + 2D66), a3 = −
2

D11

(∂D12

∂y
+ 2

∂D66

∂y

)
,

a4 = −
2

D11

(∂2 D11

∂x2 +
∂2 D12

∂y2

)
, a5 = −

2
D11

(∂D12

∂x
+ 2

∂D66

∂x

)
, a6 = −

4
D11

∂2 D66

∂x∂y
,

a7 = −
D22

D11
, a8 = −

2
D11

∂D22

∂y
, a9 = −

2
D11

(∂2 D12

∂x2 +
∂2 D22

∂y2

)
, a10 =

ρ

D11
h(x, y)ω2.

Let us specify the boundary conditions expressed in terms of the deflection at the edges as x = 0,
x = a, y = 0, y = b. We will consider the following boundary conditions:

i) All edges are clamped (boundary conditions of type A):

w = 0,
∂w

∂y
= 0 at y = 0, y = b, w = 0,

∂w

∂x
= 0 at x = 0, x = a. (2-5)

ii) Three edges are clamped and the fourth one is simply supported (boundary conditions of type B):

w = 0,
∂w

∂y
= 0 at y = b, w = 0,

∂w

∂x
= 0 at x = 0, x = a, w = 0,

∂2w

∂y2 = 0 at y = 0,

or boundary conditions of type C:

w = 0,
∂w

∂y
= 0 at y = 0, y = b, w = 0,

∂w

∂x
= 0 at x = 0, w = 0,

∂2w

∂x2 = 0 at x = a.

iii) Two edges are clamped and two are simply supported (boundary conditions of type D):

w = 0,
∂w

∂y
= 0 at y = 0, w = 0,

∂2w

∂y2 = 0 at y = b,

w = 0,
∂w

∂x
= 0 at x = 0, w = 0,

∂2w

∂x2 = 0 at x = a,

(2-6)

or boundary conditions of type E:

w = 0,
∂w

∂y
= 0 at y = 0, y = b, w = 0,

∂2w

∂x2 = 0 at x = 0, x = a,

or boundary conditions of type G:

w = 0,
∂w

∂x
= 0 on x = 0, x = a, w = 0,

∂2w

∂x2 = 0 on y = 0, y = b. (2-7)

2B. Formulation of the problem within the framework of Mindlin’s theory. We suppose that the ele-
ment, which is initially normal to a coordinate surface in the undeformed state, remains rectilinear but
perpendicular to the deformable surface of the plate and turns by some angle keeping its length unchanged.
Also, the initial forces caused by the deflection of the element of the coordinate surface and by the turn of
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the normal element are taken into account. In keeping with this hypothesis, the displacements ux , u y, uz

can be written as

ux(x, y, z)= u(x, y)+zψx(x, y), u y(x, y, z)= v(x, y)+zψy(x, y), uz(x, y, z)=w(x, y). (2-8)

Here u, v, w are the displacements of the point of a median surface in the x, y, z-directions, respectively,
and ψx , ψy are the full rotation angles of the rectangular element. Then the relations for strains will be
defined by

ex(x, y, z)= εx(x, y)+ z~x(x, y), ey(x, y, z)= εy(x, y)+ z~y(x, y),

exy(x, y, z)= εxy(x, y)+ 2z~xy(x, y), exz(x, y, z)= γx(x, y), eyz(x, y, z)= γy(x, y),
(2-9)

where

εx =
∂u
∂x
, εy =

∂v

∂y
, εxy =

∂u
∂y

+
∂v

∂x
, ~x =

∂ψx

∂x
, ~y =

∂ψy

∂y
, 2~xy =

∂ψx

∂y
+
∂ψy

∂x
,

γx = ψx − θx , γy = ψy − θy, θx = −
∂w

∂x
, θy = −

∂w

∂y
.

(2-10)

In equations (2-9) and (2-10), εx , εy, εxy are tangential strains of a median surface, ~x , ~y, ~z are bending
strains, θx , θy are rotation angles of the normal without considering the transversal shears, and γx , γy are
rotation angles of the normal caused by the transversal shears.

The equations describing natural bending vibrations of the plate can be written as follows:

∂Qx

∂x
+
∂Q y

∂y
=ρh

∂2w

∂t2 ,
∂Mx

∂x
+
∂Mxy

∂y
−Qx =ρ

h3

12
∂2ψx

∂t2 ,
∂My

∂y
+
∂Mxy

∂x
−Q y =ρ

h3

12
∂2ψy

∂t2 . (2-11)

It is assumed that all points of the plate vibrate harmonically with a frequency ω that is w(x, y, t) =

ŵ(x, y)eiωt , ψx(x, y, t) = ψ̂x(x, y)eiωt , ψy(x, y, t) = ψ̂y(x, y)eiωt (the symbol ˆ is omitted hereafter).
in (2-11) ρ is the density of a material, h = h(x, y) is the plate thickness. The moments Mx ,My,Mz

and shear forces Qx and Q y satisfy the elasticity relations

Mx = D11~x + D12~y, My = D22~y + D12~x , Mxy = 2D66~xy, Qx = K1~x , Q y = K1~y, (2-12)

which are valid for the orthotropic plate whose orthotropy axes coincide with coordinate axes. In (2-12),
the stiffness characteristics Ki and Di j are defined by the formulas

K1 =
5
6 h(x, y)G13, K2 =

5
6 h(x, y)G23, Di j =

Bi j h3(x, y)
12

, B11 =
E1

1 − ν1ν2
,

B12 =
ν2 E1

1 − ν1ν2
=

ν1 E2

1 − ν1ν2
, B22 =

E2

1 − ν1ν2
, B66 = G12.

Here Ei , Gi j , and νi are the Young’s and shear moduli and Poisson’s ratios, respectively. Having intro-
duced the notation w̃ = ∂w/∂x , ψ̃x = ∂ψx/∂x , and ψ̃y = ∂ψy/∂x , we can write the resolving equations
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for functions w, w̃, ψx , ψ̃x , ψy , and ψ̃y as

∂w

∂x
= w̃,

∂ψx

∂x
= ψ̃x ,

∂ψy

∂x
= ψ̃y,

∂w̃

∂x
= a11w+ a12

∂w

∂y
+ a13

∂2w

∂y2 + a14w̃+ a15ψx + a16ψ̃x + a17ψy + a18
∂ψy

∂y
,

∂ψ̃x

∂x
= a21w̃+ a22ψx + a23

∂ψx

∂y
+ a24

∂2ψx

∂y2 + a25ψ̃x + a26
∂ψy

∂y
+ a27ψ̃y + a28

∂ψ̃y

∂y
,

∂ψ̃x

∂x
= a31

∂w

∂y
+ a32

∂ψx

∂y
+ a33ψ̃x + a34

∂ψ̃x

∂y
+ a35ψy + a36

∂ψy

∂y
+ a37

∂2ψy

∂y2 + a38ψ̃y .

(2-13)

The coefficients ai j in system (2-13) are

a11 = −
ρhω2

K1
, a12 = a17 = −

1
K1

∂K2

∂y
, a13 = a18 = −

K2

K1
, a14 = a15 = −

1
K1

∂K1

∂x
, a16 = −1,

a21 =
K1

D11
, a22 =

1
D11

(
K1 − ρ

h3

12
ω2), a23 = a27 = −

1
D11

∂D66

∂y
,

a24 = −
D66

D11
, a25 = −

1
D11

∂D11

∂x
, a26 = −

1
D11

∂D12

∂x
, a28 = −

( D12 + D66

D11

)
,

a31 =
K2

D66
, a32 = a38 = −

1
D66

∂D66

∂x
, a33 = −

1
D66

∂D12

∂y
, a34 = −

( D12 + D66

D66

)
,

a35 =
1

D66

(
K2 − ρ

h3

12
ω2), a36 = −

1
D66

∂D22

∂y
, a37 = −

D22

D66
.

The resolving equations should be supplemented with boundary conditions at the plate edges x = 0,
x = a, y = 0, and y = b. We will consider the following boundary conditions:

i) All edges are clamped (boundary conditions of type A):

w = 0, ψx = 0, ψy = 0 at y = 0, y = b, x = 0, x = a. (2-14)

ii) Three edges are clamped, the fourth is simply supported (boundary conditions of type B):

w = 0, ψx = 0, ψy = 0 at y = 0, y = b, x = 0, w = 0,
∂ψx

∂x
= 0, ψy = 0 at x = a. (2-15)

iii) Two edges are clamped, the other two are simply supported (boundary conditions of type C):

w = 0, ψx = 0, ψy = 0 at x = 0, x = a, w = 0, ψx = 0,
∂ψy

∂y
= 0 at y = 0, y = b. (2-16)

iv) All edges are simply supported (boundary conditions of type D):

w = 0,
∂ψx

∂x
= 0, ψy = 0 at x = 0, x = a, w = 0, ψx = 0,

∂ψy

∂y
= 0 at y = 0, y = b. (2-17)
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3. Solution method

To solve problems (2-4) and (2-13) with the corresponding boundary conditions, the spline-collocation,
discrete-orthogonalization, and step-by-step search methods were used.

3A. Spline-approximation. We will search for the solution of Equation (2-4) by the Kirchhoff theory
in the form

w =

N∑
i=0

wi (x)ψi (y), (3-1)

where wi (x) (i = 1, . . . , N ) are unknown functions and ψi (y) are the functions constructed using quintic
B-splines (N > 6).

The functions ψi (y) are selected in order to satisfy the boundary conditions for y = const using the
linear combinations of B-splines

ψ0(y)= α11 B−2
5 (y)+α12 B−1

5 (y)+ B0
5 (y),

ψ1(y)= α21 B−1
5 (y)+α22 B0

5 (y)+ B1
5 (y),

ψ2(y)= α31 B−2
5 (y)+α32 B0

5 (y)+ B2
5 (y),

ψi (y)= Bi
5(y), i = 3, 4, . . . , N − 3,

ψN−2(y)= β31 B N+2
5 (y)+β32 B N

5 (y)+ B N+2
5 (y),

ψN−1(y)= β21 B N+1
5 (y)+β22 B N

5 (y)+ B N−1
5 (y),

ψN (y)= β11 B N+2
5 (y)+β12 B N+1

5 (y)+ B N
5 (y),

where ψi (y)= Bi
5(y) (i = −2, . . . , N + 2, i is the spline number) are splines constructed on a uniform

mesh 1 with a spacing h y : y−5 < y−4 < . . . < yN < yN+5 < . . . < yN+5, y0 = 0, yN = b,

Bi
5(y)=

1
120



0 at − ∞< y < yi−3,

z5 at yi−3 ≤ y < xi−2,

−5z5
+ 5z4

+ 10z3
+ 10z2

+ 5z + 1 at yi−2 ≤ y < yi−1,

10z5
− 20z4

− 20z3
+ 20z2

+ 50z + 26 at yi−1 ≤ y < yi ,

−10z5
+ 30z4

− 60z2
+ 66 at yi ≤ y < yi+1,

5z5
− 20z4

+ 20z3
+ 20z2

− 50z + 26 at yi+1 ≤ y < yi+2,

(1 − z)5 at yi+2 ≤ y < yi+3,

0 at yi+3 ≤ y <∞,

where z = (y − yk)/h y on the interval [yk, yk+1], k = i − 3, i + 2, i = −3, N + 2, h y = yk+1 − yk =

const, αi j , and βi j (i = 1, 2, 3, j = 1, 2) are constant coefficients that depend on the specified boundary
conditions at y = 0 and y = b, respectively.

Let

Aα =

 α11 α12

α21 α22

α31 α32

 , Aβ =

 β11 β12

β21 β22

β31 β32

 .
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Then, for edges y = 0, y = b we have

Aα = Aβ =


165
4 −

33
8

1 −
26
33

1 −
1
33


if the edges y = 0 and y = b are clamped,

Aα = Aβ =

 12 −3
−1 0
−1 0


if those edges are simply supported, and

Aα =


165
4 −

33
8

1 −
26
33

1 −
1

33

 , Aβ =

 12 −3
−1 0
−1 0


if the edge y = 0 is clamped and the edge y = b is simply supported. Now we rewrite Equation (2-4) as

∂4w

∂x4 = a1
∂3w

∂x3 + a2
∂4w

∂x2∂y2 + a3
∂3w

∂x2∂y
+ a4

∂2w

∂x2

+ a5
∂3w

∂x∂y2 + a6
∂2w

∂x∂y
+ a7

∂4w

∂y4 + a8
∂3w

∂y3 + a9
∂2w

∂y2 + a10w, (3-2)

where ai = ai (x, y), i = 1, 2, . . . , 9, a10 = a10(x, y, ω).
Substituting (3-1) into (3-2), we will require that the equation should be satisfied at given collocation

points ξk ∈ [0, b] for k = 0, N . Let us consider the case where the number of mesh nodes is even, that is,
N = 2n +1, (n ≥ 3), and the collocation nodes satisfy the conditions ξ2i ∈ [y2i , y2i+1], ξ2i+1 ∈ [y2i , y2i+1]

with i = 0, 1, . . . , n. The interval [y2i , y2i+1] has two collocation points and the adjacent intervals
[y2i+1, y2i+2] do not have such points. Within the intervals [y2i+1, y2i+2], the collocation points are
selected as follows: ξ2i = x2i + z1h y , ξ2i+1 = y2i + z2h y with i = 0, 1, 2, . . . , n, where z1 and z2 are the
roots of the quadratic Legendre polynomial, equal to z1 = 1/2 −

√
3/6, z2 = 1/2 +

√
3/6 on the interval

[0, 1]. Such collocation points are optimal and the accuracy of the approximation substantially increases.
As a result, we obtain a system of N + 1 linear differential equations for wi . If 9 j = [ψ

( j)
i (ξk)] with

k, i = 0, . . . , N , j = 0, . . . , 4, w̄ = {w0, w1, . . . , wN }
T , āT

r = {ar (x, ξ0), ar (x, ξ1), . . . , ar (x, ξN )} for
r = 1, . . . , 9, āT

10 = {a10(x, ξ0, ω), a10(x, ξ1, ω), . . . , a10(x, ξN , ω)}, and c̄ ∗ A denotes the matrix [ci ai j ],
where vector c̄ = {c0, c1, . . . , cN }

T and A = [ai j ] with i, j = 0, . . . , N , then the system of differential
equations becomes

w̄ I V
=9−1

0 (ā794 + ā893 + ā992 + ā109)w̄+9−1
0 (ā592 + ā691)w̄

′

+9−1
0 (ā293 + ā391 + ā490)w̄

′′
+9−1

0 (ā190)w̄
′′′.

This system can be normalized:

dȲ
dx

= A(x, ω)Ȳ (0 ≤ x ≤ a), (3-3)
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where

Ȳ =
{
w1, w2, . . . , wN+1, w

′

1, w
′

2, . . . , w
′

N+1, w
′′

1 , w
′′

2 , . . . , w
′′

N+1, w
′′′

1 , w
′′′

2 , . . . , w
′′′

N+1
}T
,

where w(I )K = w(I )(x, ξK ) with K = 1, . . . , N + 1, I = 1, 2, 3 and A(x, ω) is the square matrix of order
(N + 1)× (N + 1).

The boundary conditions for this system can be expressed as

B1Ȳ (0)= 0̄, B2Ȳ (a)= 0̄. (3-4)

To solve the problem using Mindlin’s theory, we will present the resolving functions in the form:

w(x, y)=

N∑
i=0

wi (x)ϕ1i (y), ψx =

N∑
i=0

ψxi (x)ϕ1i (y), ψy =

N∑
i=0

ψyi (x)ϕ2i (y), (3-5)

where wi , ψxi , ψyi are the searched functions of the variable X and ϕi j (y) with j = 1, 2, i = 0, 1, . . . , N
are the linear combinations of B-splines on the uniform mesh 1: 0 = y0 < y1 < . . . < yN = b with
allowance for boundary conditions at y = 0 and y = b. The system (2-13) includes derivatives of the re-
solving functions with respect to the coordinate y not greater than the second order. Thus, approximation
by spline functions of the third power can be employed, leading to

Bi
3(y)=

1
6



0 at − ∞< y < yi−2,

z3 at yi−2 ≤ y < yi−1,

−3z3
+ 3z2

+ 3z + 1 at yi−1 ≤ y < yi ,

3z3
− 6z2

+ 4 at yi ≤ y < yi+1,

(1 − z)3 at yi+1 ≤ y < yi+2,

0 at yi+2 ≤ y <∞,

(3-6)

where z = (y − yk)/h y on the interval [yk, yk+1], k = i − 2, i + 1, i = −1, N + 1, h y = yk+1 − yk = const.
In this case, the functions ϕ j i (y) are formed as follows:

i) If the resolving function is equal to zero, then

ϕ j0(y)= −4B−1
3 (y)+ B0

3 (y), ϕ j1(y)= B−1
3 (y)− 1

2 B0
3 (y)+ B1

3 (y),

ϕ j i (y)= Bi
3(y), (i = 2, 3, . . . , N − 2).

(3-7)

ii) If the derivative of the resolving function with respect to y is zero, then

ϕ j0(y)= B0
3 (y), ϕ j1(y)= B−1

3 (y)− 1
2 B0

3 (y)+B1
3 (y), ϕ j i (y)= Bi

3(y), (i = 2, 3, . . . , N −2). (3-8)

Similar formulas hold for the functions ϕ j,N−1(y) and ϕ j,N (y).
Functions ϕ1i (y) (to define w(x, y) and ψx(x, y)), as applied to the boundary conditions at the plate

edges y = 0, y = b being considered in the present paper, were selected in accordance with relation (3-6),
because for hinge supporting and clamping w = ψx = 0. In this case, the function ϕ2i (y) was chosen
depending on the type of specified boundary conditions or in the form of linear combination of B-splines
(3-6) or (3-7).

Substituting (3-5) into equations (2-13), we will require that they are satisfied at the prescribed
collocation points ξk ∈ [0, b] for k = 0, N . The selection of the collocation points ξ2i ∈ [y2i , y2i+1],
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ξ2i+1 ∈[y2i , y2i+1], (i =0, 1, . . . , n) in the form ξ2i = y2i +z1h y , ξ2i+1 = y2i +z2h y with i =0, 1, 2, . . . , n,
where z1 = 1/2 −

√
3/6 and z2 = 1/2 +

√
3/6 are the roots of the second-order Legendre polynomials

in the segment [0, 1], is optimal. Due to this selection the accuracy of the approximation increases
essentially. As a result, we obtain the system of 6(N + 1) linear differential equations with respect to
functions wi , w̃i , ψxi , ψ̃xi , ψyi , ψ̃yi with i = 0, . . . , N . Having adopted the notations

8 j = [ϕ j i (ξk)], k, i = 0, . . . , N , j = 1, 2,

w̄ =
{
w0, w1, . . . , wN

}T , ¯̃w =
{
w̃0, w̃1, . . . , w̃N

}T ,

ψ̄x =
{
ψx0, ψx1, . . . , ψx N

}T
, ¯̃ψx =

{
ψ̃x0, ψ̃x1, . . . , ψ̃x N

}T ,

ψ̄y =
{
ψy0, ψy1, . . . , ψyN

}T
, ¯̃ψy =

{
ψ̃y0, ψ̃y1, . . . , ψ̃yN

}T ,

āT
kl =

{
akl(x, ξ0), akl(x, ξ1), . . . , akl(x, ξN )

}
,

(k, l) ∈
{
(k, l)

∣∣ k = 1, 2, 3; l = 1, . . . , 8
}
\
{
(1, 1), (2, 2), (3, 5)

}
,

āT
11 = {a11(x, ξ0, ω), a11(x, ξ1, ω), . . . , a11(x, ξN , ω)},

āT
22 = {a22(x, ξ0, ω), a22(x, ξ1, ω), . . . , a22(x, ξN , ω)},

āT
35 = {a35(x, ξ0, ω), a35(x, ξ1, ω), . . . , a35(x, ξN , ω)},

as well as c̄ ∗ A = [ci ai j ] for an N × N matrix A = [ai j ] and a vector c̄ = {c0, c1, . . . , cN }
T , we can

express the system of ordinary differential equations with respect to w̄, ¯̃w, ψ̄x , ¯̃ψx , ψ̄y, ¯̃ψy as

dw̄
dx

= ¯̃w,
dψ̄x

dx
= ¯̃ψx ,

dψ̄y

dy
= ¯̃ψy,

d ¯̃w

dx
=8−1

1 (ā1181 + ā128
′

1 + ā138
′′

1 + ā1481)w̄+8−1
1 (ā1581)ψ̄x

+8−1
1 (ā1681) ¯̃ψx +8−1

1 (ā1782 + ā188
′

2)ψ̄y,

d ¯̃ψx

dx
=8−1

1 (ā2181) ¯̃w+8−1
1 (ā2281 + ā238

′

1 + ā248
′′

1)ψ̄x +8−1
1 (ā2581)ψ̄x

+8−1
1 (ā268

′

2)ψ̄y +8−1
1 (ā2782 + ā288

′

2)
¯̃ψy,

d ¯̃ψy

dy
=8−1

2 (ā318
′

1)w̄+8−1
2 (ā328

′

1)ψ̄x +8−1
2 (ā3381 + ā348

′

1)
¯̃ψx

+8−1
2 (ā3582 + ā368

′

2 + ā378
′′

2)ψ̄y +8−1
2 (ā3882) ¯̃ψy,

and can be written in the form
dȲ
dx

= A(x, ω)Ȳ , (3-9)

where Ȳ =
{
w0, . . . wN , w̃0, . . . , w̃N , ψx0, . . . , ψx N , ψ̃xo, . . . , ψ̃x N , ψy0, . . . , ψyN , ψ̃y0, . . . , ψ̃yN

}T is
a vector function of x and A(x, ω) is a 6(N+1)× 6(N+1) quadratic matrix. The boundary conditions
for this system can be written as

B1Ȳ (0)= 0̄, B2Ȳ (a)= 0̄. (3-10)
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To solve the eigenvalue problems for the systems of ordinary differential equations with variable co-
efficients (3-3), (3-4), (3-9), and (3-10), we will use the stable numerical method of discrete-orthogo-
nalization coupled with the step-by-step search method, which makes it possible to obtain the desired
solutions with a high degree of accuracy [Grigorenko et al. 1986]. Let us consider in detail the basic
principles of the method of discrete orthogonalization.

3B. Method of discrete orthogonalization. Let us consider the linear system of differential equations
in the Cauchy normal form

dȲ
dx

= A(x, ω)Ȳ (x), 0 ≤ x ≤ a (3-11)

with boundary conditions
B1Ȳ (0)= 0̄, (3-12)

B2Ȳ (a)= 0̄, (3-13)

where Ȳ = {y1, y2, . . . , yn}
T is the vector-column, A(x, ω) is the n-order quadratic matrix, and B1 and

B2 are matrixes of the order k × n and (n − k)× n (k < n), respectively.
The boundary-value problem (3-11)–(3-13) was solved by the step-by-step search method coupled

with the method of discrete orthogonalization. At the fixed frequency ω the solution of the problem is
reduced to the form

Ȳ (x)=

m∑
j=1

C j Ȳ j (x), (3-14)

where m = min{k, n − k} (for the sake of definiteness m = n − k), Ȳ j are the solutions of the Cauchy
problems for the system of equations (3-11) with initial conditions which satisfy the boundary condition
(3-12) on the left end of the interval [0, a], and m is the number of boundary conditions on the right end
of the interval of integration.

Let us present the boundary conditions (3-12) at the point x = 0 in detail:

b11 y1 + b12 y2 + · · · + b1k yk + b1,k+1 yk+1 + · · · + b1n yn = 0,

b21 y1 + b22 y2 + · · · + b2k yk + b2,k+1 yk+1 + · · · + b2n yn = 0,
...

bk1 y1 + bk2 y2 + · · · + bkk yk + bk,k+1 yk+1 + · · · + bkn yn = 0.

(3-15)

Assuming that the coefficients of the first k columns in (3-15) form a nonsingular matrix, we transfer the
rest of the columns to the right-hand side. Then conditions (3-15) take the form

b11 y1 + b12 y2 + · · · + b1k yk = −b1,k+1 yk+1 − · · · − b1n yn,

b21 y1 + b22 y2 + · · · + b2k yk = −b2,k+1 yk+1 − · · · − b2n yn,

...

bk1 y1 + bk2 y2 + · · · + bkk yk = −bk,k+1 yk+1 − · · · − bkn yn.

(3-16)
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Then, setting the components yk+1, yk+2,. . . , yn equal to the columns of a unit matrix, we obtain the initial
conditions for Ȳ j with j = 1, 2, . . . ,m. The Cauchy problems with corresponding initial conditions
can be solved by the Runge–Kutta method, for example. The numerical integration is performed in
combination with the orthonormalization of vectors Ȳ j ( j = 1, 2, . . . ,m) at a finite number of points on
the interval of change of argument that provides a stable calculation process.

Let us divide the interval [0, a] by integration points xs with s = 0, 1, . . . , N into small segments
so that x0 = 0 and xN = a. Among these points we choose the points of orthogonalization X i with
i = 0, 1, . . . ,M . The choice of points of orthogonalization depends only on the necessary accuracy of
the problem solution. Assume that solutions to the Cauchy problems, which we will designate as Ȳr (X i )

with r = 1, 2, . . . ,m, have been obtained at the points X i using some numerical method. We perform
the orthonormalization of the vectors Ȳr (X i ) at the points X i and denote the resulting vectors by Z̄r (X i ).
We have

Z̄r =
1
wrr

(
Ȳr −

r−1∑
j=1

wr j Z̄ j

)
, r = 1, 2, . . . ,m, (3-17)

where

wr j = (Ȳr, Z̄ j ) ( j < r), wrr =

√
(Ȳr , Z̄r )−

r−1∑
j=1
w2

r j .

According to (3-17), at x = X i we have

w11 Z̄1 = Ȳ1, w22 Z̄2 = Ȳ2 −w21 Z̄1, . . . wmm Z̄m = Ȳm −wm1 Z̄1 −wm2 Z̄2 − · · · −wm,m−1 Z̄m−1.

(3-18)
Having transformed (3-18), we obtain the matrix equality

Ȳ1(X i )

Ȳ2(X i )

...

Ȳm(X i )

 =�i


Z̄1(X i )

Z̄2(X i )

...

Z̄m(X i )

 , (3-19)

where

�i =�(X i )=



w11(X i ) 0 0 0 . . . 0
w21(X i ) w22(X i ) 0 0 . . . 0
w31(X i ) w32(X i ) w33(X i ) 0 . . . 0

...
...

...
...

...

wm−1,1(X i ) wm−1,2(X i ) wm−1,3(X i ) wm−1,4(X i ) . . . 0
wm1(X i ) wm2(X i ) wm3(X i ) wm4(X i ) . . . wmm(X i )


. (3-20)

The vectors Z̄r (X i ), with r = 1, 2, . . . ,m, are the initial values of the Cauchy problems for the system
of differential equations (3-11) on the interval X i ≤ x ≤ X i+1.

Solutions of the system (3-11), which satisfy the boundary conditions on the left end of the interval
(3-12), can be written at each point X of discrete orthogonalization in the form of two expressions: prior
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to orthogonalization

Ȳ (X i )=

m∑
j=1

C (i−1)
j Ȳ j (X i ), (3-21)

and upon orthogonalization

Ȳ (X i )=

m∑
j=1

C (i)
j Z̄ j (X i ). (3-22)

We represent the solution of system (3-11) on the interval X i ≤ X ≤ X i+1 as

Ȳ (x)=

m∑
j=1

C (i)
j Z̄ j (x). (3-23)

Having integrated the initial system of equations on the last interval X M−1 ≤ X ≤ X M and having
performed the orthogonalization at point X M by formula (3-17), we obtain

Ȳ (X M)=

m∑
j=1

C (M)
j Z̄ j (X M). (3-24)

Satisfying the boundary conditions on the right end of the integration interval, that is, substituting equa-
tion (3-24) into (3-13), we obtain the uniform system of m linear algebraic equations relative to C (M)

j
with j = 1, 2, . . . ,m. In order for the nontrivial solution of the boundary-value problem (3-11) and
(3-12) to exist, it is necessary and sufficient to set the determinant D(ω) of the system,

B2

m∑
j=1

C (M)
j Z̄ j (X M)= 0, (3-25)

equal to zero, that is,
D(ω)= 0. (3-26)

In this case, the determinant may be calculated, for example, by the Gauss method. Condition (3-26)
is nonlinear with respect to the parameter ω. Because the solution of the boundary-value problem is a
continuous function, the dependency D(ω) is also a continuous function. To solve the nonlinear equation
(3-26), we can use, for example, Newton’s method or the method of chords. However, these methods may
be inefficient, if the initial approximation is chosen improperly. In this case, the use of the step-by-step
method for searching the interval of the change in sign of function D(ω) would be more advantageous.
Having determined the interval where the sign changes, we can find the frequency with the necessary
accuracy using, for instance, the method of chords or a binary search. To determine the eigenmodes, it
is necessary to define the approximate value of C M

j using the largest minor of the matrix of the system
of linear equations.

In what follows, the values of C i−1
j may be determined by values C i

j with j = 1, 2, . . . ,m beginning
with i = M . To this end, we equate the right-hand sides of (3-22) and (3-23):

m∑
j=1

C (i−1)
j Ȳ j (X i )=

m∑
j=1

C (i−1)
j Z̄ j (X i ). (3-27)
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Substituting Ȳ j from (3-19) for x = X i we find

C (i−1)
1 w11 z̄1 + C (i−1)

2 (w21 z̄1 +w22 z̄2)+ C (i−1)
3 (w31 z̄1 +w32 z̄2 +w33 z̄3)+ · · ·

. . .+ C (i−1)
m (wm1 z̄1 +wm2 z̄2 + · · · +wmm z̄m)= C (i)

1 z̄1 + C (i)
2 z̄2 + · · · + C (i)

m z̄m . (3-28)

Equating of the coefficients for vectors Z̄ j for j = 1, 2, . . . ,m + 1 in (3-28), we obtain

�′

i C̄
(i−1)

= C̄ (i), (i = 1, 2, . . . ,M)

or

C̄ (i−1)
= [�′

i ]
−1C̄ (i), (3-29)

where �′

i is the transposed matrix (3-20), C̄ (i) is the vector-column with components C (i)
1 , C (i)

2 ,. . . , C (i)
m .

So, using Equation (3-29), we may find C (i)
j at all points beginning with i = M . The eigenshapes of

Ȳ (X i ) can be obtained using the formula (3-23) as a solution of the boundary-value problem.

4. Analysis of results

Based on the proposed techniques, the natural vibrations of square and rectangular plates of varying
thickness were investigated under different boundary conditions at the edges.

4A. Investigation of the natural vibrations of plates using Kirchhoff theory. Let’s analyze the natural
vibrations of a square plate whose thickness varies as h(x)= [α(6x2

− 6x + 1)+ 1]h0 (Figure 1).
The plate material is orthotropic glass-fabric-reinforced plastic with Young’s moduli E1 = 4.76 ·

104 MPa and E2 = 2.07 · 104 MPa, shear modulus G12 = 0.531 · 104 MPa, and Poisson’s ratios ν1 =

0.149, ν2 = 0.0647. The dimensionless frequencies ω̄ = ωa2(ρh0/D0)
1/2 with D0 = h3

0/12 · 104 MPa
of the clamped plate as determined by Kirchhoff theory with different numbers of collocation points
(N = 10, 12, 14, 16, 18, 20, 22) differ a little (Table 1).

x 

z 

0 a 

0.5(1+α)h
0
 

0.5(1−0.5α)h
0
 

α>0 

0.5(1−0.5α)h
0
 

0.5(1+α)h
0
 

0 x 

z α<0 

Figure 1. Plate cross-sections for α > 0 (left) and α < 0 (right).
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Tables 2 and 3 collect the dimensionless frequencies (i = 1, 2, 3) (ordered by value) of an orthotropic
square plate (Kirchhoff theory) for α ≤ 0 and α > 0, respectively, under the boundary conditions (2-5)–
(2-7). The number of collocation points is N = 10.

α ω̄i
N

10 12 14 16 18 20 22

0 ω̄1 61.139 61.132 61.129 61.127 61.127 61.127 61.127
0 ω̄2 107.188 107.066 107.016 106.994 106.982 106.976 106.972
0 ω̄3 142.550 142.537 142.532 142.530 142.529 142.528 142.528

0.3 ω̄1 62.108 62.102 62.099 62.099 62.098 62.098 62.098
0.3 ω̄2 97.737 97.637 97.598 97.580 97.570 97.566 97.562
0.3 ω̄3 145.289 145.276 145.271 145.269 145.268 145.268 145.267

Table 1. Values of the dimensionless frequency parameter ω̄ = ωa2(ρh0/D0)
1/2, D0 =

(h3
0/12) · 104 MPa for a clamped orthotropic square plate with different number of collo-

cation points.

Boundary condition ω̄i
α

−0.5 −0.4 −0.3 0.2 −0.1 0

ω̄1 58.375 59.012 59.605 60.159 60.674 61,139
A ω̄2 121.526 119.010 116.240 113.311 110.281 107.188

ω̄3 124.339 129.656 134.030 137.585 140.405 142.550

ω̄1 50.227 51.605 52.905 54.129 55.270 56.320
B ω̄2 102.334 100.723 98.953 97.083 95.147 93.166

ω̄3 121.396 126.863 131.384 135.083 138.045 140.330

ω̄1 52.733 52.211 51.624 50.995 50.337 49.659
C ω̄2 109.151 112.403 110.490 107.334 104.080 100.783

ω̄3 116.222 113.496 114.497 116.613 117.777 118.403

ω̄1 43.939 44.009 43.998 43.923 43.790 43.607
D ω̄2 97.299 95.178 92.905 90.549 88.155 85.755

ω̄3 105.958 109.322 111.879 113.750 115.019 115.748

ω̄1 48.701 47.412 46.059 44.676 43.289 41.918
E ω̄2 95.664 97.177 97.994 98.235 97.985 96.671

ω̄3 113.313 110.306 107.049 103.676 100.170 97.306

ω̄1 45.045 49.929 48.698 50.354 51.893 53.306
F ω̄2 85.738 85.046 84.248 83.378 82.453 81.479

ω̄3 119.425 124.989 129.605 133.396 136.448 138.819

Table 2. Effect of thickness variation on the frequency parameter of the Kirchhoff
square plate with different boundary conditions (α ≤ 0).
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Boundary condition ω̄i
α

0 0.1 0.2 0.3 0.4 0.5

ω̄1 61.139 61.542 61.871 62.108 62.237 62.238
A ω̄2 107.188 104.058 100.904 97.737 94.557 91.364

ω̄3 142.550 144.062 144.968 145.289 145.035 144.212

ω̄1 56.320 57.266 58.095 58.791 59.339 59.724
B ω̄2 93.166 91.149 89.104 87.026 84.911 82.749

ω̄3 140.330 141.977 143.017 143.469 138.723 131.720

ω̄1 49.659 48.965 48.257 47.535 46.801 46.05
C ω̄2 100.783 97.477 94.187 90.928 87.713 84.546

ω̄3 118.403 118.535 118.208 117.477 116.269 114.688

ω̄1 43.607 43.376 43.098 42.774 42.402 41.982
D ω̄2 85.755 83.369 81.013 78.694 76.420 74.190

ω̄3 115.748 115.981 115.752 115.085 113.998 112.506

ω̄1 41.918 40.583 39.297 38.077 36.933 35.878
E ω̄2 96.671 93.185 89.743 86.364 83.065 79.858

ω̄3 97.306 96.249 94.852 93.149 91.160 88.934

ω̄1 53.306 54.586 55.718 56.642 57.495 58.109
G ω̄2 81.479 80.460 79.389 78.258 77.055 75.765

ω̄3 138.819 140.291 134.815 129.283 123.717 118.135

Table 3. Effect of thickness variation on the frequency parameter of square Kirchhoff
plates with different boundary conditions (α > 0).

Figure 2 on the next two pages shows the dimensionless vibration frequencies ω̄i of a square or-
thotropic plate with different boundary conditions as a function of the parameter α. The maximum and
minimum frequencies ω̄2 and ω̄3 correspond to a reorganization of the vibration modes. The frequency
of the clamped plate is maximal among all frequencies computed for different boundary conditions and
values of α. The first frequency for the boundary conditions of type D changes weakly in comparison
with other boundary conditions. The modes of the natural vibrations of a plate with boundary conditions
of type G are presented in Figure 3.

4B. Studying the natural vibrations of plates based on Mindlin’s theory. To evaluate the accuracy of
the technique proposed, we analyze the dimensionless vibration frequencies ω̄ = (ωa2/π2)

√
ρh0/D

of an isotropic square constant-thickness plate, collected in Table 4, for the edge length a, ν = 0.3,
h0/a = 0.1. Here the results calculated by Mindlin’s and the three-dimensional theories [Liew and Teo
1999] using the various approaches of determining the frequencies as applied to the simply supported
edges y = 0, y = a are presented. In the case of Mindlin’s theory, we used the proposed approach with
16 collocation points. The solution is searched for by application of the trigonometric functions

w = ŵ(x) sin
mπy

a
, ψx = ψ̂x(x) sin

mπy
a
, ψy = ψ̂y(x) cos

mπy
a
, (4-1)
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Figure 2. Dimensionless vibration frequencies ω̄1 (top) and ω̄2 (bottom) for the Kirch-
hoff square orthotropic plate with different boundary conditions as a function of α. The
corresponding graphs for ω̄3 are shown on the next page.
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Figure 2, continued.

followed by the discrete-orthogonalization method. Application of the proposed technique yields small
differences between the second and third frequencies corresponding to one half-wave in one coordinate
direction and two half-waves in the other. Mindlin’s theory gives lower frequencies in comparison with
those obtained by the spatial theory.

Based on Mindlin’s theory and the proposed technique, we studied the spectrum of natural vibrations
of a square (0 ≤ x ≤ a, 0 ≤ y ≤ a) orthotropic plate (the material is a glass-fabric-reinforced composite
with Young’s moduli E1 = 4.76 ·104 MPa and E2 = 2.07 ·104 MPa, shear modulus G12 = 0.531 ·104 MPa,
G13 = 0.501 · 104 MPa, G23 = 0.434 · 104 MPa and Poisson’s ratios ν1 = 0.149, ν2 = 0.0647) for a

ω̄
Three-dimensional theory Mindlin’s theory

[Bhat et al. 1990] Spline-collocation method By expansion (4-1)

ω̄1 1.9342 1.9320 1.9320
ω̄2 4.6222 4.6073 4.6073
ω̄3 4.6222 4.6074 4.6073
ω̄4 7.1030 7.0818 7.0717
ω̄5 8.6617 8.6153 8.6153

Table 4. Comparison of frequency parameters calculated for the isotropic square plate
of constant thickness with simply supported edges using different theories and methods.
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Figure 3. Natural vibration modes of the Kirchhoff orthotropic plate with boundary
conditions of type G.

thickness given by the law

h(x)=

[
α
(

6 x2

a2 − 6 x
a

+ 1
)

+ 1
]
h0. (4-2)

In this case the weight of the plate is independent of α.
To evaluate the accuracy of the proposed technique as applied to plates of varying thickness, we will

consider the plate with the boundary conditions (2-7). In this case the solution of the problem may
be presented in the form of Equations (4-1). Table 5 collects the values of dimensionless vibration
frequencies ω̄ = ωa2

0(ρh0/D0)
1/2 (D0 = h3

0 · 104 MPa, h0 = a0 = 1 m) for an orthotropic plate with
h0/a = 0.1, α = 0.4 with and without the use of splines for different numbers of collocation points. It
should be noted that the convergence of the method is faster for modes with one half-wave in the OY -
direction (ω̄1, ω̄3). To reach the desired accuracy, if the number of half-waves increases (ω̄2, ω̄5 are two
half-waves, ω̄4 is three half-waves), it is necessary to increase the number of collocation points.
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ω̄ Without splines
Using splines

N=9 N=11 N=13 N=15 N=17 N=19

ω̄1 0.1469 0.1469 0.1469 0.1469 0.1469 0.1469 0.1469
ω̄2 0.2039 0.2065 0.2052 0.2046 0.2043 0.2041 0.2040
ω̄3 0.2959 0.2959 0.2959 0.2959 0.2959 0.2959 0.2959
ω̄4 0.3218 0.3356 0.3286 0.3255 0.3240 0.3232 0.3227
ω̄5 0.3405 0.3419 0.3411 0.3408 0.4307 0.3406 0.3405

Table 5. Comparison of frequency parameters calculated for the isotropic square plate
of constant thickness with and without splines for various numbers of collocation points.

Table 6 presents the three first vibration frequencies of a square orthotropic plate (h/a = 0.1) for
the above-mentioned stiffness coefficients and the law of thickness distribution (4-2) for different values
of the parameter α and boundary conditions (2-6)–(2-8) at the ends. The results were obtained from
Mindlin’s theory. The frequency of plates with all edges being clamped is largest for the boundary
conditions under consideration and different values of α. The computations we carried out make it
possible to analyze the effect of variance in thickness (with the weight of the plate being constant) and
the type of boundary conditions on the distribution of dynamic characteristics of the orthotropic plate
within the framework of the applied theory.

Table 7 collects vibration frequencies ω̄ = a2ω
√
ρh0/D0, D0 = h3

0 · 104 MPa for a square plate,
calculated by Kirchhoff’s theory and Mindlin’s theory. The plate made from an orthotropic material
with the parameters mentioned above and thickness varying according to (4-2).

Boundary condition ω̄i
α

−0.2 −0.1 0 0.1 0.2

ω̄1 0.1304 0.1393 0.1482 0.1572 0.1665
A ω̄2 0.2422 0.2445 0.2469 0.2496 0.2525

ω̄3 0.2798 0.2855 0.2907 0.2956 0.3002

ω̄1 0.1112 0.1192 0.1275 0.1360 0.1449
B ω̄2 0.2327 0.2344 0.2364 0.2386 0.2412

ω̄3 0.2561 0.2607 0.2651 0.2693 0.2753

ω̄1 0.1200 0.1245 0.1289 0.1333 0.1379
C ω̄2 0.2016 0.2020 0.2024 0.2029 0.2034

ω̄3 0.2718 0.2770 0.2817 0.2859 0.2896

ω̄1 0.0847 0,0841 0.0836 0.0829 0.0823
D ω̄2 0.1826 0.1807 0.1787 0.1768 0.1750

ω̄3 0.2266 0.2273 0.2271 0.2264 0.2249

Table 6. Effect of thickness variation on the frequency parameter of square Mindlin
plates with different boundary conditions.
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Kirchhoff’s theory
Mindlin’s theory

a=10h0 a=15h0 a=20h0 a=25h0 a=30h0 a=35h0 a=40h0

α = 0

17.943 14.819 16.308 16.976 17.388 17.577 17.754 17.920

α = 0.2

18.834 15.430 17.550 17.840 18.250 18.630 18.811 18.865

Table 7. Comparison of frequency parameter ω̄ = a2ω
√
ρh0/D0, (D0 = h3

0 · 104 MPa)
calculated for square clamped orthotropic plate by Kirchhoff’s and Mindlin’s theories.

Table 8 collects the first frequencies ω̄ = a2
0ω

√
ρh0/D0 , (D0 = h3

0 · 104 MPa) for the orthotropic
rectangular plate with the stiffness parameters identical to those already mentioned, and edges a = a0 ·β,
b = a0/β, h0/a0 = 0.05 for different boundary conditions (2-6)–(2-8) at the plate ends. (For this selection
of geometrical parameters of the weight of the plate is independent of edge length.)

β
α

−0.3 −0.2 −0.1 0 0.1 0.2 0.3

1 0.03987 0.04075 0.04167 0.04261 0.04359 0.04461 0.04565
2 0.09002 0.08888 0.08719 0.08513 0.08281 0.08026 0.07754

A 1/2 0.10105 0.10637 0.11163 0.11686 0.12204 0.12719 0.13234
5/4 0.04426 0.04396 0.04366 0.04338 0.04311 0.04286 0.04253
4/5 0.04783 0.04999 0.05219 0.05439 0.05659 0.05880 0.06102

1 0.03530 0.03436 0.03541 0.03547 0.03553 0.03559 0.03566
2 0.08769 0.08765 0.08664 0.08486 0.08266 0.08018 0.07749

B 1/2 0.08189 0.08398 0.08588 0.08758 0.08909 0.09040 0.09150
5/4 0.04223 0.04164 0.04105 0.04045 0.04987 0.03930 0.03876
4/5 0.03932 0.04003 0.04071 0.04133 0.04190 0.04241 0.04288

1 0.03262 0.03407 0.03552 0.03695 0.03842 0.03987 0,04133
2 0.04571 0.04483 0.04385 0.04279 0.04169 0.04053 0.03933

C 1/2 0.10077 0.10061 0.11141 0.11660 0.12185 0.12701 0.13217
5/4 0.02787 0.02852 0.02908 0.02966 0.03026 0.03087 0.3150
4/5 0.04525 0.04766 0.05005 0.05244 0.05480 0.05717 0.05954

1 0.02238 0.02220 0.02200 0.02179 0.02158 0.02140 0.02125
2 0.04443 0.04367 0.04279 0.04185 0.04083 0.03975 0.03861

D 1/2 0.06379 0.06296 0.06188 0.06057 0.05906 0.05738 0.05555
5/4 0.02151 0.02162 0.02166 0.02200 0.02165 0.02158 0.02148
4/5 0.02840 0.02811 0.02774 0.02732 0.02687 0.02639 0.02491

Table 8. Effect of thickness variation on the frequency parameter ω̄ = a2ω
√
ρh0/D0

(D0 = h3
0 · 104 MPa, h0/a0 = 0.05, a = a0 ·β, b = a0/β) for the orthotropic rectangular

plate with different boundary conditions.
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Figure 4. Natural vibration modes of a Mindlin orthotropic rectangular plate with β =

0.8, h0/a0 = 0.05 and boundary conditions of type A.

Figure 4 shows forms of deflection for vibrations of a rectangular (β = 0.8) orthotropic plate with
clamped edges and various values of the parameter α. The corresponding graphs for a square plane with
α = 0.2 are shown in Figure 5. Note that for the third mode the number of half-waves changes along
two coordinate directions in the case of square (m = 2, n = 1) and rectangular (m = 1, n = 3) plates with
insignificant variation of the plate geometry.

5. Conclusions

The paper proposes a spline-collocation approach to study the natural vibrations of orthotropic rectan-
gular variable-thickness plates within the framework of classical (of Kirchhoff’s type) and refined (of
Timoshenko-Mindlin’s type) theory of plates. The approach includes two stages. At the first stage an
initial eigenvalue problem for the systems of partial differential equations is reduced to an eigenvalue
problem for the system of high-order ordinary differential equations by representing the desired solution
in the form of truncated series of spline-collocations and choosing collocation points for the domain under
consideration. Application of the spline-approximation makes it possible to satisfy boundary conditions
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Figure 5. Natural vibration modes of a Mindlin orthotropic square plate with β = 0.8,
h0/a0 = 0.05 and boundary conditions of type A.

at the plate edges exactly. The one-dimensional eigenvalue problems obtained are solved by the stable
numerical discrete-orthogonalization method in combination with the step-by-step search method that
provides a highly accurate solution. The reliability of the results obtained is estimated. Some new
problems for natural vibrations of rectangular plates with varying thickness under different boundary
conditions at plate edges are solved. The dynamic response of the plate is studied within the framework
of different plate theories depending on the law of thickness variation.
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