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Failure localization in rock is observed ubiquitously on geological scales in the form of fault or earth-
quake damage structures. Similar failure processes are observed in confined compression tests carried out
on laboratory-scale rock samples. At an intermediate scale, seismic activity is often associated with the
formation of so-called burst fractures that are intermittently formed and exposed in the vicinity of deep
level mining operations. Computational modeling can assist the understanding of the complex nature of
these failure processes. The present study investigates the question of how the properties of macroscopic
shear band features are controlled by microscopic constitutive behavior. The computational approach
that is used is to consider the formation of shear band structures by selectively mobilizing members
of an assembly of randomly oriented cracks that are modeled as displacement discontinuity elements.
Particular issues that are addressed are the question of whether the microscopic failure processes are
self-similar to the macroscopic processes, and how the density of the discontinuity assembly affects
the localization patterning. It appears that the use of slip or tension-weakening constitutive models
yields equivalent “macro” results that are independent of the “micro” mesh density for a given mesh
type. If the intrinsic junction coordination of the mesh is altered, it is found that the equivalent macro
dilation angle is changed. This has important implications in determining whether a particular distinct
element or lattice model with an intrinsic junction structure is capable of replicating the observed failure
behavior of a given rock type. A dimensionless parameter group is suggested as a measure of the intrinsic
coordination number for a random crack model of rock micro structure.

1. Introduction

Computational modeling of rock failure processes is of great practical value in determining the onset and
consequences of stress changes induced by earthquakes, by mining operations, and by the construction
of large structures such as dams. This requires the quantitative evaluation of the interactive nature of
tectonic loading and of excavation or construction steps and the attendant mobilization of discontinuities
and possible fracture of intact rock. A comprehensive review of numerical modeling procedures has
been compiled by Jing [2003]. However, the formulation of appropriate constitutive models to use in
numerical simulations of rock failure processes is very difficult. Consequently, many computational
schemes have been designed to solve discrete assemblies of interacting blocks, bonded particles, or other
simple lattice structures that can be assembled to represent macroscopically complex failure patterns.
The pioneering development of the so-called Distinct Element Method (DEM) [Cundall 1988; Hart
et al. 1988; Potyondy and Cundall 2004] is of particular interest. Numerous applications of distinct
element and other lattice models have been applied towards the simulation of granular and quasibrittle
material failure in rock, concrete structures, and large-scale fault systems. Representative examples of
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these applications are reported in [Lockner and Madden 1991a; 1991b; Bolander et al. 1996; Chiaia
et al. 1997; Morgan and Boettcher 1999; Morgan 1999; Budhu et al. 1999; Jefferson et al. 2002; Kuhn
2005; Rechenmacher 2006]. In these examples, failure is initiated by selected breakage or slippage of
bonds or linkages within a simulated lattice structure or particle assembly. Individual bonds, interfaces,
and internal linkages are assigned simple failure rules and the entire system is allowed to evolve under
selected loading steps. Consequent micro fracture sequences are tracked during the simulation and macro
coalescence and localization mechanisms are noted. The approach can be applied as well to the study
of rock fracture by selecting crack elements sequentially from a random assembly of potential crack
positions and evaluating the stress and displacement movements induced by the mobilized cracks using
the displacement discontinuity boundary element method; see, for example, [Napier and Peirce 1995;
Napier and Malan 1997; Sellers and Napier 1997].

It is apparent that the distinct element and other lattice models are very fruitful in gaining some
appreciation of the complex fracture patterning and sequencing that may arise from the incremental
loading or straining of particular problem configurations. A number of troublesome issues, though, are
not addressed generally. These include the following basic questions:

– Does the characteristic size of the underlying lattice element (for example, particle size, block size,
crack length, spring element) affect the emergent failure pattern?

– How should the intrinsic failure rules that are assigned to the micro structure components be assigned
or calibrated?

– Do these micro structures have to bear a direct relationship to the actual material micro proper-
ties (for example, pore sizes, micro cracks, grain boundaries) and at what length scale should this
correspondence be established?

– Can macro failure mechanisms, such as shear bands, be represented by appropriate macro geometric
objects, such as individual slip lines, and can the equivalent constitutive properties of the macro
objects be deduced from the assigned micro element properties?

– How many micro-macro hierarchical scales should be considered in modeling the material behavior
at a given scale of interest?

This paper attempts to address some of these questions by considering a random fracture network
simulation of shear failure through an intact bridge region between two adjacent sliding discontinuities.
The problem is restricted initially to plane strain conditions. Micro-level failure is assumed to be initiated
from a random assembly of crack elements that are at least an order of magnitude smaller than the
bridge width. The resulting failure mechanism is then compared to the simulation of the rock bridge
as an equivalent slip line linking the adjacent sliding discontinuities. An important property of the fine-
scale micro system is identified which appears to control the effective behavior of the macro slip line.
This property is related to the connectivity of the random mesh structure at each mesh junction point in
terms of the number of potential mesh segments that are attached to each junction and can be thought
of as a junction coordination number. It is demonstrated that this topological property of the mesh
controls the macro strain behavior of the equivalent slip line failure mechanism and may, in general,
determine whether any particular lattice model is intrinsically suitable to simulate failure in a given
bonded/disordered material such as rock.
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2. Rock failure simulation model

The displacement discontinuity boundary element method (see, for example, [Crouch and Starfield 1983])
is used in the present study to formulate a lattice-type failure model comprising multiple interacting crack
segments. It is assumed that loading rates are sufficiently slow that inertial (wave propagation) effects
can be neglected. Similar results can, in principle, be obtained by using any computational framework
that can represent the interaction of multiple intersecting crack discontinuities in a continuous elastic host
medium. Suitable numerical models would include the Distinct Element approach of Cundall [1988], and
Finite Element codes having appropriate joint element features (see also [Jing 2003]). The displacement
discontinuity boundary element method (DDBEM) does offer a number of useful advantages in terms
of computational efficiency when the problem can be considered to comprise multiple crack structures
that are embedded within an “infinite” region as only the significant crack surfaces are modeled. The
main disadvantages of the DDBEM approach are the necessary assumptions of a fundamental influence
function solution for the host medium. These issues are of secondary importance in the context of
the present study. Some selected examples of the application of the DDBEM to the study of fracture
interaction and propagation processes are reported by [Scavia 1992; Napier and Hildyard 1992; Bobet
and Einstein 1998] and [Allodi et al. 2003].

A series of numerical experiments were performed to simulate shear-driven failure between two pre-
existing sliding discontinuities labeled AB and C D respectively as shown in Figure 1. The dimension,
R, of the rock bridge between points B and C in Figure 1 is set to 10 units of length, and the sliding
discontinuities are each 50 units in length. These units may be considered nominally to be millimeters
although the length scale is actually implied by the ratio of the material shear modulus to the slip-
weakening parameter used in the failure model that is described later. A random mesh of potential
micro crack segments is superimposed on the rectangular region covering the inner tips of the sliding
discontinuities as depicted in Figure 1. Remote compressive principal stress loading components P1 and
P2 are applied at an oblique angle of 22.5 degrees to the preexisting discontinuities to induce sliding
movements and consequent fracturing in the random mesh region. In the present case, P1 is increased in
a series of 24 incremental steps from 20 MPa to 135 MPa, and P2 is held fixed at a value of 5 MPa. Within
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Figure 1. Geometry, principal loading, and dimensions for the numerical experiments.
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each load increment, fractures are activated in sequence from the random mesh region according to a
defined failure priority. Each activated crack element is assumed to be a straight line segment. The shear
slip and crack opening displacement discontinuity components can be defined with respect to a local x-y
coordinate system that is centered on each crack element. Suppose that a particular crack element falls
in the region −b ≤ x ≤ b on the x-axis. Define the shear and normal components of the displacement
discontinuity vector at the point x = η to be Dx(η) and Dy(η), respectively, where, for each component k,

Dk(η)= u+

k (η)− u−

k (η) (1)

represents the difference in the displacement vector components between the positive (+) and negative
(−) sides of the crack with respect to the direction of the positive normal to the crack line.

Define the complex valued discontinuity vector 1(η)= Dx(η)+ i Dy(η), where i =
√

−1. It can then
be shown (see, for example, [Linkov and Mogilevskaya 1994; Mogilevskaya 2000]) that the induced
in-plane stress tensor components σxx , σxy , and σyy , are given by the integral relationships

σxx + σyy =
iG

2π(1 − ν)

∫ b

−b

{
1̄(η)

(Z̄ − η)2
−

1(η)

(Z − η)2

}
dη, (2)

σyy − σxx + 2iσxy =
iG

2π(1 − ν)

∫ b

−b

{
(1̄(η)−1(η))

(Z − η)2
+

2(Z̄ − η)

(Z − η)3

}
dη, (3)

where G is the shear modulus, ν is Poisson’s ratio, and Z = x + iy is the field point at which the
stress components are evaluated. (Note also that the following relationships hold: 1̄ = Dx − i Dy and
Z̄ = x − iy). In the present study, it is assumed that each of the displacement discontinuity components
Dk(η), for k = x or y, has a linear variation along the element of the form

Dk(η)= pk + qkη, (4)

where pk and qk are constants that are chosen to ensure that the stress tensor components satisfy local
equilibrium boundary conditions at two collocation points located within each element. In this case, the
integral expressions in Equations (2) and (3) can be determined from the evaluation of simple integrals
of the form

I j (Z)=

∫ b

−b

η j dη
(Z − η)

, j = 0 and 1 (5)

and
I0(Z)= ln

[ Z + b
Z − b

]
, I1(Z)= Z I0(Z)− 2b. (6)

Additional expressions can be derived for higher order variation displacement discontinuity vector
distributions and for special crack tip shapes, but these possibilities are not considered in the present
study.

Each fracture simulation experiment is carried out in a series of incremental crack growth cycles.
During each cycle the normal and shear stress traction vector components are evaluated at each colloca-
tion point of the current population of unmobilized crack elements that exist in the set of defined mesh
segment positions. The normal and shear traction components are determined with respect to the local
tangent and normal directions of each mesh segment. A choice is then made of the most likely element
to fail according to the effective distance (in terms of the normal and shear traction components) from
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a specified failure envelope. Once this choice has been made, the element is added to the population of
active crack elements and the entire problem is solved again. The search procedure is continued until no
additional crack elements are mobilized. The entire cycle is then repeated for the specified number of
far field incremental loading steps. Further details of this approach have been reported in [Napier and
Malan 1997].

Figure 2 illustrates the explicit form of the failure envelope and the definition of the stress distance
in terms of the normal component σn and shear stress component τ acting at a point on a given crack
segment. When the normal stress component is tensile (as in the case of point A in Figure 2), the failure
envelope is assumed to follow a power law of the form

|τ | = S0(1 − σn/T0)
γ , (7)

where S0 is the intact cohesive strength and T0 is the intact tensile strength of the material at the collo-
cation point. γ is a dimensionless exponent such that 0< γ ≤ 1. The functional form of Equation (7)
is chosen to ensure that the failure envelope is smooth in the tensile region and avoids the introduction
of a corner point corresponding to a simple tension cut-off parameter. The distance from point A to the
failure envelope is measured in the direction of the local origin as depicted in Figure 2. When the normal
stress component is compressive (σn < 0), as for point B in Figure 2, the failure envelope is assumed to
follow a linear Mohr–Coulomb relationship of the form

|τ | = S0 −µ0σn, (8)

where µ0 is the intact internal coefficient of friction of the material. The distance from point B to the
failure envelope is assumed to be the vertical distance, parallel to the shear stress axis, as shown in
Figure 2.

Once failure is initiated, the cohesive strength and tensile strength are assumed to reduce to zero as
linear functions of the slip and crack opening displacements, Dx and Dy , respectively. The explicit

Shear 

stress

Normal stress

0

B

A

T
0

S
0

Figure 2. Schematic depiction of the assumed composite failure envelope and defini-
tion of the distance of a point from the envelope in terms of normal and absolute shear
stress coordinates with respect to a local discontinuity segment line (the normal stress is
assumed to be positive when it is tensile).
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relationships that are assumed are of the form

S = S0 −α|Dx |, (9)

T = T0 −βDy, (10)

where S and T are the current values of the shear strength and the cohesion, and α and β are the shear and
tension weakening parameters, respectively. The values of S and T are set to zero when the maximum
slip and opening displacements implied by Equations (9) and (10) are exceeded. The composite failure
envelope, shown in Figure 2, is updated progressively as failure continues by substituting the current
values of S and T for S0 and T0 in Equations (7) and (8), respectively. It is further assumed that the
progressive change in the failure envelope is such that S and T both reach zero simultaneously, and that
the friction coefficient µ changes congruently from the intact value µ0 to a specified residual value µ f

as these changes proceed. The failure envelopes in the tensile and compressive regions in Figure 2 are
assumed to have the same slope when σn = 0. This, in turn, implies that the exponent γ must satisfy the
relationship

γ = µT/S. (11)

The slip-weakening concept [Palmer and Rice 1973; Uenishi and Rice 2003] has a number of important
implications. In particular, the weakening behavior imposes an implicit length scale on the material (in
some sense analogous to the mean particle size of a particle model) and also implies that numerical
experiments of self-similar geometric configurations will exhibit size effects. In addition, it is impor-
tant to note that the ratio of the host material shear modulus G to the shear weakening parameter αis
proportional to an implicit slip nucleation length hn for a single discontinuity [Uenishi and Rice 2003].

3. Effect of random mesh density

A series of three numerical experiments were performed to assess the consequences of changing the
density of the random mesh in the rectangular failure region shown in Figure 1. Specific material strength
parameters and slip and tension weakening parameters used in the numerical experiments are summarized
in Table 1. These parameters were chosen to be appropriate for a failure region having a characteristic
size that is nominally of the order of 10 millimeters. The length scale ḡ of the micro flaws comprising the
random mesh structure is assumed to be at least one order of magnitude smaller than the bridge dimension
R between points B and C in Figure 1 (that is, ḡ ≤ 1 mm). The mesh segment sizes were consequently
also much smaller than the slip nucleation length, hn ∼ G/α = 6 mm, implied by the parameters given
in Table 1. The relative areas under the cohesion and tension weakening curves can be inferred from the
parameters in Table 1 to have a ratio of about 15:1. This ratio can be considered, as well, to reflect the
ratio of the intrinsic specific fracture energy required to mobilize shear micro cracks compared to the
energy required to mobilize tensile micro cracks with an equivalent area.

Three different Delaunay mesh tessellations (designated as A, B, and C) were considered to determine
the effect of the mesh density on the evolution of inelastic strain components in the rock bridge region.
The size-frequency distribution of the mesh segments corresponding to each applied tessellation pattern
is plotted in Figure 3. An approximate mesh density parameter, ρ, can be defined to be

ρ = L/
√

AT , (12)
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Shear modulus 30000 MPa
Poisson’s ratio 0.2
Cohesion, S0 20.0 MPa
Tensile strength, T0 8 MPa
Internal friction coefficient, µ0 1.0
Residual friction coefficient, µ f 0.577
Cohesion weakening slope, α 5000 MPa/mm
Tensile strength weakening slope, β 8000 MPa/mm

Table 1. Summary of material properties used in numerical experiments of shear fracture.

where L is the total length of all segments in the tessellation region, and AT is the area of this region.
The values of ρ corresponding to each mesh are included in Figure 3. The mean segment lengths, ḡ, for
the cases A, B, and C are, respectively, equal to 1.023 mm, 0.525 mm, and 0.254 mm (see also, Table
3). Note that the coarsest mesh size, ḡA = 1.023 mm, for mesh A is chosen to be small relative to
both the rock bridge dimension, R, and the slip nucleation length, hn . (Specifically, ḡA/R ∼ 0.1 and
ḡA/hn ∼ 0.17). The finer mesh sizes for cases B and C were chosen to be approximately equal to one half
and one quarter of the initial mesh, respectively, but no special significance is associated with these ratios.
Figure 4 shows plots (with displacements magnified by a factor 10) of the fracture patterns developed in
the rock bridge region after 24 load step increments of the far-field principal stress component P1, for
each mesh A, B, and C . The crack segments that are initiated in shear mode (that is, when the normal
stress values in Figure 2 are negative) are depicted as thick (green) lines in contrast to the crack segments
that are initiated under tension conditions (thin lines). It is apparent that both tension and shear failure

Size frequency distributions for three Delaunay meshes

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8

R
el

at
iv

e 
fr

eq
u

en
cy

Rho = 43.3 

Rho = 87.1 

Rho = 121.4 

C B A

Figure 3. Size-frequency distributions of three Delaunay mesh grids used to simulate
failure in the rock bridge region shown in Figure 1.
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Fracture pattern - coarse Delaunay mesh
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Fracture pattern - intermediate Delaunay mesh
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Fracture pattern - fine Delaunay mesh
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Figure 4. Fracture patterns developed for each Delaunay mesh after 24 load step incre-
ments: Coarse (top left), intermediate (top right), and fine (bottom) mesh density.

modes are important in establishing the overall fracture patterns shown in Figure 4. It is apparent as well
that the total length of activated crack segments increases as the mesh density increases.

The average strain components, ε̄i j , within the rock bridge region (expressed in the global x1-x2

coordinate system shown in Figure 1), are computed for each mesh simulation using the following sum
that is taken over all the elements, k, in the region with a total area AT .

ε̄i j =
1

2A T

∑
k

(
D̄(k)

i n(k)j + D̄(k)
j n(k)i

)
gk . (13)

In Equation (13), D̄(k)
i is the average value of component i of the discontinuity vector for element k, n(k)i

is the value of component i of the normal vector to element k, and gk is the length of element k. The
discontinuity and normal vector components are expressed in the global x1-x2 coordinate system. The
average strain components ε̄11, ε̄12, and ε̄22 are plotted in Figure 5 for each mesh density. The nominal
mesh segment sizes of 1 mm, 0.5 mm and 0.25 mm, shown in the legend in Figure 5, are associated with
cases A, B, and C respectively. It can be seen from Figure 5 that the average values of each strain
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Figure 5. Evolution of average strain components for three Delaunay mesh simulations.
For each strain component there are curves corresponding to coarse, intermediate, and
fine mesh densities.

component are remarkably similar irrespective of the mesh density. It is observed as well that the values
of the strain components, ε̄11, parallel to the direction of the shear sliding cracks are all relatively small.
If this component is neglected, a measure of the effective dilation angle ψ in the control volume can be
defined to be

tanψ ∼ −
ε̄22

2ε̄12
. (14)

The effective dilation angle ψ is plotted in Figure 6 for each mesh density case A, B, and C . It can
be seen that as the shear fracture mechanism develops, the dilation angle for each mesh density tends
asymptotically to similar constant values ranging approximately between 11 and 13 degrees. It is also
observed in Figure 4 that the total length of the random mesh that is activated increases progressively as
the mesh density is increased. The cumulative activated length, scaled by the bridge length R between
points B and C in Figure 1 is plotted in Figure 7. This suggests that the plastic deformation developed in
the fracture zone becomes increasingly “smeared” over increasing numbers of cracks as the underlying

Figure 6. Cumulative dilation angle for three Delaunay mesh densities.
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Figure 7. Cumulative fracture length scaled to bridge length for three Delaunay mesh
densities. Curves are coded as in Figure 6.

mesh becomes finer. The cohesion loss in each mobilized segment will not necessarily be distributed
uniformly. It is not clear at present whether this trend would persist if an even finer mesh were to be
used. The current results suggest that the cumulative activated length is approximately proportional to
the mesh density parameter, ρ, defined by Equation (12).

4. Topological characteristics of the tessellation mesh

The intrinsic connectivity of the mesh structure can play a significant role in determining the simulated
fracture pattern. In order to investigate this, two additional numerical simulations (labeled D and E) were
carried out using different intrinsic mesh connectivity properties. For case D, the mesh was constructed
by subdividing each triangle of an existing Delaunay mesh as illustrated in Figure 8. The result is termed
a split Delaunay mesh. It can be seen from the figure that the additional mesh segments will have
the effect of doubling the number of segments connected to preexisting vertices D1, D2, D3, and D4.
Additional vertices of the types labeled C1 and C2 in Figure 8 are also introduced. The representative
vertex C1 has six segment connections, and representative vertex C2 has four.

D1

D2

D3

D4

C1 C2

Figure 8. Additional mesh segments introduced into two adjacent Delaunay triangles to
create a split Delaunay mesh structure.
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A second mesh variation, Case E , was considered, where the mesh is generated as a classical Voronoi
structure. Cases D and E were compared to case C , which corresponds to the finest scale Delaunay mesh
discussed in the previous section. Table 2 summarizes the relative frequency of the number of segments
joining each internal vertex (junction coordination number) of the meshes used in cases C , D, and E . It
can be seen that case C (Delaunay mesh) and case E (Voronoi mesh) have a most frequent segment coordi-
nation number of 6 and 3 connections respectively. Case D (split Delaunay) is more complex, showing a
mixture of doubled vertex coordinations derived from the parent mesh and new vertices with coordination
numbers of 6 and 4 corresponding to the points C1 and C2 in Figure 8. A significant proportion of the
vertices in case D have coordination numbers of 10, 12, and 14. A complete summary of the average
mesh segment sizes, ḡ, total segment length, L , and mesh area, AT , for all cases A to E is given in Table 3.

Coordination Relative frequency
number C (Delaunay) D (split Delaunay) E (Voronoi)

3 0 0 0.8436
4 0.0116 0.5000 0.1416
5 0.2474 0 0.0148
6 0.5090 0.3350 0
7 0.2010 0 0
8 0.0296 0.0049 0
9 0.0013 0 0

10 0 0.0416 0
11 0 0 0
12 0 0.0733 0
13 0 0 0
14 0 0.0428 0
15 0 0 0
16 0 0.0024 0

Table 2. Mesh junction coordination frequencies for random mesh cases C , D. and E .

Mesh Grid Mesh Density Coordination
Mesh type area, AT size, ḡ length, L ρ = L/

√
AT λ= ḡL/AT

Delaunay (A) 160 1.023 547.6 43.3 3.50
Delaunay (B) 160 0.525 1101.9 87.1 3.61
Delaunay (C) 72 0.254 1029.9 121.4 3.63

Split Delaunay (D) 160 0.465 1602.1 126.7 4.66
Voronoi (E) 160 0.333 663.2 52.4 1.38

Table 3. Characteristic mesh parameters.
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Fracture pattern - "Split Delaunay" mesh
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Voronoi mesh (low strength)
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Figure 9. Fracture patterns resulting from two different mesh segment junction coordi-
nation models. Left: split Delaunay mesh; right, Voronoi mesh.

The loading experiments for cases D and E were repeated with the same orientation and number
of load increments used in cases A, B, and C . The material properties for case D were chosen to be
the same as those given in Table 1. However, in case E the cohesion value of 20 MPa and the tensile
strength of 8 MPa, given in Table 1, were reduced to 10 MPa and 4 MPa, respectively, to ensure that a
shear band mechanism was fully developed in the bridge region. The fracture patterns developed for
the split Delaunay and the Voronoi tessellation runs, D and E , are shown in Figure 9. A fixed marker
region around the rock bridge is included to indicate the general deformation pattern. The zone of
fracture activation can be seen to be more concentrated for the split Delaunay mesh than for the Voronoi
mesh. The mobilized fragments in case D appear to be more angular in character than the rounded
grains corresponding to the Voronoi mesh for case E . The effective dilation angles corresponding to the
simulations D and E are compared to case C in Figure 10. It can be seen that the mesh coordination

Effect of mesh type on cumulative dilation angle
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Figure 10. Effect of mesh segment coordination on the effective dilation angle for nu-
merical experiments with three distinct meshes.
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structure plays a very significant role in determining the effective response of the bridge region. In
particular, it is clear that as the average number of segments attached to each mesh junction decreases,
the effective dilation angle increases. An equivalent macro model of the rock bridge deformation must
therefore include the intrinsic dilation behavior associated with the properties of the micro mesh structure.
A simple equivalent macro model for the rock bridge is to assume that it is represented by a single slip
discontinuity line joining points B and C in Figure 1. In this case the asymptotic behavior of the macro
model is determined by defining the following macro properties for the slip line in terms of the micro
residual friction angle φ f and the observed dilation angle ψ . Specifically,

φmacro = ψ +φ f , (15)

µmacro
f = tan(ψ +φ f ). (16)

Using the residual macroscopic friction coefficient given by Equation (16) and applying the dilation
angles ψ = 7◦ and ψ = 33◦ implied by the asymptotic behavior of Figure 10 yields the equivalent average
strain component evolution profiles shown in Figure 11. The plots there show that the macro slip line
model is asymptotically equivalent to the corresponding average strain behavior of the underlying micro
models after a significant numbers of load increments when the shear band mechanism is fully established.
The main problem in applying the equivalent macro model is that it is unclear how the dilation angles of
ψ = 7◦ and ψ = 33◦ can be deduced a priori from the intrinsic mesh structure.

It may be noted by examining the mesh properties reported in Table 3 that an intrinsic relationship
can be established between the mean segment size, ḡ, the total length of the mesh segments, L , and the
area of the tessellation mesh, AT . Specifically, consider the dimensionless mesh coordination parameter,
λ, defined by

λ= ḡL/AT . (17)

The inferred values of λ are given in the last column of Table 3. It is interesting to note that in the
case of the Delaunay mesh (cases A, B, and C), the values of λ are very similar (∼3.6) irrespective of
the mesh density, ρ. However, λ is distinctly different for the split Delaunay and Voronoi mesh cases
D and E respectively. It appears that λ provides a relative measure of the intrinsic mesh coordination

"Split" Delaunay - equivalent slipline model (dilation = 7 
degrees)
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Figure 11. Equivalent slip line model asymptotic evolution of average strain in rock
bridge region. Left: split Delaunay mesh; right, Voronoi mesh.
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Figure 12. Effect of mesh coordination parameter on tangent of effective dilation angle.

topology that is essentially different from the mesh density, ρ. Figure 12 is a plot of the values of tanψ ,
inferred from Figure 9, against the coordination parameter λ. (Asymptotic values of ψ are inferred
from Figure 9 to be equal to 13◦, 7◦, and 33◦ for cases C , D, and E respectively). Figure 12 suggests
that it may, in fact, be possible to infer the appropriate macro dilation angle ψ from the intrinsic mesh
coordination characteristics summarized by the dimensionless mesh coordination parameter λ. However,
a more significant goal is to determine, eventually, whether λ can be determined by direct experimental
observation of the actual microscopic fabric structures in rock specimens.

5. Conclusions

Numerical experiments have been carried out to determine the effect of a simulated micro structure on
equivalent macro shear properties for a simple shear loading experiment relating to the failure of a rock
bridge between two preexisting discontinuities. The study addresses only a single micro-to-macro hierar-
chical step change. It appears that the use of slip and tension-weakening failure parameters in the micro
crack model does ensure that the observed macro average strain component evolution is substantially
independent of the microscopic mesh density. Less satisfying is the observation of the extent of mesh
mobilization associated with different mesh densities which appears to be dependent on the mesh density.

Interestingly, it is found that the intrinsic mesh coordination structure plays an essential role in deter-
mining the macro dilation properties of the failed region. This implies that, depending on the nature of
a given lattice computational model, equivalent macro behavior (such as may be observed from the aver-
aged results of a laboratory test) may or may not be able to be matched to observed physical behavior. In
addition, it appears that some interpretation of the physical equivalent of the mesh junction coordination
is required as an additional material parameter that may need to be measured to describe material fabric
characteristics. This clearly warrants further investigation in cases of more general three dimensional
failure.
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The numerical experiments suggest, as well, that a simple dimensionless mesh coordination param-
eter could provide a useful measure of the effective intrinsic dilation behavior that may be expected to
emerge from a selected random mesh crack model. Further studies are required to determine whether
this proposed parameter grouping can be extended to a wider variety of computational lattice models.
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