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STRAIN LOCALIZATION IN OPEN-CELL POLYURETHANE FOAMS:
EXPERIMENTS AND THEORETICAL MODEL

GIAMPIERO PAMPOLINI AND GIANPIETRO DEL PIERO

Confined compression tests performed by the authors on open-cell polyurethane foams reveal the pres-
ence of strain localization. After a brief description of the experiments, a theoretical model is proposed.
In the model, the foam is represented as a chain of elastic springs with a two-phase strain energy density,
and the strain localization is due to a progressive collapse of the springs. The collapse is a sort of
continuum instability, which can be attributed to phase transition. An appropriate choice of the material
constants leads to a close reproduction of the experimental force-elongation response curves.

1. Introduction

The rapidly increasing use of foam polymers, and of cellular materials in general, is due to a combina-
tion of some peculiar properties, such as lightness, easy packaging, and high energy absorption. Such
properties come from the specific microstructure of the material, which consists of a complex network
of ligaments and membranes. For a detailed description, see [Gibson and Ashby 1997]. Typical of such
materials is the nonhomogeneous deformation exhibited in uniaxial compression tests. There is indeed
experimental evidence that in a displacement-driven test the deformation is initially homogeneous, then
localizes in transverse bands whose number grows with increasing deformation and eventually becomes
again homogeneous, see, for example, [Lakes et al. 1993; Gioia et al. 2001; Wang and Cuitinho 2002;
Gong and Kyriakides 2007], and the experiments made by the present authors described in the next
section. This behavior determines a three-regime shape of the force-elongation response curve in which
the central regime of strain localization corresponds to an almost horizontal plateau.

The same overall behavior was observed by Bart-Smith et al. [1998] and by Bastawros et al. [2000]
in both open and closed-cell aluminium alloy foams. There is also a strong analogy with the response
curves for shape memory alloy wires; see, for example, [Miyazaki and Otsuka 1989; Ortin 1992; Tanaka
et al. 1996]. The analogy becomes even more interesting by the fact that for all such materials the
loading-unloading tests exhibit hysteresis cycles of similar shapes [Tanaka et al. 1996; Bart-Smith et al.
1998; Bastawros et al. 2000; Gong et al. 2005].

To model the behavior of open-cell polymer foams, two main approaches are used: a numerical ap-
proach, directly reproducing the microstructure in the finite element scheme, and an analytical approach,
based on the representation of the material as a continuum. In the numerical approach, the ligaments are
usually represented as shear-deformable linear elastic beams, and strain localization is attributed to the
buckling of the beams; see, for example, [Gent and Thomas 1963; Gibson and Ashby 1997; Warren and
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Kraynik 1997]. In [Gong et al. 2005], the foam is modeled as a periodic structure whose basic element is
a 14-sided polyhedron, called the Kelvin cell. In general, the numerical approach is computationally very
demanding, due to the large number of unknowns and to difficulties in modeling the contact between
beams in the post-buckling regime; see [Bardenhagen et al. 2005].

In the analytical approach, the material is considered to be a homogeneous hyperelastic continuum.
Indeed, it was shown in [Ericksen 1975] that both strain localization and hysteretic behavior can be
described within the elastic context, by assuming a nonconvex strain energy density of a special “double-
well” shape. A model for foam polymers based on this simple idea was proposed in [Gioia et al. 2001].

In this paper we propose a discrete model whose origin traces back to a series of papers [Müller
and Villaggio 1977; Fedelich and Zanzotto 1992; Puglisi and Truskinovsky 2000] in which Ericksen’s
problem is discretized by replacing a continuous bar by a finite chain of elastic springs with a double-
well strain energy. The paper is divided into two parts. In the first part the test procedure and the
experimental results are presented. In the second part the theoretical model is described and, by an
appropriate identification of the constitutive constants, a close reproduction of the experimental force-
elongation curves is obtained.

2. Experimental analysis

2.1. Equipment and test procedure. The compression tests were made using a load frame Instron 4467
with a 500 N load cell, located at the Laboratorio di Materiali Polimerici of the University of Ferrara. The
specimens were parallelepipeds cut out from two sheets of commercial open-cell polyurethane foams, 10
and 50 mm thick, respectively. The cutting was done manually, using a ribbon saw. The cellular structures
of the two sheets are shown in Figure 1, and their mass densities are 27 and 25 kg/m3, respectively.

Ten specimens with base dimensions 100 × 100 mm, five for each of the thicknesses 10 and 50 mm,
were tested in confined compression. Confinement was assured by a polystyrene box clamped to the load
frame, of dimensions 101×101×60 mm. The lower base of the samples was in contact with the bottom of
the box, and the upper base was in contact with a steel plate fixed to the moving crosshead. Polystyrene,

(a) (b)

Figure 1. Cell structure of the polyurethane foams in the 50 mm (a) and 10 mm sheets (b).
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(c)    specimens

Figure 2. The test equipment.

being transparent, allowed for optical control of the evolution of the deformation. Confinement was
chosen to prevent lateral buckling, which was indeed observed in some collateral nonconfined tests.
There were just slight differences between the response curves for confined and nonconfined tests. This
led us to conclude that the effects of the friction between specimens and the lateral walls of the box were
not important. Accordingly, we decided not to lubricate the walls of the box.

The testing equipment is shown in Figure 2. A preload of 2 to 3 N was applied to guarantee a full initial
contact between plate and specimen. A crosshead speed of 1 mm/min was considered sufficiently slow
to render negligible all rate-dependent effects. The test was stopped when the crosshead displacement
reached 70 % of the specimen thickness, an elongation sufficient to capture all significant aspects of the
force-elongation curve.

2.2. Results. Two experimental force-elongation curves are shown in Figure 3. They give the average
responses of five tests made on 10 mm and 50 mm specimens, respectively. The figure shows the stress

Figure 3. Comparison of the average force-elongation curves relative to five tests on 10
and 50 mm samples in confined compression.
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(measured as axial force divided by the initial sample cross area) as a function of the deformation
(measured as the crosshead displacement divided by the initial thickness of the specimen). The two
curves are similar in shape. In particular, they exhibit the three-regime behavior mentioned in Section 1,
characterized by a central plateau. The quantitative differences are significant. This means that the two
commercial sheets from which the specimens were obtained have different mechanical properties. In
the following, they will be considered as made of two different materials. From Figure 3, one sees that
the initial slopes are about 110 and 145 kPa for the 10 mm and for the 50 mm specimens, respectively.
The plateau occurs at a stress of about 6.5 kPa and 8.5 kPa, and ends at a deformation of about 55 % and
63 %, respectively.

To detect the strain localization, a rectangular grid was drawn on one of the specimens’ sides. The
progressive deformation of the grid under growing crosshead displacement is shown in Figure 4. As
shown in Figure 4a, the deformation is initially homogeneous. Subsequently, a severe deformation occurs
at the top layer of the specimen, Figure 4b. This deformation propagates to the underlying layers (Figures
4c, 4d), and after all layers have been reached, the deformation again becomes homogeneous, Figure 4e.
The same qualitative evolution was observed in polyurethane low-density foams [Wang and Cuitinho
2002] and in aluminium alloy foams [Bart-Smith et al. 1998; Bastawros et al. 2000]. A very similar
localization phenomenon was also observed in steel bars subjected to uniaxial tension [Froli and Royer-
Carfagni 1997; 1999].

(a) (b) (c)

(d) (e)

Figure 4. The deformation mechanism in confined compression test on the 50 mm thick
samples: (a) the initial homogeneous deformation, (b) strain localization at the upper end
of the specimen, (c) and (d) propagation to the underlying layers, and (e) the final homo-
geneous deformation. The initial equidistance of the horizontal lines of the rectangular
grid is 5 mm.
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In particular, Wang and Cuitinho [2002] observed the formation of three or four highly deformed
bands orthogonal to the loading direction. In their experiments, localization does not initiate at the upper
end of the specimen as in our tests. The fact that in our tests the localization systematically starts at the
upper end can be explained by the difference in the contact conditions. Indeed, in collateral tests made
with uniform contact conditions we observed that localization starts simultaneously at the two bases.

3. Theoretical model

3.1. Basic ingredients. Let �0 be the bounded open three-dimensional region occupied by the body in
the reference configuration, and let f be the deformation that maps the points X of �0 into the points
x = f (X). Assume that the body is made of an isotropic hyperelastic material, with a strain energy
density of the form

w(F) =
1
2 α F · F + 0(det F) , (1)

where F denotes the gradient of f , α is a positive material constant, and 0 is a nonnegative function
such that

lim
det F →0

0(det F) = lim
det F →+∞

0(det F) = +∞. (2)

The gradient of w,
S = wF (F) = αF + det F 0′(det F ) F−T , (3)

is the Piola–Kirchhoff stress tensor. If we take w(I ) = 0 and if we assume that the reference configuration
F = I is stress-free, from the conditions w(I ) = wF (I ) = 0 we get

α = −0′(1) , 3
2 α + 0(1) = 0. (4)

For the function 0 we assume the expression

0(det F ) = c (det F )n
( 1

n + 2
(det F )2

−
1
n

)
− µ ln (det F ) +

β
√

π

2
√

k
erf

(√
k (det F − a)

)
+ γ , (5)

where α, c, n, µ, β, k are positive constants, with a 6 1, erf(·) is the error function

erf(x) =
2

√
π

∫ x

0
e−t2

dt , (6)

and γ is a constant determined by the conditions (4). The expression chosen for 0 is the sum of two
parts. The first part, similar to the one proposed in [Ogden 1997], takes into account the long-range
effects, while the second part, the error function, provides a local effect at values of det F close to a.
In (5), the growth conditions of (2) are satisfied for any positive c, µ, and n. In the particular case of
confined compression in the direction e, one has

F = I + (λ − 1)e ⊗ e , det F = λ , 0 < λ < 1 , (7)

so that
S =

(
λ0′(λ) − 0′(1)

)
I + (1 − λ)

(
0′(λ) + 0′(1)

)
e ⊗ e. (8)

We see that S depends only on λ and on the function 0. The component of S in the loading direction is

σ = S e · e = 0′(λ) − λ 0′(1). (9)
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voids

(a) (b)
ε

(c)
−ε

(d)

Figure 5. Subdivision of the body into cell layers (a), representation of each layer
as a nonlinear elastic spring (b) with nonconvex energy (c), and nonmonotonic force-
elongation curve (d).

For 0 as in (5), Equation (9) yields

σ =
[
µ − β exp

(
−k(1 − a)2)] λ + cλn−1 (

λ2
− 1

)
− µλ−1

+ β exp
(
−k(λ − a)2) . (10)

This is the equation that, with appropriate identifications of the constants µ, β, k, a, c, n, will be used
to reproduce the experimental curves.

To begin, consider (10) as the force-elongation relation (σ, λ) of a nonlinear elastic spring. This
relation is represented by a curve in which two ascending branches are separated by a descending branch
as shown in Figure 5d. It does not match with the curves in Figure 3 and, what is more, it does not
provide any description of strain localization. But, as it will be shown in the coming subsection, both
goals can be reached by assembling in series a sufficiently large number of such springs.

3.2. The discrete model. Consider a chain of n springs connected in series (Figure 5a) in which each
spring represents a horizontal layer of cells as shown in Figure 5b. We assume that all springs have the
nonconvex strain energy of the type shown in Figure 5c, to which corresponds the force-elongation law
shown in Figure 5d and expressed by (10).

The total energy of the system is the sum of the strain energies of the springs,

E (ε1, ε2, . . . , εn) =

n∑
i=1

w(εi ) , (11)

where εi is the elongation of the i th spring. The chain is subjected to the hard device condition:
n∑

i=1

εi = nε0 , (12)

where ε0 is the prescribed average elongation of the springs. If one of the ends of the chain is fixed,
the total elongation nε0 of the chain coincides with the displacement imposed on the other end. Using
condition (12), one can eliminate one variable, say εn , and rewrite the energy in the form
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E (ε1, ε2, . . . , εn−1) =

n−1∑
i=1

w(εi ) + w
(

nε0 −

n−1∑
i=1

εi

)
. (13)

In an elastic structure, the equilibrium configurations are identified with the stationarity points of the en-
ergy, and the stable equilibrium configurations are identified with the (local or global) energy minimizers.
For the present structure, which has a finite number of degrees of freedom, the equilibrium configurations
are found by annihilating the partial derivatives of the energy

∂ E
∂εi

(ε1, ε2, . . . , εn−1) = w′(εi ) − w′

(
nε0 −

n−1∑
j=1

ε j

)
= 0, i = 1, 2, . . . , n − 1. (14)

Recalling that εn = nε0 −
∑n−1

j=1 ε j , the above equality can be given the form

w′ (εi ) = w′ (εn) , i = 1, 2, . . . , n − 1 , (15)

which tells us that the force is the same in all springs. The common value of the force in the springs will
be denoted by σ . As to the conditions for a global or local minimum, a sufficient condition is that the
Hessian matrix of the second partial derivatives of the energy,

∂2 E
∂εi ∂ε j

=

{
w′′(ε j ) + w′′(εn) if i = j,
w′′(εn) if i 6= j.

(16)

be positive definite. After setting Ai = w′′ (εi ), this matrix takes the form

H =


A1 + An An . An

An A2 + An . An

. . . .

An An . An−1 + An

 . (17)

It is known (see, for example, [Puglisi and Truskinovsky 2000]) that H is positive definite if and only if
(a) all Ai , except at most one, are positive, and (b) if there is a negative A j < 0, it must be the case that

n∑
i=1

A−1
i < 0. (18)

Condition (b) has no practical interest if n is sufficiently large; see [Puglisi and Truskinovsky 2000]. In
what follows, we neglect it altogether. Because Ai = w′′(εi ), a positive Ai means that the elongation εi

lies on one of the two ascending branches of the force-elongation curve. Therefore, we confine ourselves
to equilibrium configurations in which all elongations εi lie on one of the ascending branches. We say
that the i th spring is in phase A if εi belongs to the first ascending branch, and that it is in phase B if εi

belongs to the second ascending branch.

3.3. Strain localization. Consider an equilibrium configuration with m springs in phase A, for which
the force σ̄ belongs to the interval (σmin, σmax), where σmin and σmax are the local minimum and the
local maximum of the force-elongation curve; see Figure 6a. Let us call ε̄1 and ε̄2 the elongations
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(a) (b)

Figure 6. Response curves for (a) a system of 4 springs and (b) a system of 20 springs.

corresponding to σ̄ in the first and second ascending branch, respectively. Then,

ε̄0 =
m
n

ε̄1 +
n − m

n
ε̄2 (19)

is the corresponding average elongation. By varying σ̄ , for each fixed m one can construct the stable
equilibrium path (σ̄ , ε̄0), and by varying m one gets all equilibrium paths made of the equilibrium con-
figurations selected above. In Figure 6a, the equilibrium paths for a system of four springs are shown.

The cases m = 0 and m = n correspond to homogeneous configurations. Indeed, for m = n, from
(19), we get ε̄0 = ε̄1, so that the path (σ̄ , ε̄0) coincides with the first ascending branch. For m = 0
we get ε̄0 = ε̄2, so that the path (σ̄ , ε̄0) coincides with the second ascending branch. If one assumes
that the evolution occurs along equilibrium curves made of local energy minimizers (see [Del Piero and
Truskinovsky ≥ 2008]) then the system, when loaded starting from the initial configuration, initially
follows the first ascending branch, until the branch ends when the force reaches the value σmax.

At this point, to further increase ε0, there are no more single-phase equilibrium configurations. It is
reasonable to assume that the system jumps to the closest branch, which corresponds to the configurations
with one spring in phase B and three springs in phase A. This phase transition requires a nonequilibrium
process in which the force decreases at constant ε0. This process will not be analyzed here. Once
the new equilibrium branch has been reached, the force again increases, until σ reattains the value
σmax. Then the system jumps to the branch with two springs in phase B and so on. When all springs
have undergone the phase transition, the system evolves following the second ascending branch, which
corresponds to single-phase configurations with all springs in phase B. Thus, after reaching the value σmax

for the first time, the system first follows a wavy, approximately horizontal line, successively assuming
configurations with the number m of springs in phase A gradually decreasing from n to zero, and then
follows the second ascending branch. By comparing the two halves of Figure 6, one sees that the number
of intermediate branches, and therefore nonequilibrium processes, increases with n. At the same time,
each phase transition involves a smaller jump of σ . Therefore the whole regime of progressive phase
change occurs more smoothly.

Let us compare the model’s predictions with the deformation mechanism observed in experiments. In
Figure 7, the first row represents the undeformed configuration, and the second row shows the system
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Figure 7. Description of the deformation mechanism following the response curve (a),
and the corresponding configurations of the springs (b) and of the cell-layers (c).
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(a) (b)

Figure 8. Theoretical response curves and hysteresis loop (solid lines), compared with
average experimental response at loading (dotted line) for the 10 mm (a) specimens and
the 50 mm (b) specimens.

following the first ascending branch of the response curve. Both correspond to a homogeneous configu-
ration with all springs in phase A. A two-phase configuration with one spring more deformed than the
others is shown in the third row, and the phase transitions of all springs, one after the other, are shown
in the following rows. When all layers are strongly deformed as shown in the last row, the specimen is
back to homogeneous deformation.

3.4. Response at unloading. At unloading, the model predicts a similar behavior: after reaching the
force σmin, the system approximately follows the horizontal line σ = σmin, successively assuming con-
figurations with m gradually increasing from zero to n. The hysteresis loop determined in this way has
indeed been observed in experiments on polymer foams [Gong et al. 2005], on aluminium foams [Bart-
Smith et al. 1998; Bastawros et al. 2000], and on shape memory alloys [Miyazaki and Otsuka 1989;
Ortin 1992; Tanaka et al. 1996].

If the system is unloaded when m > 0, that is, when there are still springs in phase A, the system
follows, backwards, the two-phase equilibrium curve for the given m until the value σmin is attained. For
further decreasing deformations, the system approximately follows the horizontal line σ = σmin, until all
springs go back to phase A. A comparison of this prediction with experiments made by the authors is
given in the next section.

4. Comparison with experiment

In Figure 8, the model’s response is compared with the experimental results for the 10 and the 50 mm
specimens. As explained in Section 2.2, the two groups of specimens are characterized by different
material constants. The dotted curves are the average experimental curves of Figure 3 and the solid lines
are the response curves of the model, with the values of the constitutive constants reported in Table 1. In
the latter, according to our model’s prediction, the plateaus should indeed be wavy lines. But the waves
have been neglected, supposing that the number of springs is conveniently large.
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10 mm specimens 50 mm specimens

α 4.2 kPa 2.92 kPa
µ 4.2 kPa 2.92 kPa
c 50.8 kPa 69.9 kPa
n 5 7
β 2.5 kPa 3.5 kPa
k 47 18
a 0.67 0.72

Table 1. Values of the constitutive constants.

The constants in Table 1 have been chosen for the best fitting of the experimental curves in the first
loading branch, ε0 < 0.1, and for elongations larger than ε0 > 0.3. Indeed, our model does not predict the
positive slope exhibited by the experimental curves in the range 0.1 < ε0 < 0.3. This part of the loading
diagram has been studied in [Puglisi and Truskinovsky 2001; Marzano et al. 2003]. In [Puglisi and
Truskinovsky 2001], curves with positive slope are obtained from chains made of springs with different
energies.

Figure 9 compares the theoretical and experimental loading-unloading curves for 50 mm specimens,
for different values of the maximum elongation εmax. The curves show a qualitative agreement in the
shapes of the hysteresis loops. But there are also some discrepancies:

(i) In the model, all unloading curves begin at the upper plateau. In the experiments, the upper plateau
ends at εp ≈ 60 %, and yet the unloading curves for εmax > 60 % do not follow backwards the
unloading curve up to εp as predicted by the model.

(a) (b)

Figure 9. Theoretical (a) and experimental (b) loading-unloading curves for the 50 mm
specimens, showing the shapes of the hysteresis loops for different maximum elonga-
tions [Pampolini and Del Piero 2008].



980 GIAMPIERO PAMPOLINI AND GIANPIETRO DEL PIERO

(ii) In the model the lower plateau is horizontal, and it is the same for all εmax. In the experiments there
are different lower plateaus for different εmax, and all have a variable positive slope. The transition
from the descending curve to the plateau is not evident.

(iii) In the model, after a complete loading-unloading cycle, all curves end at the origin. In the experi-
ments, there is a residual deformation whose amount increases with εmax.

It is possible to eliminate the discrepancies in point (ii) by introducing a damage variable (see [Pampolini
and Del Piero 2008]), and to attribute those in point (iii) to residual plastic deformation. But both
seem rather to be due to retarded elasticity, with a decay time much larger than the duration of the
experiment. Indeed, our observations confirm those of [Gong et al. 2005], according to which the residual
deformations are completely recovered when the specimen is left at rest for 48 hours.
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