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AN INTRODUCTION OF THE LOCAL DISPLACEMENTS OF MASS AND
ELECTRIC CHARGE PHENOMENA INTO THE MODEL OF THE MECHANICS

OF POLARIZED ELECTROMAGNETIC SOLIDS

YAROSLAV BURAK, VASYL KONDRAT AND OLHA HRYTSYNA

Using the fundamental principles of thermodynamics of irreversible processes and continuum mechan-
ics and electrodynamics, a complete set of equations of the thermomechanics of an electroconducting
polarized medium has been obtained by taking into account the local displacements of mass and electric
charge. To determine the thermodynamic state, two additional state parameters, namely the induced
mass and the gradient of the energy measure of mass displacement, have been introduced. Two other
parameters, the energy measure of mass displacement and the mass displacement vector, have been
coupled to the aforementioned parameters. Such an extension of the state parameter space allows one to
describe the near-surface inhomogeneity of the stress-strained state and the electric polarization as well
as the surface charges and the electromagnetic signals induced by the surface formation.

1. Introduction

The theory of coupled electro-magneto-thermo-mechanical processes in polarized media has been the
subject of many investigations, as have the applied problems of electrodynamics and mechanics of po-
larized structure [de Groot and Mazur 1962; Karnaukhov and Kirichok 1988; Maugin 1988; Nowacki
1983; Sedov 1997; Khoroshun 2006; Burak 1967]. Studying the process of electric polarization (the
local displacement of electric charge) authors usually do not take into account the accompanying local
displacement of mass, for example, the relative displacement of nuclei and electrons or of hydrogen and
oxygen atoms in a water molecule, etc. Note also that the displacement of mass can arise without electric
polarization [Hrytsyna and Kondrat 2006], for example, in the case of accelerated motion of a body with
mass asymmetric molecules. The process of the mass displacement in thermomechanical systems was
reported for the first time in [Burak 1987]. Later the studies in this direction have been concerned mostly
with interfacial phenomena including the strength of the surface layers [Burak et al. 1991; Hrytsyna et al.
2006].

The purpose of this paper is the formulation and analysis of a mathematical model for the description
of electro-magneto-thermo-mechanical processes in electroconducting polarized solids while taking into
account the displacement of electric charges (polarization) and local displacement of mass.

Keywords: coupled electro-magneto-thermo-mechanical processes, electroconducting polarized nonferromagnetic solids,
local displacements of mass and electric charges, interfacial phenomena.
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2. The model

2A. Investigation object. We consider an isotropic thermoelastic polarized nonferromagnetic solid un-
der the synergistic influence of external stresses, temperature gradients, and electromagnetic fields which
induce mechanical, thermal, and electromagnetic processes in the body (domain (V )) enclosed by sur-
face (6). The electromagnetic field causes the ordering of bound electric charges (polarizations) that is
described by densities of electric flux Jes and mass flux Jms . The mass flux is caused by the difference
in mass of bounded positive and negative charges.

All fields, which characterize the processes in solids, must satisfy the fundamental physical laws such
as the conservation laws of mass, momentum, angular momentum, entropy, and energy.

The initial relations of the proposed model are based on the Euler approach.

2B. Electrodynamics Equations. Maxwell’s equations can be written in the local form [Bredov et al.
1985; Landau and Lifshitz 1984; Tamm 1979]

∇ · B = 0, ∇ · D = ρe, ∇ × E = −
∂B
∂t

, ∇ × H = Je f , (2-1)

where E, H are the electric and magnetic fields; D, B are the vectors of electric and magnetic inductions;
for nonferromagnetic mediums B = µ0H; D = ε0E + 5e, where 5e ≡ P denotes the local displacement
of electric charge (polarization); ε0, µ0 are the electric permittivity and the magnetic permeability of
vacuum (electric and magnetic constants); ρe is the density of free electric charge; Je f = Je + Jed + Jes

is the density of the total electric current; Je is the density of electric current (convection and conduction
currents); Jed = ε0 (∂E/∂t); Jes = ∂5e/∂t is the density of current, caused by ordering of a charged
system (polarization current), and ∇ is the Hamilton operator.

We introduce the density of induced charge ρeπ [Bredov et al. 1985], and require that for an arbitrary
solid of finite size (domain (V )) the vector 5e of the local displacement of the electric charge and the
density ρeπ satisfy (see also Bredov et al. [1985])∫

(V )

5e dV =

∫
(V )

ρeπrdV, (2-2)

where r is the position vector. Taking into account the arbitrariness of the domain (V ), the independence
of Equation (2-2) from the choice of frame and the identity a ·5e = (5e · ∇) (a · r), where a is an arbitrary
constant vector, from (2-2) we deduce∫

(V )

ρeπ dV = 0, ρeπ = −∇ · 5e. (2-3)

After differentiation by time, the second relation of the set (2-3) and using Jes = ∂5e/∂t we obtain the
following equation

∂ρeπ

∂t
+ ∇ · Jes = 0,

which has the form of the conservation law of induced electric charges [Bredov et al. 1985]. From now
on instead of 5e we shall use the standard notation for the polarization vector P.
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2C. The mass balance equation. The mass balance equation in the integral form is given by

d
dt

∫
(V )

ρdV = −

∮
(6)

J∗ · nd6, (2-4)

where ρ is the mass density, J∗ denotes the density of the mass flux, and n is the outward unit normal
to the surface (6). We assume that the density of mass flux J∗ is the sum of the convective component
Jmc = ρv∗, where v∗ is the average velocity of the displaced particles of the body, and the component
Jms related to the ordering of structure of a physically small element of the body. Thus the equation of
mass balance (2-4) can be written as follows

d
dt

∫
(V )

ρdV = −

∮
(6)

(
ρv∗ + Jms

)
· nd6.

We introduce the local mass displacement vector as 5m(t) =
∫ t

0 Jms(t ′)dt ′. Then, for the flux Jms we
obtain

Jms = ∂5m/∂t. (2-5)

Thus the velocity v of the center of mass is v =
1
ρ

(
ρv∗ +

∂5m
∂t

)
, and the equation of mass balance can

now be written in the standard form
∂ρ

∂t
+ ∇ · (ρv) = 0. (2-6)

By analogy with the induced charge, we introduce the density of induced mass ρmπ , which has the
dimension of mass density, so that ρmπ , 5m , r satisfy (see Equation (2-2))∫

(V )

5m dV =

∫
(V )

ρmπrdV . (2-7)

From Equation (2-7) one deduces the following relations [Bredov et al. 1985]∫
(V )

ρmπ dV = 0, ρmπ = −∇ · 5m . (2-8)

We note that from Equation (2-5) and (2-8) one can obtain the equation

∂ρmπ

∂t
+ ∇ · Jms = 0,

which has the form of the conservation law of induced mass.

2D. Equation of entropy balance. The general form of the entropy balance equation is [de Groot and
Mazur 1962]

d
dt

∫
(V )

ρs dV = −

∮
(6)

Js · nd6 −

∮
(6)

ρsv · nd6 +

∫
(V )

σs dV +

∫
(V )

ρ
<

T
dV , (2-9)

where s is the specific entropy (entropy per unit mass), Js is the density of entropy flux, T is the absolute
temperature, σs is the strength of the entropy source, or the entropy production per unit volume and unit
time, and < denotes the distributed thermal sources.
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In the local form Equation (2-9) is given by

ρT
ds
dt

= −∇ · Jq +
1
T

Jq · ∇T + T σs + ρ<. (2-10)

Here Jq = T Js is the density of heat flux and d/dt = ∂/∂t + v · ∇ is the substantive derivative.

2E. Equation of the balance of electromagnetic field energy. From the Maxwell equations (2-1), the
equation, which is known as the energy balance equation of the electromagnetic field [Bredov et al. 1985;
Landau and Lifshitz 1984; Tamm 1979], follows, namely

∂Ue

∂t
+ ∇ · Se +

(
Je +

∂P
∂t

)
· E = 0, (2-11)

where Ue =
(
ε0E2

+ µ0H2
)
/2 is the energy density of the electromagnetic field and Se = E × H is the

flux density of its energy.
Let us rewrite the last term in Equation (2-11) in such a way that it contains the specific polarization

p = P/ρ, the vectors E∗, P∗, Je∗ of the electromagnetic field and density of electric current in the
reference frame of the center of mass moving with speed v relatively to the laboratory reference frame,
that is,

E∗ = E + v × B, P∗ = P + ε0µ0v × M, Je∗ = Je − ρev.

Here M denotes the magnetization vector (in the nonmagnetic case the magnetization vector is zero) and
Je∗ is the conduction current density. Using the mass conservation law (2-6), we can rewrite the balance
equation of energy of electromagnetic field (2-11) as

∂Ue

∂t
+ ∇ · Se + Je∗ · E∗ +

[
ρeE∗ +

(
Je∗ +

∂(ρp)

∂t

)
×B + ρ

(
∇E∗

)
·p

]
· v

+ ρE∗ ·
dp
dt

− ∇ ·
[
ρ
(
E∗ · p

)
I · v

]
= 0. (2-12)

2F. Equation of balance of energy for system body — electromagnetic field. We assume that for an
arbitrary moment of time, the total energy of system is the sum of internal energy ρu (u is the specific
internal energy), kinetic ρv2/2 energy, and the energy of the electromagnetic field Ue. On the other
hand, the total energy change is the result of the convective energy transport ρ

(
u + v2/2

)
through the

surface, the work σ̂ · v of surface forces; the heat flux Jq , the electromagnetic energy flux Se, the work
µJm connected to the mass transport relative to the center of mass of the body (here Jm = ρ(v∗ − v));
the work µπ∂5m/∂t related with structure ordering (local mass displacement), and the action of mass
forces F and distributed thermal sources <. One therefore has

d
dt

∫
(V )

(
ρu + Ue +

1
2ρv2)dV =

−

∮
(6)

[
ρ
(
u +

1
2 v2)v − σ̂ · v+Se + Jq + µJm + µπ

∂5m

∂t

]
· nd6 +

∫
(V )

(
ρF · v + ρ<

)
dV, (2-13)

where σ̂ is the Cauchy’s stress tensor, µ is the chemical potential, and µπ is the energy measure of the
influence of the mass displacement on the internal energy.
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By the use of the Ostrogradsky–Gauss theorem, the balance equations of mass (2-6), the electromag-
netic energy equation (2-12), and the entropy equation (2-10), we obtain from Equation (2-13)

ρ
du
dt

= ρT
ds
dt

+

[
σ̂ −ρ

(
E∗ ·p

)
Î
]
:

d ê
dt

+ρE∗ ·
dp
dt

−µ′

π

∂∇ · 5m

∂t
−∇µ′

π ·
∂5m

∂t
+ρeE∗ −Je∗ ·E∗

−Jq ·
∇T
T

−T σs +v ·

{
−ρ

dv
dt

+∇ ·
[
σ̂ −ρ

(
E∗ ·p

)
Î
]
+

(
Je∗ +

∂(ρp)

∂t

)
×B+ρ

(
∇E∗

)
·p+ρF

}
, (2-14)

where µ′
π = µπ −µ, ê =

[
∇u + (∇u)T

]
/2 is the strain tensor, u is the displacement vector, and an upper

index T denotes a transposed tensor.
Introducing the specific values πm = 5m/ρ and ρm = ρmπ/ρ and taking into account the mass balance

Equation (2-6), we obtain the following balance equation for the internal energy using Equation (2-14)

ρ
du
dt

= ρT
ds
dt

+ σ̂ ∗ :
d ê
dt

+ ρE∗ ·
dp
dt

+ ρµ′

π

dρm

dt
− ρ∇µ′

π ·
dπm

dt
+ Je∗ · E∗ − Jq ·

∇T
T

− T σs + v ·

{
−ρ

dv
dt

+ ∇ · σ̂ ∗ + ρeE∗+

(
Je∗ +

∂(ρp)

∂t

)
× B + ρ

(
∇E∗

)
· p + ρF∗

}
, (2-15)

where
σ̂ ∗ = σ̂ − ρ

(
E∗ · p − ρmµ′

π − πm · ∇µ′

π

)
Î, F∗ = F + ρm∇µ′

π − πm · ∇∇µ′

π .

Furthermore, when using the new thermodynamical function of the generalized Helmholtz free energy
f = u − T s − E∗ · p + ∇µ′

π · πm , we obtain from Equation (2-15)

ρ
d f
dt

= −ρs
dT
dt

+ σ̂ ∗ :
d ê
dt

− ρp ·
dE∗

dt
+ ρµ′

π

dρm

dt
+ ρπm ·

d∇µ′
π

dt
+ Je∗ · E∗ − Jq ·

∇T
T

− T σs + v ·

{
−ρ

dv
dt

+ ∇ · σ̂ ∗ + ρeE∗ +

(
Je∗ +

∂(ρp)

∂t

)
× B + ρ

(
∇E∗

)
· p + ρF∗

}
. (2-16)

From the requirement that Equation (2-16) is invariant with respect to translations and assuming that
the free energy f is the function of scalar quantities T , ρm , vector quantities E∗ , ∇µ′

π , and tensor
quantity ê (all of them are independent parameters), we obtain the generalized Gibbs equation

d f = −sdT + ρ−1σ̂ ∗ : d ê − p · dE∗ + µ′

πdρm + πm · d∇µ′

π , (2-17)

a relation for the entropy production

σs = Je∗ ·
E∗

T
− Jq ·

∇T
T 2 , (2-18)

and the momentum equation

ρ
dv
dt

= ∇ · σ̂ ∗ + Fe + ρF∗, (2-19)

where Fe = ρeE∗ +
(
Je∗ + ∂(ρp)/∂t

)
× B + ρ

(
∇E∗

)
· p is the ponderomotive force.

In this case the free energy depends not only on temperature T , strain tensor ê and electric field
E∗, but also on the parameters related to the mass displacement, namely, ρm and ∇µ′

π . Note that the
introduction of both the local mass displacement and the electric charge displacement leads to additional
(ponderomotive) forces in Equation (2-19) and to the redefinition of the stress tensor.
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2G. Constitutive relations. Since the parameters T , ρm , E∗, ∇µ′
π , and ê are independent, we obtain the

following relations from the Gibbs Equation (2-17)

s = −
∂ f
∂T

∣∣∣∣
ê, ρm , ∇µ′

π ,E∗

, σ̂ ∗ = ρ
∂ f
∂ ê

∣∣∣∣
T, ρm ,∇µ′

π ,E∗

, µ′

π =
∂ f
∂ρm

∣∣∣∣
T, ê, ∇µ′

π ,E∗

,

p = −
∂ f
∂E∗

∣∣∣∣
T, ê, ρm ,∇µ′

π

, πm =
∂ f

∂(∇µ′
π )

∣∣∣∣
T, ê, ρm , E∗

. (2-20)

Let ê = 0, T = T0, ρm = 0, E∗ = 0, ∇µ′
π = 0, s = s0, σ̂ ∗ = 0, µ′

π = µ′

π0, p = 0, and πm = 0 in the
reference state, then in the linear approximation, Equation (2-20) may be written in the form

s = s0 − [as
T (T − T0) + ρ−1

0 aeT e + aρT ρm],

σ̂ ∗ = 2aσ
2 ê + [aσ

1 e + aeT (T − T0) + aeρρm] Î,

µ′

π = µ′

π0 + aµ
ρ ρm + ρ−1

0 aeρe + aρT (T − T0),

p = −a p
E E∗ − aEµ∇µ′

π , πm = aπ
µ∇µ′

π + aEµE∗, (2-21)

where e ≡ ê : Î is the first invariant of the strain tensor; aσ
1 , aσ

2 , as
T , aµ

ρ , a p
E , aπ

µ , aeT , aρT , aeρ , and aEµ are
the characteristics of material; and s0 and µ′

π0 are the entropy and the reduced potential µ′
π , respectively,

in the reference state.
An analysis of the Gibbs equation reveals that our model requires two additional pairs of parameters

for enabling us to describe the local thermodynamic state of the body:

(i) the induced mass ρm = −
(
∇ · 5m

)
/ρ and the energy measure µ′

π of the influence of the mass
displacement on internal energy;

(ii) the vector of density of the mass displacement πm = 5m/ρ and the gradient of µ′
π .

These parameters are related to the local displacement of the mass. Such an extension of the state
parameters space allows one to describe near-surface inhomogeneity of the stress-strained state and
electrical polarization [Hrytsyna and Kondrat 2006; Burak et al. 1991; Hrytsyna et al. 2006]. Indeed,
according to the chosen model the electric polarization is caused not solely by the electric field but also
by the gradient of µ′

π . In the near-surface region the value of |∇µ′
π | can be sufficiently large to induce

essential surface polarization. This can be important in studies of electromagnetic emission caused by the
formation of a new surface within the body or an electromagnetic response of the body towards external
dynamic influence on its surface [Fursa et al. 2003]. The details of such phenomena are considered below
where we describe the near-surface inhomogeneity in an infinite polarized layer.

By using the Onsager principle and Equation (2-18) for the entropy production, one finds in the linear
approximation [de Groot and Mazur 1962]

Je∗ = σeE∗ + σeη∇T, Jq = −λ∇T + πt Je∗,

where σe and λ are electric and thermal conductivity, respectively. Here coefficients η and πt characterize
thermoelectric phenomena and are related by T η = −πt , respectively.
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The obtained constitutive relations, the conservation laws of momentum, masses, and entropy, the
equations of electrodynamics and geometrical relations form a complete set of equations of electro-
magneto-thermo-mechanics of the polarized nonferromagnetic solids taking into account the local dis-
placements of the mass and electric charge.

Let us take the displacement vector u, temperature T , electric field E, magnetic induction B, and the
induced mass ρm as a set of basic functions. Then in the linear approximation we obtain the following
equation for ρm

1ρm +
1

aπ
µaµ

ρ

ρm = −
1

aµ
ρ

[
aeρ

ρ0
1

(
∇ · u

)
+ aρT 1T +

aEµ

aπ
µ

∇ · E
]
.

It is possible to show that one may present ρm as a functional of functions u, T , and E, therefore ρm can
be eliminated from the basic set of equations and also from the constitutive relations. In this case, the
basic set of equations becomes integro-differential equations whereas the constitutive equations (2-21)
become spatially nonlocal.

3. Example

We consider an elastic polarized layer of an ideal dielectric in the region −l ≤ x ≤ l. At time t = 0 the
layer is cut from an infinite medium in such a way that at time t > 0 it is in contact with a medium which
behaves as vacuum with regards to its electromagnetic properties. The effect of temperature is neglected
while the processes of deformation, polarization, and displacement of mass are considered.

In this case the basic functions f = {u, E, p, D, πm, Ev} and g = {µ̃′
π , ρm} are functions of the space

coordinate x and time coordinate t such that f = ( f, 0, 0), f = {u, E, p, D, πm, Ev}, f = f (x, t), and
g = g(x, t), where Ev is the vector of the electric field in vacuum, and µ̃′

π = µ′
π − µ′

π0.
With this notation our basic set of equations is reduced to the set of equations for the layer −l ≤ x ≤ l

ρ0
∂2u
∂t2 =

(
aσ

1 + 2aσ
2 −

a2
eρ

ρ0aµ
ρ

)∂2u
∂x2 +

aeρ

aµ
ρ

∂µ̃′
π

∂x
, µ0

(
ε0 − ρ0a p

E

)∂ E
∂t

− ρ0µ0aEµ

∂2µ̃′
π

∂x∂t
= 0,

∂2µ̃′
π

∂x2 +
1

aπ
µaµ

ρ

µ̃′

π =
1

aπ
µaµ

ρ

aeρ

ρ0

∂u
∂x

−
aEµ

aπ
µ

∂ E
∂x

,

where E = −∂ϕ/∂x , ϕ is the electric potential, and the set of equations for the potential ϕv of the electric
field in vacuum (x < −l, x > l) is

∂2ϕv

∂x2 − ε0µ0
∂2ϕv

∂t2 = 0, Ev = −
∂ϕv

∂x
.

The surfaces of the layer are stress-free and the potential µ′
π at x = ±l is zero. Therefore, taking into

account the continuity condition for electric potential, the boundary conditions and radiation conditions
become (

aσ
1 + 2aσ

2 −
a2

eρ

ρ0aµ
ρ

)∂u
∂x

+
aeρ

aµ
ρ

µ̃′

π = 0, lim
x→±∞

(∂ϕv

∂x
±

√
ε0µ0

∂ϕv

∂t

)
= 0,

µ̃′
π = −µ′

π0, ϕ = ϕv.
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We suppose that at t = 0 the sought functions are zero. Neglecting the inertial forces, the solution of this
boundary problem is given by

µ̃′

π = −µ′

π0
ch(λx)

ch(λl)
θ(t), E = −λµ′

π0
ρ0aEµ

ε0 − ρ0a p
E

sh(λx)

ch(λl)
θ(t),

ϕ = µ′

π0
ρ0aEµ

ε0 − ρ0a p
E

ch(λx)

ch(λl)
θ(t), p = λµ′

π0
ε0aEµ

ε0 − ρ0a p
E

sh(λx)

ch(λl)
θ(t),

σyy = σzz ≡ σ = −µ′

π0
aeρ

aµ
ρ

[
1 −

aσ
1

aσ
1 + 2aσ

2 − a2
eρ/

(
ρ0aµ

ρ

)(
1 −

a2
eρ

ρ0aµ
ρ

)]ch(λx)

ch(λl)
θ(t)

for −l ≤ x ≤ l;

ϕv =


µ′

π0
ρ0aEµ

ε0−ρ0a p
E

θ
(
t +

√
ε0µ0(x + l)

)
, if x < −l,

µ′

π0
ρ0aEµ

ε0−ρ0a p
E

θ
(
t −

√
ε0µ0(x − l)

)
, if x > l,

where

λ2
= −

ρ0(aσ
1 + 2aσ

2 )(ε0 − ρ0a p
E)[

ρ0aµ
ρ (aσ

1 + 2aσ
2 ) − a2

eρ
][

aπ
µ(ε0 − ρ0a p

E) + ρ0a2
Eµ

] .

For the density of the bound surface charge σse(±l) = ρ0 p(±l) at t > 0 one has

σse(±l) = µ′

π0λaEµ

ε0ρ0

ε0 − ρ0a p
E

th(λl). (3-1)

The analysis of the solution shows that the distributions of the stresses σyy , σzz , the reduced energy
measure µ̃′

π and functions E , ϕ, and p exhibit inhomogeneities close to the surface. Figure 1 displays
the distributions of the stresses σ/σ ∗, the electric potential ϕ/ϕ∗, and electric polarization p/p∗ in the
layer where

ϕ∗
= µ′

π0
ρ0aEµ

ε0 − ρ0a p
E

, p∗
= µ′

π0
ε0λaEµ

ε0 − ρ0a p
E

,

σ ∗
= −µ′

π0
aeρ

aµ
ρ

[
1 −

aσ
1

aσ
1 + 2aσ

2 − a2
eρ/(ρ0aµ

ρ )

(
1 −

a2
eρ

ρ0aµ
ρ

)]
.

As one can see, thin layers (curves 1–3 in Figure 1 are characterized by the overlay of the near-surface
inhomogeneities while there is a well-defined bulk region characterized by the uniform (constant) profile
for thicker layers (curves 4 and 5). This effect manifests itself in the dependence of the surface charge
density σse/σ

∗
se, where σ ∗

se = µ′

π0λaEµε0ρ0/(ε0 − ρ0a p
E) , on the layer thickness (see Figure 2).

The bounded charge (3-1) is induced at the surfaces of the layer while in the vacuum the momentum
of the electric field arises and propagates from x = ±l to ±∞. Thus the proposed model allows the
description of the interface inhomogeneity of the stress-strained state and the surface polarization in
dielectrics, the appearance of electrical charge at surfaces as well as an electromagnetic signal caused by
the surface formation.
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Figure 1. The distributions of the stresses σ/σ ∗ , the electric potential ϕ/ϕ∗ , and elec-
tric polarization p/p∗ in the layer for λl = 1.5, 2.5, 5, 10, 30, that is, curves 1–5 respec-
tively.

Figure 2. The dependence of the surface charge density σse/σ
∗
se on the layer thickness

l∗ = λl.
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