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ANDRZEJ FRĄCKOWIAK, JENS VON WOLFERSDORF AND MICHAŁ CIAŁKOWSKI

The present work shows the modified concept of the finite element method which has been applied to
the solution of the inverse problem (of Cauchy type) for heat conduction equation in a circular ring. The
main idea of the new concept consists of the application a new type of base function which cause the
vanishing of some integrals in the strong formulation. The calculation with the new base functions takes
place in the physical space, and there is no need to go to the isoparametric one. Numerical calculations
of the inverse problem confirm the good properties of a new set of base functions.

1. Introduction

The complex character of the domain and the equations depicting heat-flow problems in arbitrary bodies
impose the need for use of numerical methods such as the finite element method (FEM) for solving them.
In order to satisfy continuity of a function between particular finite elements isoparametric elements are
typically used, which, in consequence, results in increased computational costs. In order to reduce the
computational effort and satisfy continuity of the interpolated function in the entire domain at the same
time, interpolation of the solution at the element (the physical space) is proposed with the use of a new
type of base functions.

Consideration of the heat conduction equation in discretized form is conducive to some integrals that
should be numerically calculated. In order to avoid some of the integrals, test functions are introduced.
Their regularity affects accuracy of the temperature field computed this way.

The method proposed in the present paper is a generalization of the finite element methods presented
in [Gresho and Sani 2000]. Aspects of such an approach are discussed below.

2. Numerical method for solving the direct and inverse problems

In order to present the new conception let us consider the Laplace equation in the � domain, as shown
in Figure 1:

1T = 0, T ∈ C2(�i ). (2-1)

First, the neighborhood of the point Pi is considered. The elements including the point Pi form the
domain

�i =

ni⋃
α=1

�iα.
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Figure 1. The domain � divided into elements.

Let the test function w ∈ C2(�iα)∩ C1(�i ). Multiplication of Equation (2-1) by the w function and
integration over the �i domain provides∫

�i

1T ·w ·dω =

ni∑
α=1

∫
�iα

1T ·w ·dω =

ni∑
α=1

∫
∂�iα

[div(∇T ·w)−div(T ·∇w)]·dω+

ni∑
α=1

∫
�iα

T ·1w ·dω = 0.

Application of the Gauss–Ostrogradski theorem gives

ni∑
α=1

∫
∂�iα

(
w ·

∂T
∂n

− T ·
∂w

∂n

)
· ds +

ni∑
α=1

∫
�iα

T · 1w · dω = 0, i = 1, 2, . . . . (2-2)

Taking into account continuity of the w function within the element �i and continuity of the derivative
∂T/∂n, the integral of the product w ·∂T/∂n at common boundaries ∂�iα between the elements vanishes,
so that

ni∑
α=1

∫
∂�iα

w ·
∂T
∂n

· ds =

∫
∂�i

w ·
∂T
∂n

· ds. (2-3)

The integral at the right-hand side of Equation (2-3) disappears provided that w|∂�i = 0. The essence
of the present conception consists of the formulation of such a test function that takes zero values at
the ∂�i boundary. In consequence, the number of integrals of (2-2) is reduced. Moreover, if the w

function is differentiable in the domain �i , the first sum of (2-2) disappears too. Let us consider the case
w ∈ C2(�iα) ∩ C1(�i ) ∩ C0(∂�i ). There, with (2-2), the point Pi /∈ 0, shown in Figure 2a, takes the
form

−

ni∑
α=1

∫
∂�iα

T ·
∂w

∂n
· ds +

ni∑
α=1

∫
�iα

T · 1w · dω = 0, i = 1, 2, . . . . (2-4)

The condition Pi ∈ 0, shown in Figure 2b, results in w = 0 at the boundary ∂�i\0 ∈ �i . This gives, for
(2-2), the form∫

0i

w ·
∂T
∂n

· ds −

ni∑
α=1

∫
∂�iα

T ·
∂w

∂n
· ds +

ni∑
α=1

∫
�iα

T · 1w · dω = 0, i = 1, 2, . . . . (2-5)



NEW CONCEPTION OF THE FEM BASE FUNCTIONS 1049
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Figure 2. Neighbourhood �i of the Pi points inside (left) and outside (right) of the mesh.

The above equations form a basis for solving the stationary equation of heat conduction with FEM. An
important feature of this approach is that only an approximation of temperature function T in the �iα

domain is sufficient for solving the equation, without differentiation of the T function approximation or
other operations performed on derivatives of the function. The normal derivative of the T function at the
boundary of the � domain is considered as an independent variable and determined from the boundary
conditions. The solution of the Laplace equation in the �iα element is approximated by the function

T (P) =

m∑
i=1

Ti · ϕiα(P), (2-6)

where the base functions ϕiα meet the condition

ϕiα(Pj ) =

{
1, i = j,

0, i 6= j.
(2-7)

The base functions ϕiα are formulated on the grounds of the observation that

ϕP L(x, y) =
AL x + BL y + CL

AL x p + BL yp + CL
, (2-8)

where AL x + BL y + CL = 0 is the equation of the straight line L and (x p, yp) are the coordinates of the
point P (shown in Figure 3), satisfying the condition (2-7) and taking zero values at the line L .

The base functions ϕiα are products of the functions for various straight lines, (2-8), and the same
point P ,

ϕiα(x, y) = ϕi j1(x, y) · ϕi j2(x, y), (2-9)

L

P(xp,yp)

Figure 3. Element line and point for base function considerations.
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Figure 4. Relationships for base functions.

where the index i is related to the point P , while the indices j1 and j2 are related to the straight lines L .
Consideration of the 6-node triangular element of the mesh as shown in Figure 4b enables us to

formulate the base function ϕiα given by Equation (2-9) for each of the nodes Pi , i = 1, 2, . . . , 6, where
the indices j1 and j2 related to the straight lines L are defined in Figure 4. More universal formulation
of this type of base functions is described in [Frąckowiak ≥ 2008].

The function ϕiα defined by (2-9) in the domain �iα , apart from having the property (2-7), takes zero
values at the sides of the mesh element including no point P . Based on this function let us define another
function ϕi (Q) continuous in �i , ϕi (Q) = ϕiα(Q), with Q ∈ �iα and α = 1, 2, . . . , ni . This definition
gives evidence that the function ϕi (Q) takes zero values at the boundary ∂�i of the �i element that
bounds the neighborhood of the inner point Pi . When the point Pi is located at the outer boundary 0,
the ϕi (Q) function is nonzero at the part of the boundary 0 ∩ ∂�i .

The above property and the assumption of continuity of the function ϕi (Q) in �i provide a basis for
solving the problem with FEM.

Substitution of an approximate solution (2-6) into (2-4) and (2-5) and the use of a linear approximation
of the normal derivative between the nodes of the 0 boundary allow us to formulate a system of equations
in the matrix form

A�0T0 + A��T� = O,

A00T0 + A0�T� = B0 Q0.
(2-10)

The number of nodes of the entire field is n. There are inner n� and boundary n0 (n = n0 + n�) nodes.
Determining the vector T� from the first equation of (2-10), T� = − A−1

�� A�0T0, and substituting into
the other, we obtain (A00 − A0� A−1

�� A�0)T0 = B0 Q0. This expression is a relationship well known in
the boundary element method,

AT0 = B0 Q0. (2-11)

3. Analytical solution of the inverse problem of heat conduction

The application of the new type of base functions will be illustrated using an analytical solution of an
inverse problem for a circular ring (see Figure 5).

The ring has an outer radius ro = 1 and an inner radius ri < ro. The inverse heat conduction problem
may be formulated in dimensionless coordinates by giving the distributions of temperature and heat flow
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(a) (b)
Figure 5. Temperature and heat flow density distributions at the outer boundary of the
ring C = 0.5, a = 0.4, Tc = 0.9, ri = 0.5.

density at the outer boundary of the ring [Wróblewska et al. 2008].

0o : Two = Tc, qo = C ·
1 − a cos ϕ

(1 + a2 − 2a cos ϕ)
, a ≤ ri .

Moreover, the temperatures in the neighborhoods of the outer and inner boundaries, To = 1 and Ti = 0,
are known. The objective is to determine the heat flow and temperature distributions at the inner surface
of the ring.

Solution of such a problem is achieved by power series expansion of the q0 function determined at
the outer ring boundary,

qo = C ·
1 − a cos ϕ

(1 + a2 − 2a cos ϕ)
= C · Re

(
1

1 − aeiϕ

)
= C · Re

( ∞∑
m=0

(
a · eiϕ

)m
)

= C ·

∞∑
m=0

am cos(mϕ),

and hence

T (r, ϕ) = Tc + C · ln(r) + C ·

∞∑
m=1

1
2m

[
(ar)m

−

(
a
r

)m ]
cos(mϕ). (3-1)

Based on the solution of the inverse problem (3-1) the temperature and heat flow density patterns at the
outer boundary (see Figure 5) are determined, for which the inverse problem is to be solved. For the
given temperatures outside To and inside Ti the ring distributions of normalized heat transfer coefficients
with regard to the angle,

0o : αo =
qo

(To − Two)
, 0i : αi =

qi

(Ti − Twi )
,

are shown in Figure 6.
The vectors of temperatures and heat flow at the ring domain boundary, T0 and Q0 , that appear in the

formula (2-11) are decomposed into the values related to the outer and inner ring boundaries, respectively,
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Figure 6. Distributions of heat transfer coefficients α at the inside and outside ring
boundaries C = 0.5, a = 0.4, Tc = 0.9, ri = 0.5.

as

T0 =

[
Two

Twi

]
, Q0 =

[
qo

qi

]
.

The relationship (2-11) is then transformed to obtain a solution of the inverse problem [Frąckowiak et al.
2006], [

Twi

qi

]
=

[
−Bi Ai

]I [
Bo −Ao

] [
Two

qo

]
. (3-2)

This relationship may also be so transformed as to consider the third kind of boundary condition of the
direct problem [Frąckowiak et al. 2006][

Two

Twi

]
=

[
Bo + αo Ao Bi + αi Ai

]−1 [
αo Ao αi Ai

] [
To

Ti

]
.

4. Results of the numerical calculation

The ring, shown in Figure 5, is divided into 450 triangular domains, see Figure 7, thus generating 200
points located at the ring boundary (100 at the inner one and 100 at the outer) and 700 inner points. The
direct and inverse problems of ring cooling have been solved according to the method proposed in the
present paper.

P1

P3

P2

i

P6

P4

P5

Figure 7. A mesh element.
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Figure 8. Temperature distribution at the outer (a) and inner (b) boundaries for the direct
and inverse problems.

q

q

(a)
q

q

(b)

Figure 9. Heat flow density distribution at the outer (a) and inner (b) boundaries for the
direct and inverse problems.

(a) (b)
Figure 10. Normalized heat transfer coefficient α distributions at the outer (a) and inner
(b) boundaries for the direct and inverse problems.
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Type Temperature error L2T [%] 

m f max =0 max =0.1 max =0.5 max =1 max =5 max =10 

The direct problem 0.03 0.03   0.03   0.04 0.15   0.35 

3 1.71 1.72   1.97   2,81 5.50 23.44 

5 0.16 8.29 49.73 53.14   

T
h
e 

in
v
er

se
 

p
ro

b
le

m
, 

w
it

h
o
u
t 

sm
o

o
th

in
g

 
8 0.05      

3 1.74 1.74   1.76   1.83 3.12 5.57 

5 0.32 4.32 29.54 51.00   90

8 0.35      

3 1.74 1.74   1.75   1.81 2.47 4.55 

5 0.33 1.74 25.54 30.82   50

8 0.35      

3 1.74 1.74 1.74   1.75 2.37 3.62 

5 0.33 1.81 5.33 14.41   20

8 0.38 1.95 6.19 12.98   

3 2.77 2.77 2.76 2.77 2.88 3.50 

5 2.77 2.77 2.76 2.77 2.83 3.00 

T
h
e 

in
v
er

se
 p

ro
b
le

m
 w

it
h
 s

m
o
o
th

ed
 b

o
u
n
d
ar

y
 

co
n
d
it

io
n

s 

4

8 2.77 2.77 2.77 2.77 2.85 2.79 

Table 1. Relative error of temperature distribution at the ring boundary for various dis-
turbances of the boundary conditions with the error εmax[%], various f parameters of
the SVD algorithm, and various numbers of base functions m for smoothing of boundary
conditions.

The inverse matrix
[
−Bi Ai

]I
of the inverse problem has been computed with the SVD (singular value

decomposition) algorithm with various values of the f parameter [Frąckowiak et al. 2006]. Results of
calculation of the direct and inverse problems, for example, the distributions of temperature, heat flow
density, and surface film conductance at the inner and outer ring boundaries for undisturbed boundary
conditions, and the parameter f = 5 (with the f parameter affecting only the inverse task), are shown in
Figures 8–10.

Moreover, Tables 1 and 2 present relative errors of temperature and heat flow density at the ring
boundaries with regard to the analytical solution given by the formula

δL2T =

∫
0

(
T − Tanalyt

)2ds∫
0

T 2
analyt ds

· 100%, δL2q =

∫
0

(
q − qanalyt

)2ds∫
0

q2
analyt ds

· 100%. (4-1)

The boundary conditions (temperature and heat flow density) in both cases have been disturbed with
a relative error given by the formula

ε = εmax · (2 · random −1), (4-2)
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Type Heat flow error L2q [%]

m f max =0 max =0.1 max =0.5 max =1 max =5 max =10

The direct problem 0.35 0.35 0.39 0.55 2.42 5.04

3 18.01 18.04 18.79 21.60 27.68

5 3.80

T
h
e
in
v
er
se

p
ro
b
le
m
,

w
it
h
o
u
t

sm
o
o
th
in
g

8 0.66

3 18.02 18.02 18.08 18.27 22.55 33.28

5 3.8690

8 13.47

3 18.02 18.02 18.05 18.22 20.35 28.91

5 3.87 34.2550

8 13.47

3 18.02 18.02 18.04 18.09 19.47 25.13

5 3.87 38.0520

8 13.83 40.52

3 22.60 22.60 22.61 22.61 23.00 24.88

5 22.60 22.60 22.60 22.61 22.80 23.55

T
h
e
in
v
er
se
p
ro
b
le
m
w
it
h
sm
o
o
th
ed
b
o
u
n
d
ar
y

co
n
d
it
io
n
s

4

8 26.22 26.22 26.22 26.22 26.35 26.26

Table 2. Relative error of heat flow density distribution at the ring boundary for various
disturbances of the boundary conditions with the error εmax[%], various f parameters of
the SVD algorithm, and various numbers of base functions m for smoothing of boundary
conditions.

where random is a pseudorandom number in the range (0, 1).
For the inverse problem and disturbed boundary conditions the task has been computed prior to solving

it according to the formula (3-2), smoothing temperature and heat flow density at the outer boundary with
a trigonometric polynomial [Wróblewska et al. 2008]. The error values (4-1) for various numbers of the
trigonometric polynomials used for boundary condition smoothing are shown in Tables 1, 2 and Figures
11, 12.

5. Summary

The FEM method introduced in this paper consists of using base functions ϕi that take zero values at
the boundary of the mesh node neighborhood, Figure 2, belonging to the domain �. Consequently,
the function that approximates the solution of the differential equation in the element is not subject to
differentiation.

The method presented in this paper, with disturbed boundary conditions, gave very good values of
temperature and flow distributions at the ring boundaries, in the sense of the norm (4-1). In the case of
temperature it was below 1%, while for the flow density it was below 14%, with the maximal level of
boundary condition disturbance amounting to εmax = 5%.
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Figure 11. Dependence of relative error of temperature on maximal level of boundary
condition disturbance for various numbers of the base functions smoothing the boundary
conditions and the parameter f = 3.

Figure 12. Dependence of relative error of heat flow density on maximal level of
boundary condition disturbance for various numbers of the base functions smoothing
the boundary conditions and the parameter f = 3.

In case of the inverse problem the best results, in the sense of the norm (4-1), have been obtained
with the f parameter of the SVD algorithm equal to 3. For temperature it was below 2%, while for
the heat flow density below 20%, with a maximal level of temperature and heat flow disturbance at the
outer ring boundary amounting to εmax = 0.5%. Smoothing of boundary conditions with the use of linear
combination of trigonometric polynomials reduced the error of the norm (4-1). For the flow it dropped
below 20% with εmax = 5% for f = 3 and 20 trigonometric functions. In case of higher values of the
parameter f ∈ (4, 8) good results have been achieved only with undisturbed boundary conditions. In
case of 4 smoothing functions the error, in the sense of the norm (4-1), remained independent on the
parameter f, amounting to less than 3% for the temperature and less than 23% for the flow.
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