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The motion of vortices in a type II superconductor is accompanied by a heat flux coming from the vortices
themselves. It leads to such thermogalvanomagnetic effects like the Nernst, Ettingshausen and Righi–
Leduc effects. Moreover, besides the linear thermoelectric Seebeck and Peltier effects, the Hall effect
also occurs. That situation seems to be very interesting because it does not take place during common
electric conductivity processes but during diffusion and/or creep of magnetic vortices in superconductors.
It is known that each vortex line carries a quantum of magnetic field and around it a supercurrent flows.
But inside the vortex core a normal current exists. Therefore, the above kinetic linear and nonlinear
effects are possible in the vortex array. The paper aims at the formulation of an unconventional thermo-
dynamical model of the above kinetic phenomena including their relaxation properties. As a result we
have obtained forms of the constitutive laws related to those processes.

1. Introduction

Magnetic flux can penetrate a type II superconductor in the form of Abrikisov vortices (also called flux
lines, flux tubes or fluxons) each carrying a quantum of magnetic flux [Tilley 1974; Tinkham 1975;
Orlando and Delin 1991; Cyrot and Pavuna 1992; Blatter et al. 1994; Brant 1995]. These tiny vortices
tend to arrange themselves in a triangular or quadratic flux-line lattice, which is more or less perturbed
by material inhomogeneities that can pin those flux lines. Pinning is caused by imperfections of a crystal
lattice of a superconducting material, such as dislocations, point effects, grain boundaries, etc. Hence
a honeycomb or quadratic pattern of the vortex array presents some mechanical properties. They come
mainly from force interactions observed in the field of vortices. Indeed, the vortices are created by the
applied magnetic field which penetrates the superconductor. Now, around each vortex the supercurrent
flows, so there are Lorentz-like force interactions among those lines. Such a situation is a cause of
the previously mentioned mechanical (stress) field occurring in the medium, besides the common one
coming from the type II superconducting material itself. That field near the lower critical magnetic
intensity limit HC1 is also of an elastic character. However, if the intensity of the supercurrent is above
its critical value, the temperature is sufficiently high, and/or the value of the applied magnetic field tends
to its upper critical limit HC2, a flow (creep or diffusion) of the vortices occurs. The vortex array then
loses its configuration and behaves as a fluid.

It has been observed that the vortex motion is accompanied by an energy dissipation. That motion is
damped by a force proportional to the velocity of the vortex field point. Hence, except for the elastic
properties, the vortex field is also of a viscous character. The resistivity in area of the vortex motion is
the same as the resistivity of a current which would flow inside the vortex core where the material is
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in the normal state and where Ohm’s law holds true. The result of the above superconducting material
properties is a temperature gradient along the vortices and a heat flux that occurs in the vortex field.

In superconductors the vortex lattice mostly consists of a parallel straight vortex line set whose cross
section forms the previously mentioned symmetries [Orlando and Delin 1991; Cyrot and Pavuna 1992].
However, recent research shows that the vortex lines can be curved or even tangled along the material
[Blatter et al. 1994; Brant 1995]. Moreover, since the vortices form, among others, sets called twisted
triplets, twisted quadruplets, single loops or pairs [Schönenberger et al. 1997], the vortex field can be
considered even in three dimensions. Because of the fact that each vortex line has a sign (has the definite
vorticity), lines of the opposite signs annihilate.

In the paper we focus solely on the kinetic part of interactions occurring in the vortex field of the type
II superconductor. The subject of our considerations are the reciprocal links between normal current,
supercurrent, heat flux and vortex diffusion flux in the vortex array. Those links are the source of
kinetic laws, both linear (Fourier’s, Fick’s, Ohm’s, London’s, Soret’s, Dufour’s, Seebeck’s, Peltier’s,
etc.) and nonlinear (Righi–Leduc’s, Ettingshausen–Nernst’s, Hall’s, etc.), all of which describe thermo-
galvanoelectromagnetic effects extended on interactions with the supercurrent [Maruszewski 1984; 1988;
Sirotin and Šaskolskaya 1979; Freimuth 2002]. All these laws have a purely kinetic character but from
the thermodynamical model presented in the paper laws of relaxation-kinetic nature like the general-
ized Maxwell–Cattaneo equation, the generalized Fick–Nonnemacher equation, and the generalized first
London’s equation result as well [Kluitenberg 1981; Restuccia and Kluitenberg 1987].

2. The unconventional thermodynamical model

Let us consider the elastic vortex array that exists in the type II superconductor placed in an external mag-
netic field. For the sake of simplicity we deal solely with soft (depinned) vortices to avoid direct material
connections between the superconducting medium and the vortex medium (to ensure our description is
related only to the vortex array).

Following the above properties the unconventional (extended-like) thermodynamical model for the
viscoelastic field of vortices in the type II superconductor is presented below. We have assumed that
the mass density ρ of the vortex field concerns the density of the material in the normal state as the
counterpart in the mixed type II superconductor [Kopnin 2002] (that is, the mass of the normal part of
the body related to the total volume of the material), and the energy dissipation occurs only because of
the Ohmic-like resistivity (normal-state resistivity) inside the vortex core [Blatter et al. 1994]. Hence
the general form of the state vector (the set of independent variables) reads [Maruszewski and Restuccia
1999; Schönenberger et al. 1997]

C = {εi j , ϕ, Ai , T, T,i , c, c,i , ψ,ψ∗, ψ,i , ψ
∗

,i , qi , j c
i , j S

i }, (1)

where εi j denotes the strain tensor, ϕ and Ai are the scalar and vector potentials, respectively, T is the
absolute temperature, ψ is the order parameter (the wave function of a Cooper pair) and ψ∗ is its complex
conjugate, j S

i is the supercurrent density, j c
i is the diffusion flux of vortices and qi is the heat flux in the

vortex field. c denotes the concentration of vortices defined as c =
ρ
ρtot

, where ρtot is the density of the
superconducting material.
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The fundamental laws, which govern the set (1), are the balances

ρċ+ j c
k,k =0, ρv̇k−σ jk, j−∈ki j ji B j − fk =0, ∈i jk σ jk =0, ρU̇−σ j ivi, j +qk,k− ji Ei −ρr =0, (2)

the evolution equations

∗

qk − Qk(C)= 0,
∗

j c
k − j c

k (C)= 0,
∗

j S
k − j S

k (C)= 0, ψ̇ −9(C)= 0, ψ̇∗
−9∗(C)= 0, (3)

where the superimposed asterisk denotes the Zaremba–Jaumann time derivative, Maxwell’s equations

∈i jk Ek, j +
∂Bi

∂t
= 0, ∈i jk Hk, j − ji = 0, Dk,k = 0, Bk,k = 0, (4)

where ji = j N
i + j S

i , and the balance of superelectrons [van de Ven 1991]

∂nS

∂t
+ j S

k,k = N S(C), j S
k,k − N S(C)= (ψ∗ψ,k +ψψ∗

,k)− [ψ∗9(C)+ψ9∗(C)]. (5)

Here vk denotes the velocity of the vortex field point, σik is the viscoelastic stress tensor, j N
i is the

normal current, B j is the magnetic induction and H j is the magnetic field strength, fk is the body
force, U is the internal energy density, Ei is the electromotive intensity in a moving frame and Ei is
the electromotive intensity in a resting frame, r is the heat source distribution, and nS is the number
density of superelectrons (Cooper pairs). The sets (2), (3), (4), and (5) consist of the equation whose
form ensures conservation of the vortex mass in the sense indicated above, the momentum balance in
the vortex field where elastic interactions are due to the Lorentz force, the equation determining the
symmetry of the stress tensor, the internal energy balance of the vortex field where the dissipation term
comes only from the Joule-like heat produced by the total current, the first law of thermodynamics, the
evolution equation for heat flux, the evolution equation for diffusion flux, the evolution equation for
supercurrent, the evolution equations for Cooper pairs wave function as the order parameter (internal
variable) evolution equations, the electromagnetic field evolution equations, and the balance equations
for superelectrons. Such equations form the structure of an unconventional thermodynamical model
based on extended thermodynamics with internal variables [Maruszewski 1990]. The extended-like ther-
modynamical description has been chosen here since all the interactions run within low temperatures.
Moreover, for the electromagnetic field quantities the following relations hold

Dk =∈ Ek, Bk = µ0 Hk, Ek = −ϕ,k −
∂Ak

∂t
, Bk =∈i jk A j,i , Ei = Ei+ ∈i jk v j Bk .

In the sequel we follow the assumption that ϕ vanishes because of gauging [Orlando and Delin 1991;
Yeh and Chen 1993].

The use of the second law of thermodynamics in the form of entropy inequality is to ensure solutions
of the set (2)–(5) to be related to description of real physical processes.
The entropy inequality is taken in its classical form

ρ Ṡ +8k,k −
ρr
T

≥ 0, (6)

where S is the entropy density and 8k denotes the entropy flux.
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Now, the inequality (6) gives us a possibility of determining all the constitutive functions which in
our case form the set of dependent variables

Z = {σi j , µ
c,U, Qk, 9,9

∗, J c
k , J S

k , N S, S,8k}, Z = Z(C). (7)

We omit from now on investigations and analysis of the above thermodynamical structure for laws
concerning states of the vortex field [Maruszewski 2007; Maruszewski et al. 2007]. Our attention is
focused only on laws dealing with processes running in the vortex array, that is, kinetic relations.

A detailed analysis of the entropy inequality and the introduction of the free energy density

F = U − T S, F = F N (εi j , T, c, qi , j c
i , j S

i )+ F S(εi j , T, c, Ai , ψ,ψ
∗, ψ,k, ψ

∗

,k)

[van de Ven 1991; Maruszewski 1998; Maugin 1992] lead us to the residual inequality

−
1
T

qk T,k − hc j c
k c,k + j N

i Ei − ρ
∂F
∂qi

q̇i − ρ
∂F
∂ j c

i
j̇ c
i − ρ

∂F
∂ j S

i
j̇ S
i

−

[
ρ
∂F
∂ψ

−

(
ρ
∂F
∂ψ,k

)
,k

]
∂ψ

∂t
−

[
ρ
∂F
∂ψ∗

−

(
ρ
∂F
∂ψ∗

,k

)
,k

]
∂ψ∗

∂t
≥ 0, (8)

which stands for the kinetic part of the modelled and described interaction among the elastic, thermal,
diffusion, and electromagnetic fields in the vortex array. Here hc = ∂µc/∂c [Maruszewski 1997], where
µc is the vortex chemical potential,

As we see, the residual inequality has a bilinear form and can be presented as follows:

JαXα ≥ 0, (9)

where Jα are the generalized fluxes and Xα denote generalized forces. Based on the irreversible thermo-
dynamical model, the relation between generalized fluxes and forces is linear

Jα = `αβXβ, (10)

where the phenomenological coefficients `αβ satisfy Onsager–Casimir’s reciprocity relations

`αβ = `βα. (11)

The use of (9), (10), and (11) in (8) allows us to determine matrices of generalized fluxes, forces and
phenomenological coefficients, as follows:

Jα =



qk

j c
k

j N
k

q̇k

j̇ c
k

j̇ S
k

ψ̇

ψ̇∗



, Xβ =



−(1/T )T,k
−hcc,k

Ei

−ρ ∂F/∂qi

−ρ ∂F/∂ j c
i

−ρ ∂F/∂ j S
i

−
[
ρ ∂F/∂ψ −

(
ρ ∂F/∂ψ,k

)
,k

]
−

[
ρ ∂F/∂ψ∗

−
(
ρ ∂F/∂ψ∗

,k

)
,k

]


, (12)
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`αβ =



`11 `12 `13 0 0 0 0 0
`21 `22 `23 0 0 0 0 0
`31 `32 `33 0 0 0 0 0
0 0 0 `44 `45 `46 0 0
0 0 0 `54 `55 `56 0 0
0 0 0 `64 `65 `66 0 0
0 0 0 0 0 0 `77 `78

0 0 0 0 0 0 `87 `88


. (13)

The basic thermogalvanomagnetic effects and effects which include relaxation features of the con-
sidered processes can be described, in the first approximation, if the phenomenological coefficients
are assumed in the following form [Maruszewski 1984; Sirotin and Šaskolskaya 1979] `αβi j (Hk) =

`
αβ(0)
i j +`

αβ(1)
i jk Hk . After laborious but routine calculations, the final forms of the expected kinetic relations

both without and with relaxation properties (for the sake of simplicity and easy interpretation we present
them in the isotropic form assuming that `αβ(0)k j = `αβ(0)δk j , `

αβ(1)
k jl = `αβ(1) ∈k jl, [Orlando and Delin 1991;

Cyrot and Pavuna 1992;Maruszewski 1984; 1988; 1990; 1997;Sirotin and Šaskolskaya 1979; Freimuth
2002; Kluitenberg 1981; Restuccia and Kluitenberg 1987]) become the generalized Fourier law

q = −κ∇T +
1
T
`∇T × H − hcκ

c
∇c + hc K c

∇c × H + κeE + NE × H, (14)

the generalized Fick law

jc
= −

1
T
κc

∇T +
1
T

K c
∇T × H − ρD∇c + Mhc∇c × H +6cE +0cE × H, (15)

the generalized Ohm law

jN
= −

1
T
κe

∇T +
1
T

N∇T × H − hc6
c
∇c + ρD∇c + hc0

c
∇c × H + σE + RE × H, (16)

the generalized Maxwell–Cattaneo law

τ q q̇ = κ∇T −
1
T
`∇T × H + hcκ

c
∇c − hc K c

∇c × H + κeE − NE × H − q − Dcjc
− DSjS, (17)

the generalized Fick–Nonnenmacher law

τ c j̇c
=

1
T
κc

∇T −
1
T

K c
∇T × H +ρD∇c − Mhc∇c × H +6cE −0cE × H − Dqq − jc

− DSq jS, (18)

and the generalized first London equation

τ S j̇S
= PT T ∇T −

1
T

RT
∇T ×H+ Pc

∇c−hc Rc
∇c×H+

1
µ0λ

2
0

E− ReE×H− Dq Sq−jS
− DcSjc. (19)

In Eqs. (14), (15), (16), (17), (18), and (19) we recognize the following phenomena and effects
described by definite coefficients:

κ heat conductivity Dc thermodiffusive constant
` Righi–Leduc effect coefficient DS thermosupercurrent constant
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hc diffusion constant [Sirotin and Šaskolskaya 1979] τ c diffusive relaxation time
κc Dufour–Soret effect coefficient Dq diffusive-thermal constant
K c magnetothermodiffusive kinetic coefficient DSq diffusive-supercurrent constant
κe Peltier effect coefficient τ S supercurrent relaxation time
N Ettingshausen–Nernst effect coefficient PT superthermal constant
D diffusion coefficient RT supermagnetothermal constant
M magnetodiffusive kinetic coefficient Pc superdiffusive constant
6c electrodiffusive kinetic coefficient Rc supermagnetodiffusive constant
0c electromagnetodiffusive kinetic coefficient Re superelectromagnetic constant
σ electric conductivity Dq S superthermal kinetic constant
R Hall constant DcS superdiffusive kinetic constant
τ q thermal relaxation time

In addition, (3), (12), and (13) still yield the generalized Ginzburg–Landau kinetic equation as well
[Orlando and Delin 1991; Maruszewski 1998]. Since we have, however, decided that the gauge can be
chosen such that the scalar electric potential vanishes [Yeh and Chen 1993], then we use the experimental
observations that the supercurrent exists reasonably long in time and we assume that the local density of
Cooper pairs to be constant (this approach is true in many practical situations where the local fluctuations
of the density of superelectrons in steady state are of such length and time scales that they are too small to
be of engineering interest [Orlando and Delin 1991]). That fact leads to the conclusion that X7 = X8 = 0
in (12). Hence, we assume that the generalized Ginzburg–Landau equation in such a situation (within
the model of interactions presented in the paper) can be neglected.

3. Conclusions

The paper has proved, in the opinion of the author, that the dynamics of the vortex field in a type II
superconductor is very rich in interesting phenomena. The kinetic part of interactions and processes
running in that array show that reciprocal links among heat transfer, diffusion of vortices and normal
electron conduction (the Ohmic-like current) with relaxation of heat flux, diffusion flux, and supercurrent
result in known and unknown linear and nonlinear kinetic effects. Those effects, particularly nonlinear
ones, demand detailed physical analysis and interpretation. Finally, experimentation should verify and
answer the fundamental question: do all the effects presented in (14)–(19) really exist?
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