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THERMODYNAMICS OF INHOMOGENEOUS FERROELECTRICS

GERARD A. MAUGIN AND LILIANA RESTUCCIA

In a previous paper within the framework of the theory of inhomogeneities, the balance law of the so-
called pseudomomentum for ferroelectrics was worked out exploiting the presence of material forces.
Electric polarization density per unit mass and its gradient were introduced as state variables in the state
vector. In this paper, starting from the pseudomomentum balance equation, we construct, in a systematic
way, the material energy balance law for ferroelectrics which plays a crucial role in applications related
to the study of fracture.

1. Introduction

Ferroelectrics are dielectric materials which possess the essential property of exhibiting a local sponta-
neous electrical polarization. Ferroelectricity generally disappears above a certain temperature, called
the transition temperature or Curie point θc, at which a ferroelectric crystal passes from a polarized
state of low temperature to a nonpolarized state of high temperature. Thermic agitation tends to destroy
ferroelectric order. Ferroelectric crystals which don’t have a Curie point exist, because they melt before
reaching a ferroelectric phase. Rochelle salt has two Curie points, one higher and one lower, between
which this crystal is ferroelectric. Ferroelectrics have applications in computer science, in the technology
of integrated circuits, and in the fields of electronic microscopy, electronic sensors, optoelectronics, and
other technological sectors. Ferroelectric media are characterized by the fact that two ordered structures
coexist in them: a crystalline structure which has as order parameter the deformation of the elementary
cell (tensorial parameter), and the ferroelectric order parameter consisting of the specific polarization
vector. We use in our description a phenomenological approach to deformable ferroelectric crystals,
derived in [Maugin 1977a; 1977b; Maugin and Pouget 1980]. Dissipative processes in ferroelectrics were
investigated in [Francaviglia et al. 2004]. Electric polarization density per unit mass, possessing its own
dynamics and inertia, and its gradient, responsible for nonlocal interactions and the typical ferroeletric
ordering, are introduced as state variables in the state vector. In this paper, within the framework of
the theory of inhomogeneities [Maugin 1993], from the pseudomomentum balance equation, worked
out in [Restuccia and Maugin 2004], the material energy balance law is constructed for inhomogeneous
ferroelectrics in the presence of configurational forces. This law plays a crucial role in applications
related to the fracture study and the computation of the so-called energy-release rate (energy dissipated
at the phase-transition fronts). Inhomogeneities can be caused by abrupt changes of material properties
such as density, module of elasticity, and existence of different elements and parts, and by the presence
of transition fronts, dislocations, and defects such as cavities, cracks, and inclusions, which can self-
propagate during the processes of fabrication because of changed conditions or surrounding conditions
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that are favorable [Cherepanov 1979]. Such defect propagation can provoke a premature fracture [Maugin
1992]. A crack is one of the most common defects, and it can self-propagate when a critical threshold of
a certain strength is reached. To prevent this fracture criteria for propagation of a crack can be introduced
in the study of the mechanics of solids [Maugin 1992]. The critical threshold of propagation of a crack
can be evaluated by introducing, for instance, the rate of energy restitution and the contour integral
(more precisely, Rice’s integral). This critical threshold is a precise breaking condition because of the
fracture instability of a fractured medium. Fracture criteria were introduced long ago for elastic materials
(Lhemon, 1888, on the mesomorphic phase of the matter; Volterra, 1907, on distortions in matter). The
technological evolution of the science of materials has introduced new materials into industry that exhibit
an interaction between mechanical stress elastic fields and polarization field. One of the first works on
inhomogeneities is by Eshelby [1951] (see also [Eshelby 1969; Maugin 1995]), who studied a particular
case of inhomogeneity: the presence of a defect in an elastic material. He introduced a fictitious force
(the material force) in order to give a more detailed description of energy variation related to a position
of imperfection. This force is not to be confused with surface and bulk forces. Eshelby showed that
this force can be obtained starting with a contour integral on any surface surrounding the defect. In the
absence of a defect, this integral becomes zero and reduces itself to a strict conservation law. Following
Maugin, the material force of inhomogeneity is put into evidence by projecting the balance equations
of a continuum body onto a material frame [Maugin 1992]. Also Kalpakides and Agiasofitou [2002],
Vukobrat [1994] and Huang and Batra [1996] investigated ferroelectrics where the gradient of electric
polarization or electric fields is considered.

2. Governing equations for ferroelectrics

We use the standard Cartesian tensor notation in rectangular coordinate systems. The general nonlinear
deformation of a body, between a configurational reference KR and a current configuration Kt at the time
t , is represented by the diffeomorphism

x = χ(X, t), X = χ−1(x, t),

where x represents Eulerian coordinates and X the material coordinates of the same material particle P.
We have the following relations: F i

K = ∂x i/∂X K
= x i

,K (denoting the components of the deforma-
tion gradient F), (F−1)K

j = ∂X K/∂x j = X K
, j , JF = det(F i

K ) > 0 (the Jacobian of F), x i
,K X K

, j = δi
j ,

F i
K (F

−1)K
j = δi

j , X K
,i x i

,L = δK
L , (F−1)K

i F i
L = δK

L . From the kinematic description one defines the physical
and material velocities by vi

= (∂x i/∂t)
∣∣
X, V K

= (∂X K/∂t)
∣∣
x, where we have explicitly indicated the

time derivatives at fixed X (the so-called “material derivative”) and at fixed x. Now consider in a current
configuration Kt the general equations that govern the quasielectrostatics of thermoelastic ferroelectric
insulators [Maugin and Pouget 1980; Restuccia and Maugin 2004]. Suppose that the material may
present continuously distributed material inhomogeneities, that the range of the considered temperatures
is much below the Curie ferroelectric phase-transition temperature θc, and that the body occupies the
simply connected material volume Vt with regular boundary ∂Vt having unit outward normal n in Kt ,
while it occupies the volume VR with regular boundary ∂VR having unit outward normal N in KR .

We now discuss the governing equations.
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Maxwell equations in the quasielectrostatic approximation. Let E, B, D, H, P and M denote the
electric field, the magnetic induction, the electric displacement, the magnetic field, the electric polar-
ization and the magnetization per unit volume, all evaluated in a fixed Galilean frame at time t . In the
quasielectrostatic case Maxwell’s equations read [Maugin 1988]

∇ × E = 0, ∇ × H = 0, ∇ · D = 0, ∇ · B = 0,

where Lorentz–Heaviside units are used and neither currents nor electric charge are present. Further

D = E + P, H = B, M = 0,

and the associated jump conditions on ∂Vt are:

n × [[E]] = 0, n · [[B]] = 0, n × [[H]] = 0, n · [[D]] = 0,

where [[A]] = A+
− A−, A+ and A− being the field limits as the boundary is approached from outside

and from inside. In the Galilean approximation, calling E, B, H, P and M the same fields as E, B,
H, P and M, but referring to an element of matter at time t in a frame Kc(x, t), we have

E = E+ c−1u×B, B = B− c−1u×E, H = B−M = B, D = D, M = 0, P = P, (1)

where u is the velocity of the reference Kc with respect to the current reference Kt . In the quasielec-
trostatic approximation, terms in u are irrelevant. Further, let π denote the polarization vector per unit
mass in Kt :

π = π(X, t)= P/ρ,
where ρ(x, t) is the mass density.

Conservation of mass. This equation reads

ρ̇+ ρ∇ · v = 0 in Vt , (2)

where ρ̇(X, t)=
∂ρ(X, t)
∂t

∣∣∣
X

is the material time derivative of ρ and v =
∂χ (X, t)

∂t

∣∣∣
X

. Moreover,

∂ρ0

∂t

∣∣∣
X

= 0, i.e., ρ0(X)= JFρ, in VR. (3)

Relation (3)2 indicates that ρ0 depends at most on X. It depends on X when the considered body presents
inertial material inhomogeneities.

Motion equation. In the absence of body force (of purely mechanical origin) this equation reads

div t + fem
= ρv̇ in Vt , (4)

with the boundary condition
ti j n j = T em

i on ∂Vt ,

where fem and Tem are, in the quasielectrostatic approximation, the volume ponderomotive force in a
nonrelativistically moving nonmagnetizable dielectric medium and the corresponding surface traction of
purely mechanical origin, given by

f em
i = PjEi, j , fem

= (P · ∇)E = −(∇ · P)E + ∇ · (E ⊗ P), Tem
=

[[
E ⊗ P + E ⊗ E −

1
2(E

2)1
]]

· n,
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and t i j is the nonsymmetric Cauchy stress tensor defined by

t i j
= σ i j

+ (t int)[i j]. (5)

In (5) σ i j is the intrinsic stress tensor (the symmetric Cauchy tensor)

σ i j
= σ j i

and (t int)i j is the interaction stress tensor defined by

(t int)i j
= ρ LE iπ j

−
LEEi pπ j

,p, with t [i j]
= (t int)[i j]. (6)

This equation is the local statement of the balance of moment of momentum.
In Equation (6)1

LE ≡ (LE i ) is called the local electric field vector and represents the electric anisotropy
field, accounting for the interaction between the polarization of different molecular species with the
crystal lattice, while LEE ≡

(
LEEi p

)
accounts for polarization gradients and has the name of shell-shell

interaction tensor, by identification or analogy with results from the lattice theory of alkali halides. LEE
is responsible for the typical ferroelectric ordering. In fact, in this phenomenological model, derived
in [Maugin 1977a; 1977b; Maugin and Pouget 1980], it is assumed that the medium is formed by n
coexisting molecular species α = 1, 2, . . . , n, each one of them giving rise to a field of electric dipoles,
which when suitably averaged is represented by a volume density Pα of electrical polarization. Then, the
polarization vector per unit volume is the sum of the polarization vectors per unit volume of each molec-
ular species: P =6αPα. Letting ρα be the density of α molecules, cα ≡ ρα/ρ being the corresponding
concentration, we define πα ≡ Pα/ρα , where Pα and πα are the polarization vectors per unit volume and
mass in Kt for the molecular species α.

Balance equation for the polarization vector. A theorem in [Maugin and Pouget 1980] states that the
balance equation for the polarization vector in a deformable nonmagnetizable ferroelectric medium reads
(see also [Maugin 1977a; 1977b; Maugin and Pouget 1980])

E i
+

LE i
+ ρ−1 LEE

i j
, j = I π̈ i in Vt , (7)

where I is the so-called polarization inertia and E is the electromotive intensity due to external sources;
see (1)1. This equation resembles Newton’s law of motion.

After the introduction of the symmetric stress tensor Et i j (elastic stress tensor) defined by

Et i j
= σ i j

− ρ LE (iπ j)
+

LEE(ikπ
j)
,k =

Et j i ,

Equation (5) reads

t i j
=

Et i j
+ ρLE iπ j

−
LEEikπ

j
,k =

Et i j
+ (t int)i j . (8)

Conservation of energy. The first law of thermodynamics, in the absence of a heat source by radiation,
reads

ρė = t j ivi, j − ρ LE i π̇i +
LEEi j (π̇i ), j − qk

,k . (9)



THERMODYNAMICS OF INHOMOGENEOUS FERROELECTRICS 1117

Entropy inequality and Clausius–Duhem inequality. In this paper we use the following form of the
entropy inequality:

ρη̇+ ∇ · js ≥ 0,

where η is the entropy per unit mass and js is the entropy flux , defined by js = q/θ .
Introducing Helmholtz’s free energy per unit mass ψ = e −ηθ by a Legendre transformation and using

the energy balance equation, the following Clausius–Duhem inequality is obtained:

−ρ(ψ̇ + ηθ̇)+ t j ivi, j − ρ LE i π̇i +
LEEi j (π̇i ), j − θ−1qkθ,k ≥ 0,

where 0< θ � θc.

3. A thermodynamical model for ferroelectrics

In [Restuccia and Maugin 2004], following the general philosophy exposed in the theory of the inho-
mogeneities [Maugin 1993], in order to put in evidence the material force of inhomogeneity, balance
equations of continuum were projected onto KR material frame, effecting the following Piola transfor-
mations (see also [Maugin and Pouget 1980; Lax and Nelson 1976]):

T = JF F−1
· t, T K i

= JF (F−1)K
j t j i ,

ET = JF F−1
·

Et, ET K i
= JF (F−1)K

j
Et j i ,

LEEE = JF F−1
·

LEE, LEEEK i
= JF (F−1)K

j
LEE j i ,

Q = JF F−1
· q, QK

= JF (F−1)K
j q j ,

Js = JF F−1
· js, J K

s = JF (F−1)K
j j j

s ,

LE = FT
·

LE, LEK =
LEi F i

K ,

LE s
= δ si LEi = δ si (F−1)K

i
LEK ,

EE = FT E, EEK = Ei F i
K ,

5 = JF F−1
· P, 5K

= JF (F−1)K
j P j .

Multiplying (8) by JF (F−1)K
l , the following Piola transformation was derived:

T K i
=

ET K i
+ ρ0(F−1)K

l
LE lπ i

−
LEEEKlπ i

,l, (10)

where T is the first Piola–Kirchhoff stress.
Further, multiplying the balance of energy by JF , we obtain

Ė = (T K iδi j )Ḟ
j

k − ρ0δ
is(F−1)K

s
LEK π̇i +

LEEEi K (π̇i ),K − QK
,K , (11)

where E = ρ0e; doing the same to the entropy inequality and the Clausius–Duhem inequality we get

θ Ṡ ≥ −QK
,K + θ−1 QK θ,K ,

−(Ẇ + Sθ̇ )+ (T K iδi j )Ḟ
j

K − ρ0δ
is(F−1)K

s
LEK π̇i +

LEEEi K (π̇i ),K − θ−1 QK θ,K ≥ 0,

where S = ρ0η and W = ρ0ψ = E − Sθ .
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In [Restuccia and Maugin 2004] a thermodynamical model for materially inhomogeneous thermoe-
lastic ferroelectric insulators was proposed, choosing the following state vector

C = C(F,π ,∇Rπ , θ,∇R θ; X), (12)

where the physical fields π and ∇Rπ are responsible for the internal structure of the medium, the relax-
ation properties of the thermal field are taken into account, and the explicit dependence on X reflects
the material inhomogeneity. In (12) the symbol ∇R denotes the gradient operator in material space. The
constitutive dependent variables of the set

Z = Z(W, S,T, LE, LEEE,Q),

were determined as functions of the set C , that is, Z = Z(C), and using the expression

W = W (F,π ,∇Rπ , θ,∇R θ; X)

and the Clausius–Duhem inequality, the nonlinear constitutive equations, the dissipation inequality , and
other results were worked out:

T K i
=
∂W

∂F j
K

δ j i , LEK = −ρ−1
0
∂W
∂πi

(F)iK ,
LEEEi K

=
∂W
∂πi,K

, (13)

S = −
∂W
∂θ

,
∂W
∂θ,K

= 0, −θ−1 QK θ,K ≥ 0. (14)

Then
W = W (F,π ,∇Rπ , θ; X),

but
QK

= QK (F,π ,∇Rπ , θ,∇R θ; X),

with lim∇R θ→0 QK (F,π ,∇Rπ , θ,∇Rθ; X)= 0 (continuity condition).
From (11), using the constitutive relations and the Legendre transformation W = E − Sθ , the energy

equation can be rewritten as

θ
∂S
∂t

∣∣∣
X

+ ∇R · Q = 0, or
∂S
∂t

∣∣∣
X

+ ∇R · Js = −θ−2 QK θ,K . (15)

4. Material energy balance

In [Restuccia and Maugin 2004], following the philosophy of the theory of the inhomogeneities exposed
in [Maugin 1993], in order to place the presence of material forces and to obtain the balance of material
momentum (called balance of pseudomomentum), the motion equation (4) was projected onto the ma-
terial manifold M3 by applying the operator JF FT at the left of equation (4). This operation is called
convection or pull-back. First, by multiplying Equation (4) by JF , the following Piola–Kirchhoff form
was obtained:

T K
i,K + JF f em

i = JFρv̇i = ρ0v̇i , divR T + JF fem
=
∂pR

∂t

∣∣∣
X
, (16)

where pR = ρ0v is defined as the physical linear momentum per unit volume in KR .
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Next, applying the pull-back operator (FT ) on the left-hand side of (16)1,

F i
L T K

i,K + JF F i
L f em

i = F i
L
∂

∂t
(ρovi )

∣∣∣
X
,

the following balance of pseudomomentum projected on M3 was obtained:

∂P
∂t

∣∣∣
X

− divR b̂ = f inh
+ f th

+ f fer, (17)

where
P = −ρ0FT

· v − (∇Rπ) ·
(
ρ0 I π̇

)
,

b̂ = −
(
L̂1R + T · F + (∇Rπ) · LEEE

)
,

L̂= ρ0 (X)
( 1

2 v2
+

1
2 I π̇2

+ E · π
)
− W (F,π ,∇Rπ , θ; X),

f inh
= ∇Rρ0 (X)

( 1
2 v2

+
1
2 I π̇2

+ E · π
)
− ∇RW|expl,

f th
= S∇R θ,

f fer
= ρ0π · ∇RE − FT

· (5 · ∇R)E .

(18)

In these expressions P is the pseudomomentum, a material covector onM3, b̂ is referred to as the Eshelby
(material) stress tensor accounting for ferroelectric exchange effects, f inh is the material inhomogeneity
force, f th is called the thermal material force, and f fer is a new material force which reflects the presence
of ferroelectric effects (see also [Maugin and Pouget 1980]). The inhomogeneity force f inh here has its
canonical definition

f inh
=
∂L̂
∂X

∣∣∣
expl
,

where the potential L̂ would be the Lagrangian density if irreversible processes were not present. Now,
although (11) already provides an expression of the local energy equation, we construct the expression
of the material energy balance that plays a crucial role in applications related to the study of fracture in a
medium. Using the already obtained results, upon scalar multiplication of (17) by the material velocity,
we obtain

∂P
∂t

∣∣∣
X

· V −
(
divR b̂

)
· V = f inh

· V + f th
· V + f fer

· V. (19)

We evaluate each contribution separately, systematically using the following relations (see [Fomethe and
Maugin 1996]):

V =
∂χ−1(x, t)

∂t

∣∣∣
x
, vi

= −F i
K V K , V K

= −(F−1)K
i v

i ,

Ȧ (X, t)=
∂A (X, t)

∂t

∣∣∣
X
, Ȧ =

∂A
∂t

∣∣∣
x
+ v · ∇A,

∂A
∂t

∣∣∣
x
= Ȧ + V · ∇RA,

Ai
,K = Ai

, j F j
K , Ai

, j = Ai
,K (F

−1)K
j , v · ∇A =

∂A
∂t

∣∣∣
X

−
∂A
∂t

∣∣∣
x
, V · ∇RA =

∂A
∂t

∣∣∣
x
−
∂A
∂t

∣∣∣
X
,

Ḟ i
K = vi

,K = vi
, j F j

K , vi
, jv

j
=
∂vi

∂t

∣∣∣
X

−
∂vi

∂t

∣∣∣
x
,

∂ρ0

∂t

∣∣∣
X

= 0,
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where the objective vector field A is a geometrical time-dependent object which is form invariant under
rigid-body changes of coordinate frames in Kt and its components transform tensorially. Then, from
equations (18) and (19) we have

∂

∂t
(−ρ0FT

· v)
∣∣∣
X

· V =
∂

∂t
(ρ0v

2)

∣∣∣
X

− ρ0
∂

∂t

(1
2v

2) ∣∣∣
x

(20)

and

−
∂

∂t

[
∇Rπ ·

(
ρ0 I π̇

)] ∣∣∣
X

· V = −(ρ0 I π̈ iπi,L + ρ0 I π̇ i π̇i,L)V L

= −ρ0 I π̈ i ∂πi

∂t

∣∣∣
x
+ ρ0 I π̈ i ∂πi

∂t

∣∣∣
X

− ρ0 I π̇ i ∂π̇i

∂t

∣∣∣
x
+ ρ0 I π̇ i ∂π̇i

∂t

∣∣∣
X
. (21)

The second term on the left-hand side of (19) gives

(divR b̂) · V = −L̂,L V L
−

(
T K

i F i
L +

LEEEi Kπi,L
)
,K V L. (22)

Evaluating the contributions in the right side of (22) we have

−L̂,L V L
= −

∂L̂
∂t

∣∣∣
x
+
∂L̂
∂t

∣∣∣
X
,

where

−
∂L̂
∂t

∣∣∣
x
=
∂W

∂F j
K

∂F j
K

∂t

∣∣∣
x
+
∂W
∂πi

∂πi

∂t

∣∣∣
x
+

∂W
∂πi,K

∂πi,K

∂t

∣∣∣
x
+
∂W
∂θ

∂θ

∂t

∣∣∣
x
+
∂W
∂X L

∣∣∣
expl

∂X L

∂t

∣∣∣
x

−
( 1

2v
2
+

1
2 I π̇2

+ E · π
)∂ρ0

∂t

∣∣∣
x
− ρ0

∂

∂t

( 1
2v

2
+

1
2 I π̇2

+ E · π
)∣∣∣

x
(23)

and
∂L̂
∂t

∣∣∣
X

=
∂

∂t

[
ρ0(X)

( 1
2v

2
+

1
2 I π̇2

+ E · π
)] ∣∣∣

X
−
∂W
∂t

∣∣∣
X
. (24)

In the following, we use the constitutive equations (13) and (14)1 at fixed x in the term (∂L̂/∂t)
∣∣
x. We

further have

−
(
T K

i F i
L
)
,K V L

= T K
i,Kv

i
− T K

i
∂F i

K

∂t

∣∣∣
x
+ T K

i vi,K = ∇R · (T · v)− T K
i
∂F i

K

∂t

∣∣∣
x
, (25)

−
(LEEEi Kπi,L

)
,K V L

= −
LEEEi K

,K
∂πi

∂t

∣∣∣
x
+

LEEEi K
,K
∂πi

∂t

∣∣∣
X

−
LEEEi K ∂πi,K

∂t

∣∣∣
x
+

LEEEi K ∂πi,K

∂t

∣∣∣
X
, (26)

LEEEi K
,K
∂πi

∂t

∣∣∣
X

+
LEEEi K ∂πi,K

∂t

∣∣∣
X

= ∇R · (LEEE · π̇), (27)

f inh
· V =

( 1
2v

2
+

1
2 I π̇2

+ E · π
)∂ρ0

∂t

∣∣∣
x
−
∂W
∂t

∣∣∣
expl
, (28)

and
f th

· V = Sθ,L V L
= S

∂θ

∂t

∣∣∣
x
− Sθ̇ = S

∂θ

∂t

∣∣∣
x
+ Ẇ − Ė − ∇R · Q, (29)

where we have used the relation −Sθ̇ = Ẇ − Ė − ∇R · Q, obtained by the Legendre transformation
W = E − Sθ and the entropy balance equation (15)1.



THERMODYNAMICS OF INHOMOGENEOUS FERROELECTRICS 1121

Finally, using the relations

ρ0π
iEi,L V L

= ρ0
(
π iEi

)
,L V L

− ρ0Eiπ
i
,L V L, f fer

· V = ρ0π
iEi,L V L

− F i
L5

KEi,K V L,

ρ0 I π̈ i ∂πi

∂t

∣∣∣
X

= ρ0 I π̇ i ∂π̇i

∂t

∣∣∣
X

= ρ0
∂

∂t

( 1
2 I π̇2) ∣∣∣

X
,

the balance equation for the polarization vector (7) multiplied by ρ0
∂πi
∂t

∣∣∣
x
,

ρ0E i ∂πi

∂t

∣∣∣
x
+ ρ0

LE i ∂πi

∂t

∣∣∣
x
+

L EEEi K
,K
∂πi

∂t

∣∣∣
x
= ρ0 I π̈ i ∂πi

∂t

∣∣∣
x
,

operating some transformations and substituting all the contributions (20)–(29) in (19), we obtain the
energy balance equation in the form

∂

∂t

[
E + ρ0(X)

( 1
2v

2
+

1
2 I π̇2

− E · π
)] ∣∣∣

X
− ∇R ·

(
T · v +

LEEE · π̇ − Q
)
= H, (30)

where
H = −ρ0π · Ė − FT

· (5 · ∇R)E · V . (31)

In the left-hand side of (30) there appear the partial time derivatives at fixed X of the internal energy
E , the kinetic energy of the material lattice, the kinetic energy of the polarization vector that has own
inertia, the interaction energy between the electric and the polarization fields and the material energy
fluxes related to the Piola–Kirchoff stress T, the shell-shell interaction tensor LEEE and the negative of
the heat flux. In the right-hand side there are energy sources due to material forces which reflect the
presence of ferroelectric effects.

Next we have

f fer
· V = ρ0π

iEi,L V L
− F i

L5
KEi,K V L

= −ρ0π
i (

F−1) L
qv

qEi,L − ρ0 F i
L(F

−1)K
j π

jEi,K V L

= −ρ0π
iEi,qv

q
+ ρ0π

jEi, jv
i
= −ρ0π

iv j (Ei, j − E j,i )= 0,

where we have taken into consideration that ∇ ×E = 0 (we are in quasielectrostatic approximation) and

5K
= JF (F−1)K

j P j
= ρ JF (F−1)K

j π
j
= ρ0(F−1)K

j π
j .

Then f fer
· V ≡ 0. That means f fer has no dissipative content. Now we transform H :

H = −ρ0π · Ė − FT
· (5 · ∇R)E · V = −ρ0π

i Ėi − F j
L5

KE j,K V L

= −ρ0π
i Ėi − ρ0 F j

L

(
F−1)K

q π
qE j,K V L

= −ρ0π
i Ėi + ρ0π

iEi, jv
j
= −ρ0π

i
(
∂Ei
∂t

)∣∣∣
x
.

Using the relations E = −∇ϕ(x, t) and ρ0π · ∇ ≡ 5 · ∇R , we then obtain

H = ρ0π · ∇

(∂ϕ
∂t

)∣∣∣
x
= (5 · ∇R)

(∂ϕ
∂t

)∣∣∣
x
= ∇R ·

(
5
∂ϕ

∂t

∣∣∣
x

)
− (∇R · 5)

∂ϕ

∂t

∣∣∣
x
. (32)

Finally, using (32) the energy balance equation (30) reads

∂

∂t

[
E + ρ0(X)

(1
2
v2

+
1
2

I π̇2
− E · π

)]∣∣∣
X

+ ∇R ·

(
T · v + 5

∂ϕ

∂t

∣∣∣
x
+

LEEE · π̇ − Q
)

= H, (33)



1122 GERARD A. MAUGIN AND LILIANA RESTUCCIA

with

H = − (∇R · 5)
∂ϕ

∂t

∣∣∣
x
, E = Ē(F,π ,∇Rπ , θ; X). (34)

Although it is not given as a strict conservation law, this expression of the energy conservation is of
interest because (i) it can be used directly for the evaluation of the energy-release rate in the fracture
study (compare to the case of classical dielectric-piezoelectrics in [Maugin and Dascalu 1993]), and (ii)
it makes the comparison with classical electroelasticity easy in the appropriate reduction.

Indeed, in this simplified case we have

I = 0, LEEE = 0

and, for quasielectrostatics, equations (33) and (34) yield

∂

∂t

[
E − ρ0(X)E · π

]
− ∇R ·

(
T · v + 5

∂ϕ

∂t

∣∣∣
x
− Q

)
= −(∇R · 5)

∂ϕ

∂t

∣∣∣
x
. (35)

Simultaneously, equations (7) and (13)2 yield E i
+

LE i
= 0,

Ei = −
LEi = −(F−1)K

i
LEK = ρ−1

0
∂W
∂π j

(F−1)K
i F j

K , Ei = ρ−1
0
∂W
∂πi

.

Thus, E − ρ0π · E = W + Sθ − ρ0π · E . Setting

W̄ = W (F,π , θ)− ρ0π · E = W̄ (F,E, θ; X), π j = ρ−1
0
∂W̄
∂E j

,

we finally obtain from equation (35)

∂

∂t
W̄ (F,E, θ; X)

∣∣∣
X

− ∇R ·

(
T · v + 5

∂ϕ

∂t

∣∣∣
x
− Q

)
= − (∇R · 5)

∂ϕ

∂t

∣∣∣
x
,

which is equation (21) in [Maugin and Dascalu 1993] if we discard the temperature effect.
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