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WOLFGANG MUSCHIK, VITA TRIANI AND CHRISTINA PAPENFUSS

The balance equations of continuum thermodynamics need constitutive equations in order to solve them
under the constraint that the entropy production appearing in the entropy balance equation must be not
negative. This dissipation inequality represents the second law of thermodynamics. There are two pro-
cedures which exploit the dissipation inequality to obtain constitutive equations which are in agreement
with the second law: the Coleman–Noll and the Liu techniques. Here we use the Liu technique in the
special case in which not all balance equations are taken into account when exploiting the dissipation
inequality. This case is of interest because often not all balances are known, or only the energy balance
is considered. It is also proved that in this abridged exploitation of the dissipation inequality, thermody-
namic restrictions for the constitutive equations are obtained, so that these satisfy the second law. These
restrictions represent a smaller class of materials than that obtained when all balances are taken into
account.

1. Introduction

The balance equations of continuum thermodynamics have the shape

Ẋ+∇ ·Y= R. (1)

The fields X(x, t), Y(x, t), and R(x, t) can be divided into three classes [Muschik et al. 2001]: They may
be wanted (or basic) fields, they may be constitutive equations which are defined on the chosen state
space Z spanned by the fields of the state space variables z(x, t),

z(x, t) ∈ Z, X(z(x, t)), Y(z(x, t)), R(z(x, t)), (2)

and they may be external given fields X(x, t), Y(x, t), R(x, t).
A special balance is that of the local entropy density s(x, t)

σs = ṡ+∇ · Js − rs ≥ 0. (3)

This inequality represents the second law of continuum thermodynamics, and is called the dissipation
inequality. The fields of the entropy production density σs(Z), of the entropy flux density Js(Z), and
of the entropy supply density rs(Z) are constitutive equations. Consequently, according to Equation (2),
these fields depend on the state space variables z(x, t), and consequently depend indirectly on space-time.

Keywords: dissipation inequality, reduced set of balances, abridged exploitation of the dissipation inequality, second law
exploitation, Coleman–Noll procedure, Liu procedure.
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Performing the derivatives in Equation (1), we obtain terms which are linear in the so-called higher
derivatives

y := (ż,∇z), (4)

which are outside the state space, and we obtain other terms from R in (1) which are independent of the
higher derivatives. Consequently, after having performed the derivatives in (1) and (3), we obtain the
so-called balances on the state space [Muschik 1990] and the dissipation inequality, which both have the
shape of an algebraic system which is linear in the higher derivatives, (4), and are given as

A · y= C, B · y≥ D. (5)

Here A and B are constitutive equations A(z(x, t)), B(z(x, t)), and C and D also consist of constitutive
equations, or are given external fields C(x, t), D(x, t)).

We now have to exploit the dissipation inequality, (5)2. For this reason, we use the second law in the
Coleman–Mizel formulation [1964] (see also [Muschik et al. 2001]):

{∧y |A · y= C} −→ B · y≥ D, (6)

This can be proved by an amendment of the second law, “Except in equilibrium subspace, no reversible
process directions exist” [Muschik and Ehrentraut 1996], and it shows the material selectivity of the
second law; A, B, C, and D are not arbitrary, but have to satisfy the second law, (6).

Two celebrated procedures for the exploitation of the second law (in Coleman–Mizel formulation) are
the Coleman–Noll procedure [Truesdell and Noll 1965] and the Liu technique [Liu 1972; Muschik and
Ehrentraut 1996]. These procedures are different from a mathematical point of view, but are equivalent
if all balance equations are taken into account in both procedures [Triani et al. 2008]. Using the Liu
procedure, by which the higher derivatives y are removed from the balances (5)1 and from the dissipation
inequality (5)2, we obtain

3 ·A= B, 3 ·C≥ D. (7)

The so-called Lagrange parameters 3 are functions on the chosen state space (2).
If the matrix A has maximal rank, there exists a right-hand reciprocal of A,

A · Ā= 1, (8)

and we obtain from (7) the Lagrange parameters

3= B · Ā. (9)

Inserting this into (7)2, we obtain the constraints on the constitutive equations in form of an inequality,

B · Ā ·C≥ D. (10)

We now ask the question of what happens when we make an abridged exploitation of the dissipation
inequality by not taking all balance equations into account, a procedure which is often performed [Erick-
sen 1991] (this occurs because people forget some balance equations or do not know all balances). In this
paper we prove that an abridged exploitation of the second law restricts the class of materials [Muschik
1990], but this restricted class does satisfy the second law. This means that neglecting balance equations
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in the exploitation procedure does not result in mistakes with respect to the second law, but the found
class of materials is too small with respect to that class derived by taking all balances into account.

2. The general case

We start out with the balances on the state space (5)1 and with the corresponding dissipation inequality
(5)2, both in matrix formulation. Because there are more higher derivatives y than balance equations the
matrix A is singular, which means there exists a set of y0 spanning the nonvanishing kernel of A,

y0
∈ ker A↔ A · y0

= 0, dim(ker A) < n. (11)

We now introduce a projector P as

ker P 6=∅, P · Ĉ= 0, Ĉ 6= 0, (12)

which reduces the number of balances which are taken into account, P ·A · y = P ·C. The projected
balances have other solutions Y than (5)1,

P ·A ·Y= P ·C. (13)

The dissipation inequality (5)2 transforms into another inequality,

BP ·Y≥ DP , (14)

which belongs to the projected balances (13). First of all, the connection between (B, D) and (BP , DP )
remains open. The reduced system of balances on the state space (13) and of the dissipation inequality
(14) now replaces the original ones, (5)1 and (5)2. The consequences of this replacement are investigated
in this paper.

Next we ask the question, if Ĉ in (12) is a solution of (5)1, then

A · ŷ= Ĉ. (15)

According to (11), all solutions of this set of balance equations can be written down in the form

ŷ= Ā · Ĉ+ y0, (16)

where Ā is the existing right-hand reciprocal (8) of A (because A has less rows than columns and is
presupposed to have maximal rank). Introducing (16) into (15) results, by using (11), in

A · Ā · Ĉ= Ĉ.

According to (8), this shows that (16) is a solution of (15). Because of (12)3, we state that for all solutions
of (15)

ŷ 6∈ ker A, (17)

is valid.
Applying the projector to (15) and using (12)2, we obtain P ·A · ŷ= P · Ĉ= 0, which means that

ŷ ∈ ker(P ·A). (18)
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Because of
A · y0

= 0 → P ·A · y0
= 0, (19)

we obtain
y0
∈ ker A → y0

∈ ker(P ·A).

From (18) and (17), it follows that there are ŷ with the property

ŷ 6∈ ker A ← ŷ ∈ ker(P ·A).

Consequently, we obtain for the dimension of the kernels

dim(ker(P ·A)) > dim(ker A). (20)

This means that if the balance equations are neglected the dimension of the kernel belonging to the set of
the new balance equations becomes greater. This fact also has consequences for the dissipation inequality
(5)2.

The balance equations on state space are related to the dissipation inequality by the Coleman–Mizel
formulation of the second law [Coleman and Mizel 1964]: “Each solution of the balance equations
satisfies the dissipation inequality.” This is also true for the projected balances (13) on state space.
Consequently, we have the inductions

A · (y∗+ y0)= C → B · (y∗+ y0)≥ D,

P ·A · (Ȳ+ Ŷ)= P ·C → BP · (Ȳ+ Ŷ)≥ DP .

Because y0 and Ŷ are arbitrary elements of the kernels of A and P ·A, we obtain, in order to maintain
the dissipation inequalities,

B · y0
= 0 → B⊥ ker A,

BP · Ŷ= 0 → BP ⊥ ker(P ·A).

This results in
dim(span B)+ dim(ker A)= n,

dim(span BP)+ dim(ker (P ·A))= n.

Subtracting both the equations from each other,

dim(span B)− dim(span BP)+ dim(ker A)− dim(ker(P ·A))= 0,

and according to (20) this results in

dim(span B) > dim(span BP). (21)

The inequality (21) can be interpreted as follows: If balance equations are not taken into account when
exploiting the dissipation inequality, the found class of materials [Muschik et al. 2001] becomes smaller
and the dissipation inequality remains valid. Neglecting balance equations in the process of exploiting the
dissipation inequality does not result in violations of the second law, but the acquired class of materials is
too small. Correct exploitation, considering all balance equations, results in a greater class of materials
than when we neglect some of the balances.
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3. An example

3.1. Unabridged system of balances. We consider a state space [Muschik et al. 2001; Muschik 2004]
spanned by the internal energy density ε and by two additional vector fields, z and w,

Z= {ε, z, w}. (22)

The local balances (3), of internal energy ε and entropy s, read

ε̇+∇ · q− r = 0, ṡ+∇ · Js − rs ≥ 0, (23)

where q is the heat flux density and r the heat supply density. The second law of thermodynamics forces
the entropy production (3) to be nonnegative.

The set of governing equations for z and w is assumed to have balance form, and represent constraints
for the state space variables

ż+∇ ·9 = π, ẇ+∇ ·1= δ. (24)

Here 9 is the flux of z, 1 is the flux of w, and π and δ are their productions and supplies, respectively.
The relaxation equations of z and/or w are included by setting 9 ≡ 0 and/or 1≡ 0.

Let us now introduce two additional constitutive functions M and W, which are not in the state space,
and for which we also have balances

Ṁ(ε, z, w)+∇ ·ϒ(ε, z, w)=6(ε, z, w), (25)

Ẇ(ε, z, w)+∇ ·4(ε, z, w)=�(ε, z, w). (26)

The balance laws (23)–(26) and the entropy inequality (3) can be written in matrix formulation
[Muschik et al. 2001], with the shape of (5)1 and (5)2, as

A · y= C, B · y≥ D, (27)

where y represents the higher derivatives of the chosen state space (22), y= {ε̇, ż, ẇ,∇ε,∇z,∇w}. The
matrices A and C follow from the five balance equations (23)–(26),

A=



1 0 0 ∂q
∂ε

∂q
∂z

∂q
∂w

0 1 0 ∂9
∂ε

∂9
∂z

∂9
∂w

0 0 1 ∂1
∂ε

∂1
∂z

∂1
∂w

∂ M
∂ε

∂ M
∂z

∂ M
∂w

∂ϒ
∂ε

∂ϒ
∂z

∂ϒ
∂w

∂W
∂ε

∂W
∂z

∂W
∂w

∂4
∂ε

∂4
∂z

∂4
∂w

 , C=



r

π

δ

6

�

 . (28)

From the entropy balance (23)2, it follows that

B=
[

∂s
∂ε

∂s
∂z

∂s
∂w

∂Js
∂ε

∂Js
∂z

∂Js
∂w

]
, D = rs . (29)

The balances and the dissipation inequality (27) are now exploited by the Liu procedure [Liu 1972;
Muschik and Ehrentraut 1996], by which the higher derivatives are removed. We introduce the so-called
Lagrange parameters,

3 := { λε λz λw λM λW }, (30)



1130 WOLFGANG MUSCHIK, VITA TRIANI AND CHRISTINA PAPENFUSS

and, taking (28)–(29) into account, the Liu equations, (7)1, become

λε
+ λM ∂ M

∂ε
+ λW

·
∂W
∂ε
=

∂s
∂ε

,

λz
+ λM ∂ M

∂z + λW
·
∂W
∂z =

∂s
∂z ,

λw
+ λM ∂ M

∂w + λW
·
∂W
∂w =

∂s
∂w ,

λε ∂q
∂ε
+ λz
·
∂9

∂ε
+ λw

·
∂1

∂ε
+ λM ∂ϒ

∂ε
+ λW

·
∂4

∂ε
=

∂Js
∂ε

,

λε ∂q
∂z + λz

·
∂9

∂z + λw
·
∂1

∂z + λM ∂ϒ

∂z + λW
·
∂4

∂z =
∂Js
∂z ,

λε ∂q
∂w + λz

·
∂9

∂w + λw
·
∂1

∂w + λM ∂ϒ

∂w + λW
·
∂4

∂w =
∂Js
∂w ,

(31)

and the residual inequality, (7)2, becomes

λεr + λz
·π + λw

· δ+ λM6+ λW
·�≥ rs . (32)

The Liu equations (31) and the residual dissipation inequality (32) represent the constraints on the con-
stitutive equations M, W, q, 9,1, ϒ, and 4 caused by the second law.

According to (8) and (7)1 the Lagrange parameters are given by (9), and the constraints on the consti-
tutive equations have the form of an inequality, as in (10).

3.2. Reduced system of balances. Now we introduce the matrix projector P, cutting the balance (26) as

P=


1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 0

 . (33)

The original system of balances, (27), is now replaced by the system (13)

P ·A ·Y= P ·C, Y 6= y, dim(span Y) > dim(span y), dim(span (P ·C)) < dim(span C).

With this replacement we are not taking into account the balance of the constitutive function W according
to (33). The Liu equations and the residual dissipation inequality, obtained by using the Liu technique
[Muschik et al. 2001], have the same algebraic form as (7) in the case of complete exploitation, consid-
ering all balances,

3P ·P ·A= BP , 3P ·P ·C≥ DP . (34)

According to (30) we have

3P = { λ
ε
P λz

P λw
P λM

P λW
P }, 3P ·P= { λε

P λz
P λw

P λM
P 0 } =:30

P . (35)

The projected balances of (34),

30
P ·A= BP , 30

P ·C≥ DP , (36)
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differ from (7) by setting λW formally to zero. Consequently, (36) becomes, if (31) and (32) are taken
into account,

λε
P + λM

P
∂ M
∂ε
=

∂s
∂ε

∣∣∣
P
,

λz
P + λM

P
∂ M
∂z =

∂s
∂z

∣∣∣
P
,

λw
P + λM

P
∂ M
∂w =

∂s
∂w

∣∣∣
P
,

λε
P
∂q
∂ε
+ λz

P ·
∂9

∂ε
+ λw

P ·
∂1

∂ε
+ λM

P
∂ϒ

∂ε
=

∂Js
∂ε

∣∣∣
P
,

λε
P
∂q
∂z + λz

P ·
∂9

∂z + λw
P ·

∂1

∂z + λM
P

∂ϒ

∂z =
∂Js
∂z

∣∣∣
P
,

λε
P

∂q
∂w + λz

P ·
∂9

∂w + λw
P ·

∂1

∂w + λM
P

∂ϒ

∂w =
∂Js
∂w

∣∣∣
P
,

(37)

and

λε
Pr + λz

P ·π + λw
P · δ+ λM

P 6 ≥ rs
P . (38)

The equations (37) and the dissipation inequality (38) are the thermodynamic constraints due to the
second law, if the balance (26) of the constitutive function W is not taken into account. These relations
are analogous to (31) and to (32). We will compare them in the next section.

3.3. Comparison. A comparison of the original Liu equations, (31), with the projected ones, (37), shows
how different spaces are generated by the Lagrange parameters. Because, according to (30) and (35)2,
5= dim(span 3) > dim(span 30

P)= 4 is valid, we obtain, according to the maximal rank of A and to
(7)1 and (36)1, dim(span B) > dim(span BP), the inequality (21), which was expected according to the
considerations of the general case.

The class of materials becomes smaller by the reduction of the balances. This yields a comparison of
the projected balances, (37), with the original ones, (31). All solutions of the projected balance equations
are also solutions of the original balance equations in the case of λW

= 0.

3.3.1. The supplies. Comparing the dissipation inequalities (32) and (38), we see that the energy supply
r is insensitive to canceling (26). The same is presupposed for the entropy supply

r P
s

.
= rs . (39)

Because energy supply and entropy supply are connected by the temperature 2,

rs =
r
2

, (40)

and we obtain from (32) and (38) with (39) and (40)[
λε
−

1
2

]
r + λz

·π + λw
· δ+ λM6+ λW

·�≥ 0,

[
λε

P −
1
2

]
r + λz

P ·π + λw
P · δ+ λM

P 6 ≥ 0.
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Because the energy supply is independent of all the other quantities which appear in these dissipation
inequalities and because the sign of the energy supply can be positive or negative, we obtain

λε
=

1
2
= λε

P .

In the next section it is proved that the entropy production is sensitive to the reduction of the balance
equations.

3.3.2. The entropy production. We now calculate relations between (B, D) and (BP , DP ). From (7) and
(34) we obtain

B=3 ·A, BP =3P ·P ·A, 3 ·C≥ D, 3P ·P ·C≥ DP ,

which results, by use of (35)2, in
B−BP = (3−30

P) ·A. (41)

Because A is of maximal rank, and 3 6= 30
P follows from (30) and (35)2, we obtain from (41) that

B 6= BP .

Starting out with (30)2 and (36)2, and taking (29)2 and (39) into account,

3 ·C≥ D = rs, 30
P ·C≥ DP = r P

s = rs,

and we obtain for the entropy production

σ =3 ·C− rs, σP =30
P ·C− rs −→ σ 6= σP . (42)

Taking (9) and the corresponding relation, 30
P =BP · Ā, into account, (42) results in σ =B · Ā ·C−rs ≥ 0

and σP = BP · Ā ·C− rs ≥ 0. We have proved that the entropy production changes when the balance
equations are reduced. But it is not clear that the entropy production becomes smaller in the reduced
case compared with the original one. Comparing (32) with (38), we do not know that λW

·� is positive.
Beyond that, we do not know the values of the remaining terms in which 3 is replaced by 30

P .

4. Conclusion

It is well known that the second law represents a constraint on the constitutive equations of a system
under consideration [Muschik et al. 2001], which means the second law, represented by the dissipation
inequality, is material-selective. When exploiting the dissipation inequality by the Liu technique, usually
one has to take into account all balance equations of the system [Triani et al. 2008]. There are several
reasons why not all balances would be included in the exploitation of the dissipation inequality: not all
balance equations are known, only the energy balance is taken into account [Ericksen 1991], or some
balances are forgotten. In these cases, an interesting question arises: What happens if not all balances
are taken into account when exploiting the dissipation inequality? The answer is that we obtain a smaller
class of materials than in the nonreduced case! This smaller class of materials does obey the second
law. Therefore, no mistakes appear with respect to the second law, if we forget some balances in its
exploitation: we are punished with a smaller class of materials, which has a different nonnegative entropy
production than in the nonreduced case. This result is important with respect to the fact that there are
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former papers in which an abridged exploitation of the dissipation inequality was performed without any
comment or notice.

The results mentioned above are obtained by choosing an abstract large state space (no after-effects)
[Muschik et al. 2001] on which the constitutive equations are defined, starting out with the Coleman–
Mizel formulation of the second law [Coleman and Mizel 1964; Muschik and Ehrentraut 1996], using
the Liu procedure for exploiting the dissipation inequality [Liu 1972; Muschik and Ehrentraut 1996],
and by presupposing that the entropy supply is insensitive to reducing the number of balances.
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