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This paper presents the properties of non-Newtonian fluid flow in a porous medium. A numerical study
on Brinkman flow is considered. It is assumed that the flow is isothermal. The governing equations
are included. The steady-state problem is considered. The problem is nonlinear, described by coupled
equations and boundary conditions. To solve the problem, a method based on the method of fundamental
solutions for solving nonlinear boundary problems is proposed. The numerical experiment is performed
and results are discussed.

1. Introduction

Dynamic porous media analysis is a powerful tool used for solving many everyday engineering problems,
such as earthquake engineering, soil-structure interaction, biomechanics, et cetera. Moreover, the non-
Newtonian fluid flow in porous media is very important due to its practical engineering applications, such
as oil recovery, food processing, and materials processing. NonNewtonian fluids in porous media exhibit
a nonlinear behaviour that is different from that of Newtonian fluids. An analysis of flow behaviour of
non-Newtonian fluids is presented by Skerget and Sames [1999]. The boundary domain integral method
for the numerical simulation of unsteady incompressible Newtonian fluid flow is extended to analyse the
effects of available non-Newtonian viscosity. The method was applied to the Rayleigh–Benard natural
convection problem. The problem mentioned above was solved also in [Huang et al. 1999] using the
finite element method. In [Bernal and Kindelan 2007] the problem of injecting a non-Newtonian fluid
into a thin cavity was considered. Using the Hele–Shaw approximation the problem reduces to a moving
boundary problem in which the pressure is described by a two-dimensional nonlinear, elliptic equation.
Mesh-free methods are very well suited for the numerical solution of moving boundary problems since no
remeshing is needed at each time step to correctly represent the boundary. Among these methods, Bernal
and Kindelan [2007] have chosen the asymmetric RBF collocation method (Kansa’s method), a mesh-
free method. The numerical experiment is performed to test different boundary conditions. The other
method to simulate the turbulent non-Newtonian flow was proposed in [Rudman and Blackburn 2006]. A
spectral element Fourier method for direct numerical simulation of the turbulent flow of non-Newtonian
fluids is described and the particular requirements for non-Newtonian rheology are discussed.

For non-Newtonian fluids the phenomena of natural convection in porous media has attracted more
attention during recent years. The problem is discussed in the literature by many authors [Hadim 2006;
Cheng 2006]. Some numerical methods have been proposed for solving the considered problem. The
purpose of [Jecl and Skerget 2003] was to present the use of the boundary element method in the analysis
of the natural convection in the porous cavity saturated by the non-Newtonian fluid. The results of
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hydrodynamic and heat transfer evaluations were reported for the configuration in which the enclosure
is heated from a side wall while the horizontal walls are insulated. The flow in the porous medium was
modelled using the modified Brinkman extended Darcy model taking into account the nonDarcy viscous
affects. Sarler et al. [2004] described the solution of a steady natural convection problem in porous media
by the dual reciprocity boundary element method. The boundary element method for the coupled set of
mass, momentum and energy equations in two dimensions was structured by the fundamental solution
of the Laplace equation. Numerical examples were presented. The solution was assessed by comparison
with reference results of the fine-mesh finite volume method.

The main purpose of this work is to consider an isothermal flow of non-Newtonian fluid in a porous
medium. The problem is described by the equation of mass conservation and Brinkman equation. These
equations give boundary value problem consisted of a system of nonlinear coupled equations and non-
linear coupled boundary conditions. The method of fundamental solutions (MFS) is implemented to
solve the nonlinear problem. The algorithm for the nonlinear coupled equations with nonlinear boundary
conditions is proposed and applied to the considered problem.

2. Problem description

The steady-state problem in a porous medium is considered. The porous medium is saturated with non-
Newtonian fluid. The considered region is presented in Figure 1. The edges of the considered reservoir
are insulated, except for two pieces of edge which are open. There is a difference between pressure on
two open edges that causes the fluid to flow. The following assumptions are made:

(i) the only phase flowing is the fluid of constant composition;

(ii) The fluid is non-Newtonian;

(iii) flow is isothermal;

(iv) the permeability of the porous medium is constant and uniform;

(v) gravitational forces are neglected.

Figure 1. Geometry of the porous medium.
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3. The non-Newtonian fluid

To introduce the equations governing the non-Newtonian fluid flow, some general auxiliary parameters
are described. The shear-thinning non-Newtonian fluids are ones whose rheology is described by a
generalised Newtonian model. Such fluids have an isotropic viscosity that is a function of flow properties.
Extra stress tensor S is commonly known as a tensor which is related to the deformation rate by the
constitutive equation

Si j = αδi j + βGi j + γ Gi j Gi j , (1)

where α, β and γ are functions of three scalar invariants of Gi j

I1 = Gi i , I2 = Gi j G j i , I3 = Gi j G jk Gki , (2)

so
α = α(I1, I2, I3), β = β

(
I1, I2, I3), γ = γ

(
I1, I2, I3), (3)

and the deformation rate tensor (the rate of strain tensor) is defined as

G = ∇v +
(
∇v

)T
, (4)

where v is the velocity field.
Equation (1) is the most general formula for the extra stress of the viscous shear flow. Such fluids

are usually called Reiner–Rivlin fluids. For incompressible materials, I1 equals zero and α, β and γ

are considered as functions of I2 and I3. It is recognised that it is far too general to solve a specific
flow problem. In order to numerically solve different types of flow problems, there have been many
constitutive models in the fluid flow literature proposed by investigators. There is, however, a fairly
large category of fluids for which the velocity is not independent of the rate of shear and these fluids are
referred to as non-Newtonian. If the viscosity is considered as a function of the invariant I2 many more
practical flow problems can be solved. Then S = η(I2)G, which represents a generalised Newtonian

fluid. The shear rate is defined by γ̇ =

√
1
2 I2.

Several models are known for non-Newtonian fluids, such as power law fluids or Carreau fluids. In
this paper the Carreau fluid is considered. The viscosity for the model is described by the formula

µ = µ∞ +
(
µ0 − µ∞

)(
1 + (Aγ̇ )2) B−1

2 ,

where µ0 and µ∞ are asymptotic viscosities (measured in Pa) at large and small strain rates, respectively.
A, B are fluid-specific constants (measured in s−1) determined by plotting the observed viscosity as a
function of strain rate on a log-log plot, for example. The Carreau model is particularly well-suited for
certain dilute, aqueous, polymer solutions and melts.

4. The equations of non-Newtonian fluid flow in porous media

The motion of the fluid in porous media is described by the Brinkman equation for a viscous incom-
pressible isothermal fluid (the momentum equation), the continuity equation and the thermal diffusion
equation. The Brinkman equation is in the form

ρ0
∂v
∂t

= −∇ p + ∇ · S +
η

k
v + F, (5)
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where ρ0 is the mass density of the fluid, v is the velocity field, p is the pressure, µ is the viscosity, k is
the permeability of the porous structure. In the case of incompressible fluid the equation of the continuity
reads

∇ · v = 0. (6)

The considered problem is two-dimensional, so the system of equations (5), (6) has the form

η∇
2v1 = −

∂p
∂x1

+ 2
(

∂η

∂x1

∂v1

∂x1
+

∂η

∂x2

(∂v1

∂x2
+

∂v2

∂x1

))
−

η

k
v1,

η∇
2v2 = −

∂p
∂x2

+ 2
(

∂η

∂x2

∂v2

∂x2
+

∂η

∂x1

(∂v1

∂x2
+

∂v2

∂x1

))
−

η

k
v2,

∇
2 p = 2

(
∂2η

∂x2
1

∂v1

∂x1
+

∂2η

∂x2
2

∂v2

∂x2
+

∂2η

∂x1∂x2

(∂v1

∂x2
+

∂v2

∂x1

))
+

∂η

∂x1

(
∇

2v1 +
∂2v1

∂x2
2

+
v1

k

)
+

∂η

∂x2

(
∇

2v2 +
∂2v2

∂x2
1

+
v2

k

)
.

(7)

The boundary conditions are detailed below. For the boundaries of the region the no-slip condition is
applied. This means that

v1 = 0, v2 = 0, (8)

for{
(x, y) |

(
(b < x < a) ∩ (y = 0)

)
∪

(
(x = a) ∩ (0 < y < a)

)
∪

(
(0 < x < a − b) ∩ (y = a)

)
∪

(
(x = 0) ∩ (0 < y < a)

)}
.

The velocities on the open edges should meet the conditions

∂v1

∂n
= 0,

∂v2

∂n
= 0, (9)

for
{
(x, y) |

(
(0 < x < b) ∩ (y = 0)

)
∪

(
(a − b < x < a) ∩ (y = a)

)}
. The boundary condition for the

pressure field at insulated edges is

∇ p − ∇ · η
(
∇v +

(
∇v

)T )
= 0, (10)

for{
(x, y) |

(
(b < x < a) ∩ (y = 0)

)
∪

(
(x = a) ∩ (0 < y < a)

)
∪

(
(0 < x < a − b) ∩ (y = a)

)
∪

(
(x = 0) ∩ (0 < y < a)

)}
,

where v =
(
v1, v2

)
. The flow is imposed by pressure difference on both open edges. Therefore, the

boundary conditions are

p = p1 for
{
(x, y) |

(
(0 < x < b) ∩ (y = 0)

)}
, (11)

p = p2 for
{
(x, y) |

(
(a − b < x < a) ∩ (y = a)

)}
. (12)
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Moreover, the condition p1 > p2 has to be introduced. The problem consisting of equations (7) and
boundary conditions (8)–(12) was solved in this paper using the method of fundamental solutions sup-
ported by Picard iterations.

5. Method of fundamental solutions for nonlinear problems

The nonlinear problem is written in a general form

Anu(x) = fn(x), (13)

for x ∈ �, where Ne is the number of equations, n = 1, . . . , Ne, An is a nonlinear partial differential op-
erator, fn are known functions and � is a region in which the equations are determined. The coordinates
of the points are given by x =

(
x1, . . . , xN

)
. The solution requires to calculate u(x) =

(
u1(x), . . . uNe(x)

)
.

For the considered problem the boundary conditions are given by

Blu(x) = gl(x), (14)

for x ∈ 0 and l = 1, . . . , Nbc, where 0 is the boundary of the region � and Nbc is a number of all
boundary conditions defined for the considered problem.

In the case that the nonlinear operator can be written as a sum of linear and nonlinear operators, the
method of Picard iterations is applied. The nonlinear operator An is rewritten as

An = Ln + Nn, (15)

where Ln is the linear partial differential operator of An and Nn is a nonlinear partial differential operator.
The system of differential equations (13) is written as a system of linear differential equations. The
nonlinearity of equation is added to the inhomogeneous part of the equation. Therefore, the considered
system of equations has the form

Lnu(x) = fn(x) − Nnu(x), (16)

for x ∈ �, where n = 1, . . . , Ne. Of course, the boundary conditions (14) are still valid. The proposed
transformation of the system of coupled nonlinear equations gives the system of quasilinear equations in
implicit form. In order to solve such a system of equations the Picard iterations are implemented. The
iterative fashion of the considered system of equations is given as

Lnu(k)(x) = fn(x) − Nnu(k−1)(x), (17)

for x ∈ �, where n = 1, . . . , Ne and k = 1, 2, . . .. Each of the equations determined in k-th iteration step
is solved with the method of fundamental solutions with boundary conditions

Blu(k)(x) = gl(x), (18)

for x ∈ 0 and l = 1, . . . , Nbc. The inhomogeneous part of each equation is approximated by radial basis
functions and polynomials.

The iterative process begins with initial approximations of the solution, which is obtained by solving
the auxiliary boundary value problem

Lnu(0)(x) = fn(x), (19)
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for n = 1, . . . , Ne. The set of equations (19) can be viewed as a system of uncoupled linear equations.
Each equation is solved by method of fundamental solutions with proper boundary condition

Blu(0)(x) = gl(x), (20)

for x ∈ 0 and l = 1, . . . , Nbc. If the functions fn(x) do not equal zero, they are approximated by radial
basis functions and polynomials. The iterative process has to be stopped if the obtained results reach
demanded accuracy. There are some criteria. In this paper the convergence is defined by thresholding
the error of obtained solution

Ea = max
1≤i≤NC

max
1≤n≤Ne

∣∣∣u(k)
n

(
xC

i
)
− u(k−1)

n
(
xC

i
)∣∣∣, (21)

where
{
xC

i

}NC

i=1 is a set of trial points with arbitrary chosen number of trial points NC . Than the condition
to stop the iteration problem is

Ea < ε, (22)

where ε denotes a threshold which a small number such as 10−5.

6. Numerical experiment

For considered problem of non-Newtonian fluid flow in porous media the following notation is introduced

x = (x1, x2), u(x) =
(
u1(x), u2(x), u3(x)

)
=

(
v1(x), v2(x), p(x)

)
. (23)

Then, the set (13) is rewritten as

A1u = f1(x), A2u = f2(x), A3u = f3(x), (24)

with proper boundary conditions. The boundary conditions (14) are the conditions coupling the flow
velocities and pressure in porous media. Moreover, one of these conditions consists of a nonlinear
operator. Therefore, at every iteration step it is modified using the solution of previous iteration step. In
the considered method the set (17) is rewritten in the form of iterative equations

∇
2u(k)

1 (x) = f1(x) − N1u(k−1)(x),

∇
2u(k)

2 (x) = f2(x) − N2u(k−1)(x),

∇
2u(k)

3 (x) = f3(x) − N3u(k−1)(x),

(25)

for k = 1, 2, . . ..
Equation (25) are Poisson equations. The inhomogeneous part in each equation is a sum of the

functions of independent variables ( f1(x), f2(x), f3(x)) and the part determined by nonlinear operators
(N1u(x), N2u(x), N3u(x)). The system of equations (25) is solved with modified boundary conditions at
each iteration step. At the k-th step of procedure the boundary conditions are computed with equations
given above. On the boundary the no-slip condition is

u(k)
1 = 0, u(k)

2 = 0,

∇u(k)
3 − ∇ · η

(
∇(u(k)

1 , u(k)
2 ) +

(
∇(u(k)

1 , u(k)
2 )

)T
)

= 0, (26)
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for{
(x, y) |

(
(b < x < a) ∩ (y = 0)

)
∪

(
(x = a) ∩ (0 < y < a)

)
∪

(
(0 < x < a − b) ∩ (y = a)

)
∪

(
(x = 0) ∩ (0 < y < a)

)}
.

In the case of an open edge on a boundary the normal flow is defined with

∂u(k)
1

∂y
= 0,

∂u(k)
2

∂y
= 0, (27)

for
{
(x, y) |

(
(0 < x < b) ∩ (y = 0)

)
∪

(
(a − b < x < a) ∩ (y = a)

)}
. Pressure is given as

u(k)
3 = p1, (28)

for
{
(x, y) |

(
(a − b < x < a)∩ (y = a)

)}
. At the beginning of the iterative procedure the initial values

of unknown variables are set. In the considered case initial values are chosen as

u(0)
1 = 0, u(0)

2 = 0, u(0)
3 = 0, (29)

∂u(0)
1

∂x
= 0,

∂u(0)
1

∂y
= 0,

∂u(0)
2

∂x
= 0,

∂u(0)
2

∂y
= 0. (30)

Then the system of Poisson equations is obtained

∇
2u(1)

1 = f1(x), ∇
2u(1)

2 = f2(x), ∇
2u(1)

3 = f3(x) − N3u(1)(x), (31)

with the boundary conditions (26)–(28) applied with k = 1.
The solution is obtained in five iterations. Figures 2, 3 and 4 show, respectively, the vertical component

of a velocity field, the horizontal component of the velocity field and the pressure field in a porous
medium. It can be observed on the graphs that the boundary conditions for velocity and pressure are
met.

Figure 2. Component v1 of velocity of non-Newtonian fluid in the porous medium.
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Figure 3. Component v2 of velocity of non-Newtonian fluid in the porous medium.

The velocity of a non-Newtonian fluid flow in a porous medium, presented in Figure 2 and Figure
3, has the maximum value at the centre point of the considered region. On the boundary with a no-
slip condition, velocity equals zero. This fact is observed in Figures 2 and 3. This shows that the
implemented method meets the imposed boundary conditions. Near the open edges the component of
velocity has positive values, indicating the direction of the flow. Of course, the fluid flows from the edge
of higher pressure to the edge of lower pressure. At some distance from the open edges the component
changes sign and becomes negative. This results in turbulence. Figure 4, consisting of the pressure
field in considered region, confirms fulfilling boundary conditions determined in the problem. On the
open edges, the values of pressure have been imposed and kept during implementation of method of
fundamental solutions.

The results of numerical experiment show that the numerical method implemented for considered
problem is sufficient and correct for nonlinear problems. The method is supported by Picard iterations and

Figure 4. Pressure field in the porous medium.
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method of fundamental solutions. For the considered problem the iteration process has been convergent.
The satisfactory precision of obtained results has been achieved in five iterations. The presented results
are compatible with expected ones.

7. Conclusions

In this paper the flow of non-Newtonian fluid in a porous medium has been considered. The governing
equations were written and applied for two dimensional problem. Than the numerical algorithm has
been proposed to solve the considered problem. The implementation of the method of fundamental
solutions for the system of nonlinear coupled equations with nonlinear coupled boundary conditions has
been presented. The numerical experiment, performed for the considered problem gives proper results,
compatible with expected ones.
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