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AXISYMMETRIC INDENTATION OF A RIGID CYLINDER ON A LAYERED
COMPRESSIBLE AND INCOMPRESSIBLE HALFSPACE

LUIGI LA RAGIONE, FRANCESCO MUSCEO AND ALFREDO SOLLAZZO

We propose a solution for an elastic, axisymmetric, indentation problem. The indenter is a rigid cylinder
on an elastic layer in contact with an elastic substrate. The goal is to provide a contact law between
the applied force and the displacement of the coating in two cases: frictionless interaction and perfect
binding between the coating and the substrate. As examples we have considered situations in which the
substrate is either softer, similarly stiff, or stiffer than the coating, both for compressible or incompress-
ible materials.

1. Introduction

Problems concerning the investigation of strain and stress in elastic bodies in contact are the goal of
researches devoted to theoretical models and applications in the industry; see, for example, [Li and Chou
1997; Johnson and Sridhar 2001; Wang et al. 2004; Sburlati 2006].

A relative recent interest in contact mechanics (an exhaustive treatise of contact problems can be found
in [Johnson 1985]) has focused on indentation problems upon layered solids with coating different from
the substrate. This is of interest, for example, in the measurement of mechanical properties, such as
hardness and elastic moduli, of surface films in not destructive experimental tests, also on the micro- or
nanoscale.

In this paper we focus our attention on the case of a rigid cylinder with circular section indenting a lay-
ered body formed by an isotropic halfspace with an isotropic surface coating having different mechanical
characteristic from the substrate: this is an axisymmetric problem for compressible or incompressible
layers.

From the general case, in which no restriction is made on the elastic properties of the bodies in
contact, we deduce a limit condition for the case where the substrate is stiffer than the surface coating.
(An example of a solution in the case of a rigid foundation can be found in [Matthewson 1981; Yang
1998; 2003].)

Our solution is based on Hankel integral transforms, developed by Harding and Sneddon [1945] and
applied by Sneddon [1946] to the case of half space, that leads to a second kind Fredholm integral
equation numerically solvable.

We make the following hypotheses to approach the problem: the friction influences in a negligible way
the normal stress distribution on the interface between the layer and the cylinder (see [Johnson 1985],
for example); and we consider only the limit contact cases between the layer and the elastic substrate,
that is, either perfect bonding or absence of friction.

Keywords: contact mechanics, elasticity, indentation, Hankel transform.
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We believe that the model allows to highlight characteristics of solution that are unlikely to be noticed
through numerical simulations alone (as in [Komvopoulos 1988]), especially in the inherent case of a
rigid foundation where we obtain a solution normalized by all mechanical parameters.

2. Problem formulation

We study the quasistatic axisymmetric indentation of a rigid circular cylinder with radius a, in the context
of small deformation. The cylinder produces a normal force F upon an elastic body made by an isotropic
surface layer with moduli E1 and ν1 and thickness h, and a semi-indefinite isotropic substrate with moduli
E2 and ν2 (see Figure 1). For the interface between the layer and the elastic substrate we consider two
limit conditions: perfect bonding and absence of friction. The contact area does not vary with the loading
and it is a circle with radius a. The normal acting force is fixed and the displacement for all points of
the contact surface, δ, is the same.

We take two cylindrical frames of reference: the triplet (r, ϑ, z) refers to the surface layer, with r and ϑ
belonging to the upper surface of the coating and the z axis that coincides with the axis of symmetry; the
triplet (r ′, ϑ ′, z′) refers to the substrate with r ′ and ϑ ′ belonging to the interface layer-substrate surface
and the z′ axis superimposed on z. That is, the two frames of reference differ for a translation h in the
positive z direction.

Because of the symmetry, the problem can be simplified by focusing only on the positive quadrants
(O, r, z), r ≥ 0, z ≥ 0, and (O, r ′, z′), r ′ ≥ 0, z′ ≥ 0.

We first consider Mitchell’s theory [Sneddon 1951] for isotropic bodies deformed in axisymmetry
condition where stress and strain can be expressed through a single function. We refer to the generic
frame of reference (O, r, ϑ, z) and we introduce a potential 8(r, z) related to the nonzero components
of the strain such that

ur (r, z)=−
(1+ ν)

E
∂

∂r
∂8(r, z)
∂z

, (1)

Figure 1. Cylindrical indenter on layered halfspace.
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uz(r, z)=
2(1− ν2)

E
∇

28(r, z)−
(1+ ν)

E
∂28(r, z)
∂z2 . (2)

It is then straightforward to obtain the following expressions for the component of stress:

σz(r, z)=
∂

∂z

[
(2− ν)∇28(r, z)−

∂28(r, z)
∂z2

]
, (3)

σr (r, z)=
∂

∂z

[
ν∇28(r, z)−

∂28(r, z)
∂r2

]
, (4)

σϑ(r, z)=
∂

∂z

[
ν∇28(r, z)−

1
r
∂8(r, z)
∂r

]
, (5)

τzr (r, z)=
∂

∂r

[
(1− ν)∇28(r, z)−

∂28(r, z)
∂z2

]
, (6)

with

∇
2
=
∂2

∂r2 +
∂

r∂r
+
∂2

∂z2 .

If we apply Hankel transform theory [Sneddon 1951] to (1)–(6) indicating the transform with ,̃ and
introduce the parameter ξ instead of r , all the listed quantities can be written as function of the zeroth
order Hankel transform of the potential 8̃0(ξ, z):

ur (r, z)=
∫
∞

0

(1+ ν)
E

ξ 2 d8̃0(ξ, z)
dz

J1(ξr) dξ, (7)

uz(r, z)=
∫
∞

0
ξ

[
(1− 2ν)(1+ ν)

E
d28̃0(ξ, z)

dz2 −
2(1− ν2)

E
ξ 28̃0(ξ, z)

]
J0(ξr) dξ, (8)

σz(r, z)=
∫
∞

0
ξ

[
(1− ν)

d38̃0(ξ, z)
dz3 − (2− ν)ξ 2 d8̃0(ξ, z)

dz

]
J0(ξr) dξ, (9)

σr (r, z)=
∫
∞

0
ξ

(
ν

d38̃0(ξ, z)
dz3 + (1− ν)ξ 2 d8̃0(ξ, z)

dz

)
J0(ξr) dξ −

1
r

∫
∞

0
ξ 2 d8̃0(ξ, z)

dz
J1(ξr) dξ,

(10)

σϑ(r, z)=
∫
∞

0
ξν

(
d38̃0(ξ, z)

dz3 − ξ 2 d8̃0(ξ, z)
dz

)
J0(ξr) dξ +

1
r

∫
∞

0
ξ 2 d8̃0(ξ, z)

dz
J1(ξr) dξ, (11)

τzr (r, z)=
∫
∞

0
ξ 2
[
ν

d28̃0(ξ, z)
dz2 + (1− ν)ξ 28̃0(ξ, z)

]
J1(ξr) dξ. (12)

where Jm(rξ) represents the m order Bessel function of first kind, in the variable rξ .
On this basis, the indefinite balance equations are automatically satisfied, while compatibility gives

the equation (
d2

dz2 − ξ
2
)2

8̃0(ξ, z)= 0 ,

whose solution is

8̃0(ξ, z)= [L(ξ)+M(ξ)z] sinh(ξ z)+ [N (ξ)+ P(ξ)z] cosh(ξ z) , (13)
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in the unknown functions L(ξ), M(ξ), N (ξ) e P(ξ).
Note that the potential function introduced agrees with the one considered in [Timoshenko and Goodier

1970], and differs from that indicated in [Love 1944] and in [Sneddon 1951] by a term (1+ ν) (1−2ν)/E .
The former form allows us to determine a solution for the special case of incompressible materials
(ν = 1/2).

As the layered halfspace is axisymmetric deformed, the present theory is applicable to both upper
layer and substrate.

We label with the apex (c) terms related to the surface coating, and with apex (s) those related to the
substrate. The zeroth order Hankel transform for the potential of the coating, in the frame of reference
(O, r, z), is given by:

8̃
(c)
0 (ξ, z)= [A(ξ)+ B(ξ)z] cosh(ξ z)+ [C(ξ)+ D(ξ)z] sinh(ξ z), (14)

where A(ξ), B(ξ), C(ξ) and D(ξ) are unknowns. In the frame of reference (O, r ′, z′), the potential for
the substrate is given by

8̃
(s)
0 (ξ, z′)=−

[
S(ξ)z′+ T (ξ)

]
sinh(ξ z′)+

[
S(ξ)z′+ T (ξ)

]
cosh(ξ z′), (15)

in the unknowns S(ξ) and T (ξ) where we have imposed the vanishing of stresses and displacements as
z′ goes to∞. The equilibrium equation along the z axis can be phrased as

2π
∫ a

0

[
σz
](c)

z=0 rdr =−F. (16)

The boundary condition at the external surface of the layer are

[τzr ]
(c)
z=0 = 0 for r > 0, (17)

[uz]
(c)
z=0 = δ for 0≤ r ≤ a, (18)

[σz]
(c)
z=0 = 0 for r > a. (19)

The interaction between the layer and the substrate, keeping in mind the relation z = z′ + h, can be
expressed, in the case of a perfect bond, through the equations

[uz]
(c)
z=h = [uz]

(s)
z′=0, (20)

[ur ]
(c)
z=h = [ur ]

(s)
z′=0, (21)

[τzr ]
(c)
z=h = [τzr ]

(s)
z′=0, (22)

[σz]
(c)
z=h = [σz]

(s)
z′=0 . (23)

For the frictionless case we replace the conditions (21) and (22), that refer to the continuity of the radial
displacement and stress, with

[τzr ]
(c)
z=h = 0, [τzr ]

(s)
z′=0 = 0,

which accounts for the absence of tangential traction between the layer and the substrate.
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2.1. Solution. With the boundary conditions above, except for equations (16), (18), (19) and with equa-
tions (14), (15), we express B(ξ), C(ξ), D(ξ), S(ξ), T (ξ) as functions of A(ξ) by means of Hankel
transforms (see Appendix A). Therefore we write

D(ξ)=−
ξ A(ξ)

2ν1
, (24)

S(ξ)=
S(ξ)(N )
S(ξ)(D)

, T (ξ)=
T (ξ)(N )
T (ξ)(D)

, B(ξ)=
B(ξ)(N )
B(ξ)(D)

, C(ξ)=
C(ξ)(N )
C(ξ)(D)

, (25)

where, in the case of a perfect bond, we obtain

S(ξ)(N ) = 2A(ξ)E2 ξ(1−ν2
1)
{(

E2(1+ν1)(−2+hξ+2ν1)−hE1ξ(1+ν2)
)

cosh(ξh)

+
(
−E2(1+hξ−2ν1)(1+ν1)+E1(−1+hξ)(1+ν2)

)
sinh(ξh)

}
,

T (ξ)(N ) = 2A(ξ)E2(1−ν2
1)
{(

4E2(−1+ν2
1)ν2−hξ [E1+E2+E2ν1+ν2(E1−2E2(1+ν1))]

)
cosh(ξh)

+
(
E1(1+ν2) [−1+2hξ(−1+2ν2)]+E2(1+ν1) [1−2(1+hξ)ν2+ν1(−2+4ν2)]

)
sinh(ξh)

}
,

B(ξ)(N ) = 1
2 A(ξ)ξ

{
[E2(1+ν1)−E1(1+ν2)][−E2(1+ν1)+E1(−3+ν2+4ν2

2)]

+
[
E2

2(1+ν1)
2(−3+4ν1)+E2

1(1+ν2)
2(−3+4ν2)−2E1 E2(−1+ν1+2ν2

1)(−1+ν2+2ν2
2)
]

cosh(2ξh)

−8E1 E2(−1+ν2
1)(−1+ν2

2) sinh(2ξh)
}
,

C(ξ)(N ) = A(ξ)
{

E2
2(1+ν1)

2 [2+h2ξ 2
+ν1(−5+4ν1)

]
+E2

1(h
2ξ 2
+ν1)(1+ν2)

2(−3+4ν2)

−2E1 E2(1+ν1)(−1+h2ξ 2
+2ν1)(−1+ν2+2ν2

2)

+ν1
[
−E2

2(1+ν1)
2(−3+4ν1)−E2

1(1+ν2)
2(−3+4ν2)+2E1 E2(−1+ν1+2ν2

1)(−1+ν2+2ν2
2)
]

cosh(2ξh)

+8E1 E2ν1(−1+ν2
1)(−1+ν2

2) sinh(2ξh)
}
,

T (ξ)(D) = B(ξ)(D) = C(ξ)(D) = S(ξ)(D),

S(ξ)(D) = ν1
{
2hξ [−E2(1+ν1)+E1(1+ν2)][−E2(1+ν1)+E1(−3+ν2+4ν2

2)]

−8E1 E2(−1+ν2
1)(−1+ν2

2) cosh(2ξh)

+
[
E2

2(1+ν1)
2(−3+4ν1)+E2

1(1+ν2)
2(−3+4ν2)−2E1 E2(−1+ν1+2ν2

1) (−1+ν2+2ν2
2)
]

sinh(2hξ)
}
,

while the frictionless case leads to

S(ξ)(N ) = A(ξ)ξE2(−1+ ν2
1) [hξ cosh(hξ)+ sinh(ξh)] ,

T (ξ)(N ) = A(ξ)2E2ν2(−1+ ν2
1) [hξ cosh(hξ)+ sinh(ξh)] ,

B(ξ)(N ) = A(ξ)ξ sinh(ξh)
[
E2(−1+ ν2

1) cosh(hξ)+ E1(−1+ ν2
2) sinh(ξh)

]
,

C(ξ)(N ) = A(ξ)
[
−E2ξh(−1+ ν2

1)+ E1ξ
2h2(−1+ ν2

2)+ E1ν1(−1+ ν2
2)

−E1ν1(−1+ ν2
2) cosh(2hξ)− E2ν1(−1+ ν2

1) sinh(2ξh)
]
,

T (ξ)(D) = B(ξ)(D) = C(ξ)(D) = S(ξ)(D),

S(ξ)(D) = ν1
[
E2(1− ν2

1)− 2ξhE1(1− ν2
2)− E2(1− ν2

1) cosh(2hξ)− E1(1− ν2
2) sinh(2hξ)

]
.
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Conditions (18) and (19), which refer to parts of the domain, represent the dual integral equation that
allows us to determine the unknown function A(ξ).

In terms of Hankel transforms, equations (18) and (19) can be written as∫
∞

0
ξ
[̃
uz0

](c)
z=0 J0(ξr) dξ = δ for 0≤ r ≤ a, (26)∫

∞

0
ξ
[
σ̃z0

](c)
z=0 J0(ξr) dξ = 0 for r > a, (27)

with
[̃
uz0

](c) and
[
σ̃z0

](c) function of 8̃(c)0 (ξ, z) as specified in Appendix A.
If we write [̃

uz0

](c)
z=0 =−ξ

2 A(ξ)ku, (28)[
σ̃z0

](c)
z=0 = ξ

3 A(ξ)ks, (29)

where

ku =
(1− ν2

1)

E1ν1
and ks(ξ)=

ks(N )

ks(D)
, (30)

with, in the case of a perfect bond

ks(N ) =−
{

E2
2(1+ν1)

2(5+2h2ξ 2
+4ν1(−3+2ν1)

)
−E2

1(1+2h2ξ 2)(1+ν2)
2(−3+4ν2)

+2E1 E2(1+ν1)(−1+2h2ξ 2
+2ν1)(−1+ν2+2ν2

2)

+
[
E2

2(1+ν1)
2(−3+4ν1)+E2

1(1+ν2)
2(−3+4ν2)−2E1 E2(−1+ν1+2ν2

1)(−1+ν2+2ν2
2)
]

cosh(2hξ)

−8E1 E2(−1+ν2
1)(−1+ν2

2) sinh(2hξ)
}
,

ks(D) = 2S(ξ)(D),

and, in the frictionless case,

ks(N ) =−2ξhE2(1− ν2
1)− E1(1+ 2ξ 2h2)(1− ν2

2)− E1(1− ν2
2) cosh(2hξ)− E2(1− ν2

1) sinh(2hξ),

ks(D) = 2S(ξ)(D),

then equations (26) and (27) become∫
∞

0
−ξ 3 A(ξ)ku J0(ξr) dξ = δ for 0≤ r ≤ a, (31)∫

∞

0
ξ 4 A(ξ)ks(ξ)J0(ξr) dξ = 0 for r > a. (32)

Equations (31) and (32) represent the dual integral equation that solves the problem. At this point we
search for a numerical solution instead of treating the problem analytically. From (31) and (32) we
can find solutions in the case of an incompressible layer; this special case is not treatable if we adopt
Sneddon’s expression (for ν = 1/2 we have ks(ξ)=∞).

In Appendix B we show that if the thickness of the coating tends to infinite the potential of surface
layer converges to the one related to the indefinite isotropic halfspace with moduli E1 and ν1, while
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when the thickness vanishes the potential of substrate converge to that related to the indefinite isotropic
halfspace with moduli E2 and ν2.

3. Numerical solutions

The dual integral equation (31)–(32), for the Erdélyi–Sneddon solution method [Sneddon 1966], can be
converted in a second kind Fredholm equation whose kernels, in our cases, have only singularity in the
integration limits.

With

A∗(ξ)= ξ 4 A(ξ)ks(ξ), ξ = aξ, r̄ = r/a,

%

ks(ξ)
= 1+ I (ξ), (33)

A∗(ξ)= A∗(ξ)
ku

%δ
,

the dual integral equation (31)–(32) becomes∫
∞

0
ξ−1 A∗(ξ)

[
1+ I (ξ)

]
J0(ξ r̄) dξ =−1 0< r̄ < 1, (34)∫

∞

0
A∗(ξ)J0(ξ r̄) dξ = 0 r̄ > 1. (35)

The parameter % has to be chosen so that the Fourier cosine transform of function I (t) exists with the
auxiliary parameters |x − u| e |x + u|; that is, the following integrals converge∫

∞

0
I (t) cos (t |x − u|) dt +

∫
∞

0
I (t) cos (t |x + u|) dt.

This condition implies that

lim
ξ→∞

%

ks(ξ)
= 1,

which means, either for perfect bond or frictionless case, that % = 1/2ν1.
The solution of (34)–(35) is

A∗(ξ)=
ξ
√
π

∫ 1

0
h1(t) cos

(
ξ t
)

dt, (36)

where h1(t) is the solution of the following Fredholm integral equation [Sneddon 1966]

h1(x)+
∫ 1

0
h1(u)k (x, u) du = H(x), (37)

with

k (x, u)=
u

x
√

2π

(√
2
π

∫
∞

0
I (t) cos( t |x − u|) dt +

√
2
π

∫
∞

0
I (t) cos(t |x + u|) dt

)
(38)
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and
H(x)=−

2
x
√
π
.

Once we have solved Equation (37) numerically, together with (36), we obtain the dimensionless normal
stress distribution inside the contact area[

σz (r̄)
](c)

z=0 =
[
σz (r̄)

](c)
z=0

aku

%δ
=

∫
∞

0
A∗(ξ̄ )J0(ξ r̄) dξ [0< r̄ < 1] . (39)

Next we impose the translation balance, Equation (16), and obtain the dimensionless force-displacement
relation

F = F
ku

%δa
=−2π

∫ 1

0
[σz(r̄)]

(c)
z=0 r̄dr̄ , (40)

which allows us to obtain a symbolic solution in E1 and ν1 in the case of elastic layer, with no friction,
on a rigid substrate. In order to solve Equation (38) numerically we use the Newton–Cotes method, with
the exclusion of the integration limits (see [Davis and Rabinowitz 1984], for example). We replace the
integral in (37) by a series by dividing the range [0, 1] into N parts, so that

h1(xi )+

N−1∑
j=1

h1(u j )k(xi , u j )w j = H (xi ) , (41)

where w j represents the weight to be considered for the chosen integration method. Varying xi and u j

with the same step, Equation (41) is equivalent to a linear system of equations in the variable h1(xi ):

(K + V ) H1 = H,

where H1 is the variable array h1 (xi ), K the coefficients matrix k
(
xi , u j

)
w j , V the (N − 1)th order iden-

tity matrix and H the known terms array H (xi ). When we get h1 (xi ) we can then evaluate numerically
the expressions (36), (39) and (40).

4. Applications

We note that with ks(ξ) in (30) in both cases, perfect bond and frictionless condition, we do not have a
symbolic solution. Therefore we take some values for all mechanical properties of the two elastic bodies.
As examples of our activity we consider four cases of interacting materials; in particular we take a steel
layer above a polystyrene substrate such that E1 = 210 GPa, ν1 = 0.3 and E2 = 2 GPa, ν2 = 0.4. This
represents an application for a case in which the substrate is softer than the coating. Then we take a steel
layer above a glass substrate such that E1 = 210 GPa, ν1 = 0.3 and E2 = 70 GPa, ν2 = 0.22; the opposite
case is also treated such that E1 = 70 GPa, ν1 = 0.22 and E2 = 210 GPa, ν2 = 0.3. These represent an
application for a case in which the substrate and the coating have similar stiffness. As last case, in the
next section, we deal with the case of substrate much stiffer than the upper layer that can be treated as a
limit case of rigid foundation.

In Figure 2 we plot the dimensionless force F for different values of the ratio h̄ = h/a, in the case of
a perfect bond of a steel layer above a polystyrene substrate (top) and in the frictionless case (bottom).
Figure 3 deals with the case of a steel layer above a glass substrate, and Figure 4 with that of a glass
layer above a steel substrate.
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Figure 2. Elastic substrate (steel on polystyrene): contact law for perfect-bond (top)
and frictionless case (bottom). Parameters: E1=210 GPa, ν1=0.3, E2=2 GPa, ν2=0.4).

In all figures we have also considered the limit values of F related to the elastic halfspace 1, with
moduli E1 and ν1, and to the elastic halfspace 2, with moduli E2 and ν2. (For the half space with moduli
E and ν, we have

F =
2
δa

(
1− ν2

1

)
E1

[
2δEa
(1− ν2)

]
.
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Figure 3. Elastic substrate (steel on glass): contact law for perfect-bond (top) and
frictionless case (bottom). Parameters: E1=210 GPa, ν1=0.3, E2=70 GPa, ν2=0.22).

For the halfspace with moduli E1 and ν1, we have F1 = 4. For the halfspace with moduli E2 and ν2 we
have

F2 = 4
E2

E1

(
1− ν2

1

)(
1− ν2

2

) .
Therefore F2 = 0.04127 for steel on polystyrene, F2 = 1.275 for steel on glass and F2 = 12.549 for
glass on steel.)
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Figure 4. Elastic substrate (glass on steel): contact law for perfect-bond (top) and
frictionless case (bottom). Parameters: E1 = 70 GPa, ν1 = 0.22, E2 = 210 GPa, ν2 = 0.3).

The numerical results have been fitted by means of the SRichards curve or ExpDec curve (see Ap-
pendix C). We also provide in Appendix C the numerical results related to Figures 2–4 in order to show
more in detail the differences that emerge in the perfect-bond and frictionless cases.

We observe that for the coating’s thickness h < 0.5a the solution is close to the halfspace with the
same characteristic of the substrate, while, when the ratio h̄ = h/a increases it tends to the case of the
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halfspace with moduli E1, ν1, such that, for h > 10a, we can assume that the substrate does not influence
the force-displacement relation.

With fixed thickness, F related to the frictionless case is lower than that related to perfect bond; that
is, in the latter case the layer results less capable of being deformed.

5. Rigid foundation

As already underlined, if the substrate is much stiffer than the surface coating the problem can be ap-
proximated to the case of an elastic layer lying on a rigid foundation [Matthewson 1981; Yang 2003;
Yang 1998]. The solution can be obtained directly by the general case developed previously by taking
the limit E2→∞.

In the case of a perfect bond we have

lim
E2→∞

B(ξ)=−ξ A(ξ)
1+ (3− 4ν1)ν1 cosh (2ξh)

4hξν1+ 2ν1(−3+ 4ν1) sinh (2ξh)
, (42)

lim
E2→∞

C(ξ)= A(ξ)
2+ h2ξ 2

+ ν1(−5+ 4ν1)+ (3− 4ν1)ν1 cosh (2ξh)
2hξν1+ ν1(−3+ 4ν1) sinh (2ξh)

, (43)

lim
E2→∞

D(ξ)=−
ξ A(ξ)

2ν1
, (44)

lim
E2→∞

[̃
uz0

](c)
z=0 =−ξ

2 A(ξ)
(1− ν2

1)

E1ν1
, (45)

lim
E2→∞

[
σ̃z0

](c)
z=0 =−ξ

3 A(ξ)
5+ 2h2ξ 2

+ 4ν1(−3+ 2ν1)+ (3− 4ν1) cosh (2ξh)
4hξν1+ 2ν1(−3+ 4ν1) sinh (2ξh)

. (46)

The dual integral equation (31)–(32) seems not to be analytically solvable; however the numerical solu-
tion, for equations (45) and (46), is symbolic in the parameter E1. We plot in Figure 5 the dimensionless
force-displacement diagrams for ν1 = 0.1, 0.3 and 0.5. The numerical results have been fitted by means
of the ExpDec curve for the compressible layer (see Appendix C). Note that, for a given thickness, when
the Poisson ratio increases we need a greater force to produce the same displacement.

The same Figure 5 also shows the dimensionless force-displacement relation for the halfspace with
moduli E1 and ν1 and for very thin layer; in this last case we have introduced in (42)–(46) the series

sinh(hξ)=
∞∑

n=0

(hξ)2n+1

(2n+ 1)!
, cosh(hξ)=

∞∑
n=0

(hξ)2n

(2n)!
, (47)

neglecting in each case the higher order terms (details of the approximations are given in Appendix D).
With this approximation, we can treat the dual integral Equation (31)–(32) analytically. These equations,
in fact, can be reduced to the classic Titchmarsh’s form [Sneddon 1966] if the film is incompressible
(see Appendix E), while, in the case of compressible films, they can be solved by applying the inversion
theorem for Hankel transforms (see Appendix E). For an incompressible film we have

A (ξ)=−
δa2

2ξ 2ku
J2(ξa),
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Figure 5. Rigid substrate: contact law for perfect bond case.
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and, for (16), we obtain the force-displacement relation

δ =
8Fh3

a4πE1
. (48)

For a compressible film, instead, we have

A(ξ)=−
1
ξ 3

aδ
ku

J1(ξa),

and, for (16), we obtain the force-displacement relation

δ =
Fh (1+ ν1) (1− 2ν1)

πa2 E1 (1− ν1)
. (49)

For very thin films we note a great difference between displacements δ given by (48) and (49): the former
depends on h3 while the latter varies as h.

In the frictionless case we have

lim
E2→∞

B(ξ)= ξ A(ξ)
cosh (ξh)

2ν1 sinh (ξh)
, (50)

lim
E2→∞

C(ξ)=−A(ξ)
[hξ + ν1 sinh (2ξh)]

2ν1 [sinh (ξh)]2 , (51)

lim
E2→∞

D(ξ)=−
ξ A(ξ)

2ν1
, (52)

lim
E2→∞

[̃
uz0

](c)
z=0 =−ξ

2 A(ξ)
(1− ν2

1)

E1ν1
, (53)

lim
E2→∞

[
σ̃z0

](c)
z=0 = ξ

3 A(ξ)
[2hξ + sinh (2ξh)]

4ν1 [sinh (ξh)]2 . (54)

Unlike the case of a perfect bond, the dual integral equation (53)–(54) has a numerical symbolic solu-
tion in both mechanical parameters, E1 and ν1, of the surface layer. We plot in Figure 6 the dimensionless
force-displacement relation.

Moreover in this case we consider the dimensionless force-displacement relation for the halfspace with
moduli E1 and ν1 and for very thin layer; we have also plotted the fitting ExpDec curve (see Appendix
C). For thin layer we have again replaced in ((50)− (54)), the series (47) and we do not have a different
significant order of infinitesimal for the compressible and incompressible film. So we then obtain a
single solution for compressible and incompressible cases. Again equations (31) and (32) are solvable
analytically applying the inversion theorem for Hankel transform (see Appendix E) and the solution is

A(ξ)=−
1
ξ 3

aδ
ku

J1(ξa),

and, with (16), we obtain the force-displacement relation

δ =
Fh

(
1− ν2

1

)
πa2 E1

. (55)
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Figure 6. Rigid substrate: contact law for frictionless case.

In case of a compressible or incompressible very thin layer that is free to slide on a rigid foundation, we
obtain, therefore, a direct proportionality between δ and h, as in the case of compressible films in perfect
bond. Yang [1998; 2003; 2006] obtained the same results, considering the direct case of an elastic layer
on a rigid foundation, again in the compressible and incompressible cases. For the latter he formulates
the differential problem on the basis of the constitutive relation of incompressible materials.

6. Conclusion

We have considered an elastic, axisymmetric indentation problem under conditions that represent the up-
per and lower limits of real situations, for which the degree of adhesion between the layers is intermediate
between the conditions of complete bond and frictionless.

From the analysis developed for an elastic coating on an elastic substrate is deduced that, varying
h̄ = h/a between 0.5 and 10, the F-δ law is influenced by all the mechanical properties of materials of
the two layers. The same is true for the function [σz (r̄)]

(c)
z=0 given by (39), for different values of the

ration h/a. Therefore we have only provided the dimensionless relations F vs. δ.
A comparison of the results leads us to conclude that a given displacement δ is associated to a smaller

force F for the frictionless case than for the perfect bond condition; this indicates that the frictionless on
interface makes more deformable the layered body. This difference increases with the reduction of the
thickness of the surface layer and when the Poisson ratio increases.

This is evident if we compare the two cases of a compressible film on a rigid foundation: the dimen-
sionless solution in the frictionless case is slightly lower than that of perfect bond related to film with
modulus ν1 minimum among those considered (ν1 = 0.1).

The contrast is all the clearer for incompressible films, especially if the foundation is rigid and the
surface layer is very thin. In fact, formulas (48) and (55), referring to the latter condition respectively
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for perfect bonding and absence of friction, differ by two orders of magnitude: in one case there appears
h3 and in the other h.

We also pointed out that the choice of analytical solution highlight characteristics of the solution that
are difficult to notice through a complete numerical study.

Appendix A. Hankel transforms

If we apply the inversion theorem to equations (1), (2), (3) and (6) we obtain the Hankel transforms of
some components of stress and displacement as functions of 8̃0(ξ, z) and derivatives of 8̃0(ξ, z):

ũr1(ξ, z)=
(1+ ν)

E
ξ

d8̃0(ξ, z)
dz

, (56)

ũz0(ξ, z)=
(1− 2ν)(1+ ν)

E
d28̃0(ξ, z)

dz2 −
2(1− ν2)

E
ξ 28̃0(ξ, z), (57)

σ̃z0(ξ, z)= (1− ν)
d38̃0(ξ, z)

dz3 − (2− ν)ξ 2 d8̃0(ξ, z)
dz

, (58)

τ̃zr1(ξ, z)= ξ
[
ν

d28̃0(ξ, z)
dz2 + (1− ν)ξ 28̃0(ξ, z)

]
, (59)

Appendix B. Convergence for h → ∞ and for h → 0

The following proof of convergence to halfspace is valid either for perfect bond that for frictionless case.
For h→∞, equations (28), (29) become

lim
h→∞

[̃
uz0

](c)
z=0 =−ξ

2 A(ξ)

(
1− ν2

1

)
E1ν1

, lim
h→∞

[
σ̃z0

](c)
z=0 = ξ

3 A(ξ)
1

2ν1
.

Consequently the dual integral (31)–(32) can be treated analytically as it reduces to the classical Titch-
marsh’s form [Sneddon 1966], and give

A(ξ)=−
2
πξ 3

E1ν1(
1− ν2

1

)δ sin (ξa) . (60)

For the other functions B(ξ), C(ξ) and D(ξ) we simply have

lim
h→∞

B(ξ)=
ξ A(ξ)

2ν1
; lim

h→∞
C(ξ)=−A(ξ); lim

h→∞
D(ξ)=−

ξ A(ξ)
2ν1

, (61)

and, by replacing Equation (60) in (61), the potential in the layer, given by equation (14), becomes

8̃
(c)
0 =−

sin (ξa)
ξ 4

E1δ

π
(
1− ν2

1

) [2ν1+ ξ z] e(−ξ z), (62)

which is equivalent to the solution of the halfspace of moduli E1 e ν1.
For h→ 0, equations (28)–(29) become

lim
h→0

[̃
uz0

](c)
z=0 =−ξ

2 A(ξ)

(
1− ν2

1

)
E1ν1

, lim
h→0

[
σ̃z0

](c)
z=0 = ξ

3 A(ξ)
E2
(
1− ν2

1

)
2E1ν1

(
1− ν2

2

) .
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With these equations it is again the case that the solution of the dual integral (31)–(32) is given by (60),
because the right-hand term in (32) vanishes. In the limit the unknown functions S(ξ) and T (ξ) are

lim
h→0

S(ξ)=
E2
(
1− ν2

1

)
2E1ν1

(
1− ν2

2

)ξ A(ξ); lim
h→0

T (ξ)=
E2ν2

(
1− ν2

1

)
E1ν1

(
1− ν2

2

) A(ξ), (63)

and, replacing (60) in (63), the potential in the substrate, given by equation (15), becomes

8̃
(s)
0 =−

sin (ξa)
ξ 4

E2δ

π
(
1− ν2

2

)(2ν2+ ξ z′)e(−ξ z′), (64)

that is equivalent to the solution of the halfspace of moduli E2 e ν2, because for h→ 0 the z′ axis has
the same origin of z.1

Appendix C. Numerical results and fitting curves

The following tables show the numerical results for F , in the case of perfect bonding (pb) and no friction
(nf), as well as the percent difference.

Steel on polystyrene

h̄ 0.25 0.5 1 2.5 3.5 5 6.5 8.5 10 15 20 30 100
F (pb) .0550 .0815 .1385 .3267 .4936 .8489 1.3118 1.9653 2.3968 3.2809 3.6260 3.8228 3.8717
F (nf) .0522 .0772 .1312 .3089 .4681 .8149 1.2757 1.9347 2.3724 3.2719 3.6227 3.8221 3.8716

1F (%) 5.09 5.27 5.27 5.45 5.17 4.00 2.75 1.58 1.02 0.27 0.09 0.02 0.003

Steel on glass

h̄ 0.25 0.5 1 2.5 3.5 5 6.5 8.5 10 15 20 30 100
F (pb) 1.463 1.636 1.945 2.600 2.852 3.097 3.264 3.422 3.511 3.696 3.788 3.853 3.872
F (nf) 1.261 1.344 1.557 2.181 2.450 2.723 2.922 3.129 3.257 3.560 3.722 3.838 3.862

1F (%) 13.82 17.85 19.92 16.11 14.09 12.07 10.47 8.56 7.25 3.67 1.75 0.38 0.26

Glass on steel

h̄ 0.25 0.5 1 2.5 3.5 5 6.5 8.5 10
F (pb) 9.0541 7.6161 6.1548 4.7986 4.5174 4.3118 4.2043 4.1222 4.0827
F (nf) 8.4112 6.8633 5.4886 4.4709 4.2846 4.1551 4.0864 4.0338 4.0084

1F (%) 7.10 9.88 10.82 6.83 3.63 3.63 2.80 2.14 1.82

The fitting of curves was carried out based on 13 values of the ratio h/a. SRichards and ExpDec are
exponential curves; the general expression for a SRichards curve is

F = b
[
1+ (d − 1) e−c(h−h0)

]1/(1−d)

1The Hankel transform of Sneddon’s potential [1951] for the halfspace is equivalent to (62) or (64) times E−1(1+ν)(1−2ν),
in agreement with the formulation of the problem.
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while the expression for the ExpDec curve is

F = F0+ b1e−(h̄−h0)/c1 + b2e−(h̄−h0)/c2 + b3e−(h̄−h0)/c3

The constants obtained were as follows (pb = perfect bond; nf = no friction):

Steel on polystyrene

b d c h0

(pb) 3.8447 1.05499 0.22874 6.88795
(nf) 3.84321 1.06893 0.23112 7.02854

Steel on glass

F0 h0 b1 b2 b3 c1 c2 c3

(pb) 3.87775 0 −1.30211 −1.31437 0 1.88306 7.68174 0
(nf) 3.88583 0 −1.73246 −0.98371 0 8.90297 3.07826 0

Glass on steel

F0 h0 b1 b2 b3 c1 c2 c3

(pb) 3.9879 0.13699 7.44575 1.20125 6.4023 0.12538 2.60411 0.52208
(nf) 4.04243 0.14828 6.62349 1.72188 6.14044 0.12554 2.77703 0.62372

Rigid foundation

F0 h0 b1 b2 b3 c1 c2 c3

(nf) 4.1702 0 264.127 50.342 7.86791 0.03896 0.21493 1.40524
(pb, ν1 = 0.1) 4.1947 0 270.474 51.108 8.31471 0.03942 0.21365 1.41220
(pb, ν1 = 0.3) 4.2509 0 323.156 61.805 9.99856 0.03983 0.21263 1.3695

Appendix D. Approximations on the hyperbolic functions for very thin coating

In the case of a very thin coating we have substituted the hyperbolic series (47), neglecting the higher
order terms, in order to solve the dual integral equation and obtain the force-displacement law. To this
end we follow the approach proposed by Yang [2003; 1998] and we report here some details of the
calculation useful to derive the explicit form of the dual integral equation based upon the potentials
adopted.

For a compressible very thin coating in perfect bond on a rigid foundation, if we assume

sinh(hξ)' hξ, cosh(hξ)' 1+ 1
2(hξ)

2, (65)

use the identities

sinh(2hξ)= 2 sinh(hξ), cosh(2hξ)= sinh2(hξ)+ cosh2(hξ), (66)
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and substitute formulas (65) and (66) in (42), (43) and (46) we obtain

B(ξ)= A(ξ)
1−ν1

2hν1(1−2ν1)
, C(ξ)=−A(ξ)

1−ν1

2hξν1(1−2ν1)
, [̃σz0]

(c)
z=0 = ξ

2 A(ξ)
(1−ν1)

2

hν1(1−2ν1)
. (67)

With this approximation, we can treat the dual integral (31)–(32) analytically. These equations, in fact,
can be solved applying the inversion theorem for Hankel transforms.

In case of an incompressible coating the expressions (67) become indeterminate and consequently we
must include additional terms in the series expansion (47). If we take

sinh(hξ)' hξ + 1
6(hξ)

3, cosh(hξ)' 1+ 1
2(hξ)

2, (68)

set ν = 1
2 , and substitute formulas (68), (66) in (42), (43) and (46), we obtain

B(ξ)= A(ξ)
3

2h3ξ 2 , C(ξ)=−A(ξ)
3

2h3ξ 3 , [̃σz0]
(c)
z=0 = A(ξ)

3
2h3 . (69)

With this approximation we can treat the dual integral (31)–(32) analytically because it can be reduced
to the classic Titchmarsh form.

For a compressible very thin coating free to slide on a rigid foundation, if we substitute formulas (65)
and (66) in (50), (51) and (54) we obtain

B(ξ)= A(ξ)
1

2hν1
, C(ξ)=−A(ξ)

1+ 2ν1

2hξν1
, [̃σz0]

(c)
z=0 = ξ

2 A(ξ)
1

hν1
. (70)

In this case the approximation (65) is valid for incompressible upper layer too, and the dual integral
(31)–(32) is solvable analytically applying the inversion theorem for Hankel transform.

Appendix E. Analytical solution of the dual integral equation for a very thin coating
on a rigid foundation

For a very thin incompressible layer in perfect bond on a rigid foundation we have the transform of the
surface normal stress given by (69)3. Consequently, the dual integral equation can be written as∫

∞

0
−ξ 3 A(ξ)

3
2E1

J0(ξr) dξ = δ for 0< r < a,∫
∞

0
ξ A(ξ)

3
2h3 J0(ξr) dξ = 0 for r > a, (71)

and if we assume

ξ = ξa, r̄ =
a
r
, ku =

3
2E1

, δ =−a4 δ

ku
, A(ξ)= ξ A(ξ),

we have ∫
∞

0
ξ 2 A(ξ)J0(ξ r̄) dξ = δ for 0< r̄ < 1,∫
∞

0
A(ξ)J0(ξ r̄) dξ = 0 for r̄ > 1. (72)
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The dual integral equation in the form∫
∞

0
ξ−2αA(ξ̄ )Jm(ξ r̄) dξ = f (r̄) for 0< r̄ < 1,∫
∞

0
A(ξ)Jm(ξ̄ r̄) dξ = 0 for r̄ > 1,

with α < 0, was solved by Titchmarsh; the solution is

A(ξ)=

(
2ξ
)1+α

0 (−α)

∫ 1

0
t1−α Jm−α(ξ̄ t)

(∫ 1

0

(
1− s2)−1−α

sm+1 f (ts)ds
)

dt.

Therefore, the solution for the dual (72) is

A(ξ)=
∫ 1

0
r̄2 J1(ξ̄ r̄)

(∫ 1

0
sδ̄ ds

)
dr̄ =−

1
ξ

a4 δ

2ku
J2(ξ),

and then we have

A(ξ)=−
δa2

2ξ 2ku
J2(ξa). (73)

If we substitute (73) in (71) we deduce the normal stress distribution over the contact area

[σz(r, z)]z=0 =

∫
∞

0

−3a2δ

4h3ξku
J2(ξa)J0(ξr) dξ =

 0 for r > a,

−
δE1
4h3 (a

2
− r2) for 0< r < a,

while, with Equation (16), we have the force-displacement law

δ =
8Fh3

a4πE1
.

For a very thin compressible layer in perfect bond on a rigid foundation we have the transform of the
surface normal stress given by (67)3. The dual integral equation can be written as∫

∞

0
−ξ 3 A(ξ)

1− ν2
1

E1ν1
J0(ξr) dξ = δ for 0< r < a,

∫
∞

0
ξ 3 A(ξ)

(1− ν1)
2

hν1 (1− 2ν1)
J0(ξr) dξ = 0 for r > a, (74)

and then ∫
∞

0
−ξ 3 A(ξ)J0(ξr) dξ =


0 for r > a,

E1ν1

1−ν2
1

for δ 0< r < a,

By means of the inversion theorem for the Hankel transform, we obtain

A(ξ)=−
1
ξ 2

∫ a

0
r
δE1ν1(
1− ν2

1

) J0(ξr) dr =−
1
ξ 3

aδE1ν1(
1− ν2

1

) J1(ξa).
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Consequently we have

[
σz(r, z)

]
z=0 =

∫
∞

0
−

aδE1ν1(
1− ν2

1

) (1− ν1)
2

hν1 (1− 2ν1)
J1(ξa)J0(ξr) dξ

=

 0 for r > a,

−δ
E1(1−ν1)

h(1+ν1)(1−2ν1)
for 0< r < a,

(75)

and with (16) we derive

δ =
Fh (1+ ν1) (1− 2ν1)

πa2 E1 (1− ν1)
.

For a very thin compressible or incompressible layer free to slide on a rigid foundation we have the
transform of the surface normal stress given by (70)3. The dual integral equation can be written as∫

∞

0
−ξ 3 A(ξ)

(
1− ν2

1

)
E1ν1

J0(ξr) dξ = δ 0< r < a,∫
∞

0
ξ 3 A(ξ)

1
hν1

J0(ξr) dξ = 0 r > a, (76)

and then ∫
∞

0
ξ 3 A(ξ)J0(ξr) dξ =


0 for r > a,

−δ
E1ν1

1−ν2
1

for 0< r < a,
(77)

By means of the inversion theorem for the Hankel transform, we obtain

A(ξ)=−
1
ξ 2

∫ a

0
r
δE1ν1(
1− ν2

1

) J0(ξr) dr =−
1
ξ 3

aδE1ν1(
1− ν2

1

) J1(ξa). (78)

Consequently

[
σz(r, z)

]
z=0 =

∫
∞

0
−

aδE1ν1(
1− ν2

1

) 1
hν1

J1(ξa)J0(ξr) dξ = 0=


0 for r > a,

−δ
E1

h
(
1−ν2

1

) for 0< r < a.
(79)

Using (16), we then obtain

δ =
Fh

(
1− ν2

1

)
πa2 E1

.
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