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Elastic buckling analysis of imperfect FGM cylindrical shells under axial compression in thermal en-
vironments is carried out, using two different models for geometrical imperfections. The material
properties of the functionally graded shell are assumed to vary continuously through the thickness of
the shell according to a power law distribution of the volume fraction of the constituent materials, also
temperature dependency of the material properties is considered. Derivation of equations is based on
classical shell theory using the Sanders nonlinear kinematic relations. The stability and compatibility
equations for the imperfect FGM cylindrical shell are obtained, and the buckling analysis of shell is
carried out using Galerkin’s method. The novelty of the present work is to obtain closed form solutions
for critical buckling loads of the imperfect FGM cylindrical shells, which may be easily used in engineer-
ing design applications. The effects of shell geometry, volume fraction exponent, magnitude of initial
imperfections, and environment temperature on the buckling load are investigated. The results reveal that
initial geometrical imperfections and temperature dependency of the material properties play major roles
in dictating the bifurcation point of the functionally graded cylindrical shells under the action of axial
compressive loads. Also results show that for a particular value of environment temperature, critical
buckling load is almost independent of volume fraction exponent.

1. Introduction

An early attempt to establish occasional discrepancies between the theoretical and experimental buckling
loads of cylindrical shells was reported in [Donnell 1934]. Later it was determined that the initial imper-
fections and the boundary conditions are the principal cause of disagreement. A well known buckling
analysis of initially imperfect cylindrical shells is presented in [Donnell and Wan 1950; Donnell 1956].
The analysis is based on the equilibrium path of an imperfect cylindrical shell. Donnell’s theory was
later extended and applied to buckling problems by other researchers.

Recent studies on new performance materials have addressed new materials known as the functionally
graded materials (FGMs). These are high-performance heat resistant materials able to withstand ultra
high temperatures and minimize thermal stresses. The stabilization of a functionally graded cylindrical
shell under axial harmonic loading is investigated in [Ng et al. 2001]. Shen [2002; 2003] (see also
[Shen and Noda 2005]) presented the mechanical postbuckling of FGM cylindrical shells with tempera-
ture dependent properties in thermal environments under compressive axial loads and external pressure
using a singular perturbation technique. The results reveal that the characteristics of postbuckling are
significantly influenced by temperature rise and initial geometric imperfections. Shen [2004] also stud-
ied the thermal postbuckling of imperfect functionally graded cylindrical shells. Dynamic buckling of
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functionally graded cylindrical thin shells under non-periodic impulsive loading is studied by [Sofiyev
2003]. [Shahsiah and Eslami 2003a; Shahsiah and Eslami 2003b] investigated the thermal buckling of
functionally graded cylindrical shells under several types of loadings based on the Donnell and improved
Donnell equations. [Woo et al. 2003; Woo et al. 2005] presented thermomechanical postbuckling analysis
of functionally graded plates and shallow cylindrical shells based on the classical and higher order shell
theories. [Mirzavand et al. 2005; Mirzavand and Eslami 2006] studied the thermal buckling of imperfect
FGM cylindrical shells, under several types of loadings based on the Koiter and Wan–Donnell geomet-
rical imperfection models. Also buckling and free vibration analysis of functionally graded cylindrical
shells subjected to a temperature-specified boundary condition is investigated by [Kadoli and Ganesan
2006].

The present article develops the buckling analysis of imperfect functionally graded cylindrical shells
under axial compression in thermal environments, using two different models for the geometrical im-
perfections; namely, the Koiter and Wan–Donnell Models. The cylindrical shell is graded according to
a power law form through the thickness direction. The boundary conditions are assumed to be simply
supported. The stability and compatibility equations for the imperfect FGM cylindrical shell are obtained,
and the buckling analysis of the shell is carried out, using the Galerkin method, leading to the closed
form solutions.

2. Fundamental equations

Consider a thin circular cylindrical shell of mean radius R and thickness h with length L made of
functionally graded material. The shell is simply supported at its ends and subjected to a uniformly
distributed axial compressive load P combined with thermal loading in the form of uniform temperature
rise. The normal and shear strains at distance z from the shell middle surface are

ε̄x = εx + zκx , ε̄θ = εθ + zκθ , γ̄xθ = γxθ + 2zκxθ . (1)

The middle-surface kinematic relations are

εx = u,x + 1
2β

2
x , εθ =

w+ v,θ

R
+

1
2β

2
θ , γxθ =

u,θ
R
+ v,x +βxβθ , (2)

where u, v, w are the displacement components at points on the shell middle surface, and εx , εθ and γxθ

are the middle surface normal and shear strains, respectively. The indices x and θ refer to the axial and
circumferential directions, respectively. The rotations are

βx =−w,x , βθ =−
w,θ

R
(3)

and the curvature components are

κx = βx,x , κθ =
βθ,θ

R
, κxθ =

1
2

(βx,θ

R
+βθ,x

)
. (4)

The variation of Young’s modulus and of the coefficient of thermal expansion of the functionally
graded material are given by

E(z)= Em + (Ec− Em)
(2z+ h

2h

)ξ
, α(z)= αm + (αc−αm)

(2z+ h
2h

)ξ
, (5)
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(see [Praveen and Reddy 1998]) where the subscripts m and c refer to the metal and ceramic constituents,
and ξ is the volume fraction exponent which takes values greater than or equal to zero. The Poisson’s
ratio ν is considered to be constant across the thickness.

The force and moment resultants are [Mirzavand and Eslami 2006]

Nx = C(εx + νεθ )+ B(kx + νkθ )− T0, Nθ = C(εθ + νεx)+ B(kθ + νkx)− T0,

Mx = B(εx + νεθ )+ D(kx + νkθ )− T1, Mθ = B(εθ + νεx)+ D(kθ + νkx)− T1,
(6)

Nxθ =
1
2C(1− ν)γxθ + B(1− ν)kxθ ,

Mxθ =
1
2 B(1− ν)γxθ + D(1− ν)kxθ ,

(7)

where

C =
h

1−ν2

(
Em+

Ecm

ξ+1

)
, B =

h2 Ecm

2(1−ν2)

( ξ

ξ 2+3ξ+2

)
, D =

h3

4(1−ν2)

(
Em

3
+

Ecm(ξ
2
+ξ+2)

ξ 3+6ξ 2+11ξ+6

)
,

T0 =
1T h
1−ν

(
Emαm+

Emαcm+Ecmαm

ξ+1
+

Ecmαcm

2ξ+1

)
, T1 =

1
1−ν

∫
+h/2

−h/2
Eα1T z dz. (8)

Here 1T is temperature rise from some reference temperature at which there are no thermal stresses.
The equilibrium equations of a perfect FGM cylindrical shell may be derived on the basis of the

stationary potential energy criterion, and are given by [Mirzavand and Eslami 2006]

RNx,x + Nxθ,θ = 0, Nθ,θ + RNxθ,x = 0,(
D−

B2

C

)
∇

4w+
1
R

Nθ −
(

Nxw,xx +
2
R

Nxθw,xθ +
1
R2 Nθw,θθ

)
= 0

(9)

3. Analysis

Here the buckling analysis is presented for two common types of axisymmetric imperfections. According
to the Koiter model, the axisymmetric geometrical imperfection of cylindrical shell is expressed as [Brush
and Almroth 1975]

w∗ =−µh cos
(mπx

L

)
, −

L
2
≥ x ≥+

L
2
, (10)

where m is the number of half wave in x-direction, and µh represents the amplitude of imperfection of
the middle surface of the shell (0≤ µ≤ 1).

Donnell divides the initial imperfections into two combined components. Based on the experience with
buckling problems, only that component which has the same shape as the deflection of the shell under
load, which is w, can be taken into consideration [Donnell and Wan 1950; Donnell 1956]. Accordingly,
the Wan–Donnell model for the axisymmetric radial imperfection is

w∗ =
(k− 1

2

)
w, (11)

where the coefficient k is the imperfection parameter, which is a constant number equal or greater than
1. The magnitude of k depends on the material properties and manufacturing process of the cylindrical
shell. The value of k = 1 represents a perfect shell.
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The unloaded shell in the imperfection form, including w∗, is assumed to be stress free. The small
angle of rotation w,x in the equations for an initially perfect cylinder is replaced by (w+w∗),x . The form
of the equations can be simplified substantially by introducing a circumferential coordinate y= Rθ . Using
Equations (2) and (3) and by introducing the coordinate y, the net strains for the imperfect cylindrical
shell now become

εx = u,x + 1
2w

2
,x +w

∗

,xw,x , εy = v,y +
w
R
+

1
2w

2
,y, γxy = u,y + v,x + (w+w∗),xw,y . (12)

Similarly, Equations (9) for an initially imperfect cylindrical shell are replaced by

Nx,x + Nxy,y = 0, Nxy,x + Ny,y = 0,(
D− B2

C

)
∇

4w+
1
R

Ny −
(
Nx(w+w

∗),xx + 2Nxyw,xy + Nyw,yy
)
= 0.

(13)

The stability equations of FGM cylindrical shell may be obtained by the application of the minimum
potential energy criterion, and are [Mirzavand and Eslami 2006]

Nx1,x + Nxy1,y = 0, Nxy1,x + Ny1,y = 0,(
D−

B2

C

)
∇

4w1+
Ny1

R

−

(
Nx1(w0+w

∗),xx + 2Nxy1w0,xy + Ny1w0,yy + Nx0w1,xx + Ny0w1,yy + 2Nxy0w1,xy

)
= 0, (14)

where u0, v0, w0 are related to the equilibrium configuration, and u1, v1, w1 are arbitrary small neighbor-
ing increments, and Ni j1 represent the force resultants related to the neighboring state. Introducing the
Airy stress function 8 as

Nx1 =8,yy, Ny1 =8,xx , Nxy1 =−8,xy (15)

the first and second stability equations are automatically satisfied and the third stability equation reduces
to(

D−
B2

C

)
∇

4w1+
8,xx

R

−

(
8,yy(w0+w

∗),xx − 28,xyw0,xy +8,xxw0,yy + Nx0w1,xx + Ny0w1,yy + 2Nxy0w1,xy

)
= 0. (16)

The compatibility equation in terms of the Airy stress function and the lateral displacement component
w1 is [Mirzavand and Eslami 2006]

∇
48−C(1− ν2)

(
w1,xx

R
− (w0+w

∗),xxw1,yy + 2w0,xyw1,xy −w1,xxw0,y

)
= 0. (17)

3.1. Koitr imperfection model. Equations (16) and (17) are a set of linear equations in terms of the
variable prebuckling coefficients Ni j0, w0, and the radial geometric imperfection w∗. The prebuckling
coefficients must be known to be able to obtain the buckling load. Consider an imperfect cylindrical shell
made of functionally graded material with simply supported edge conditions and subjected to axial com-
pression load P . For the axisymmetric configuration on the primary path, u0= u0(x), v0≡ 0, w0=w0(x)
[Brush and Almroth 1975]. For the axisymmetric loading, Nxy0 = 0 and from the first equilibrium equa-
tion, however, Nxx0 is seen to be independent of x . Considering the boundary conditions at the cylinder
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ends, where the axial load P is uniformly distributed around the circumference, the axial prebuckling
force resultant is

Nx0 =−
P

2πR
− T0 =−σh− T0. (18)

Using Equation (18) and the equilibrium equations, the other prebuckling coefficients are found to be

Ny0 = C(1− ν2)
w0

R
− νσh− T0, (19)

w0 =
νR(σh+ T0)

C(1− ν2)
+ q cos

mπx
L

, (20)

where

q =−µh
(σh+ T0)

(mπ
L

)2

(
D− B2

C

)(mπ
L

)4
− σh

(mπ
L

)2
+

C(1−ν2)
R2

. (21)

Introducing the prebuckling coefficients from the above equations into (16) and (17), we obtain the
coupled linear equations of stability and compatibility as(

D−
B2

C

)
∇

4w1+
8,xx

R
+

(
(σh+ T0)w1,xx −

C(1− ν2)q
R

cos
mπx

L
w1,yy

−8,yy(µh− q)
(mπ

L

)2
cos

mπx
L

)
= 0,

∇
48−C(1− ν2)

(
w1,xx

R
−w1,yy(µh− q)

(mπ
L

)2
cos

mπx
L

)
= 0. (22)

To solve this system of equations, with the consideration of the simply supported boundary conditions,
the approximate solutions may be considered as

w1 = αmn cos
mπx

L
cos

ny
R
, 8= βmn cos

mπx
L

cos
ny
R
,

+
L
2
≥ x ≥−

L
2
, 2πR ≥ y ≥ 0, m, n = 1, 2, . . . ,

(23)

where m and n are the number of half waves in x and y-directions, respectively, and αmn and βmn are con-
stant coefficients that depend on m and n. Substituting the approximate solutions (23) into Equations (22)
gives the residues R1 and R2. Following Galerkin’s method, R1 and R2 are made orthogonal with respect
to the approximate solutions (23), and then the determinant of the obtained system of equations for the
coefficients αmn and βmn is set to zero. For even values of m the determinant of coefficients has no result,
but for m = 4k± 1 (odd values of m) yields

s1(σh+ T0)
3
+ s2(σh+ T0)

2
+ s3(σh+ T0)+ s4 = 0, (24)

where we have set

s1 =− f1 f2, s2 = f3 f4 f 2
5 + f5( f3 f6+ f4 f7− f1 f8)− 2 f1 f2 f9+ f6 f7− f1 f10,

s3 = f5 f9( f3 f6+ f4 f7− f1 f8)− f1 f2 f 2
9 + 2 f9( f6 f7− f1 f10), s4 = f 2

9 ( f6 f7− f1 f10),
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with

f1 =
πRL

2

((mπ
L

)4
+ 2

(mπ
L

)2( n
R

)2
+

( n
R

)4
)
,

f2 =−
πRL

2

(mπ
L

)2
,

f3 =
±4RLC(1−ν2)

3m

(mπ
L

)2( n
R

)2
,

f4 =
∓4RL

3m

(mπ
L
)2
( n

R

)2
,

f5 = µh,

f6 =
−πRL

2R

(mπ
L

)2
±

4RLµh
3m

(mπ
L

)2( n
R

)2
,

f7 =
πRLC(1−ν2)

2R

(mπ
L

)2
∓

4RLµh
3m

C(1− ν2)
(mπ

L

)2( n
R

)2
,

f8 =
±4RLC(1−ν2)

3m R

( n
R

)2
,

f9 =−

(
D− B2

C

)(mπ
L

)2
−

C(1−ν2)
R2

(mπ
L

)−2
,

f10 =
πRL

2

(
D− B2

C

)((mπ
L

)4
+ 2

(mπ
L

)2( n
R

)2
+

( n
R

)4
)
.

Solving (24) yields σh+ T0 versus the material properties, the shell geometry parameters, the imper-
fection amplitude, and m and n. The critical axial compression load, in which buckling occurs, can be
written as

Pcr = 2πR(σh)min, (25)

where Pcr is the critical axial compression load, and (σh)min is obtained by minimizing the solutions of
(24) with respect to m and n.

3.2. Wan–Donnell imperfection model. Similarly, for an FGM cylindrical shell with the Wan–Donnell
imperfection model, the prebuckling force resultants and prebuckling deflection may be found to be

Nx0 =−
P

2πR
− T0 =−σh− T0, Ny0 = C(1− ν2)

w0

R
− νσh− T0, Nxy0 = 0 (26)

and

w0 = η sin
mπx

L
, (27)

where

η =
4(νσh+T0)/mπR(

D− B2

C

)(mπ
L

)4
−(σh+T0)

(k+1
2

)(mπ
L

)2
+

C(1−ν2)
R2

.
(28)
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Introducing the prebuckling coefficients from the above equations into Equations (16) and (17), result in
the coupled linear equations of stability and compatibility as(

D−
B2

C

)
w1,xxxx +

8,xx

R
−8,yy

(k+ 1
2

)(mπ
L

)2
η sin

(mπx
L

)
+ (σh+ T0)w1,xx = 0,

∇
48−C(1− ν2)

w1,xx

R
= 0.

(29)

To solve the system (29), with the consideration of the simply supported boundary conditions, the
approximate solutions may be considered as

w1 = αm sin
mπx

L
, 8= βmn sin

mπx
L

cos
ny
R
,

L ≥ x ≥ 0, 2πR ≥ y ≥ 0, m, n = 1, 2, . . . ,
(30)

where m and n are the number of half waves in x and y-directions, respectively, and αm and βmn are
constant coefficients that depend on m and n. Substituting the approximate solutions (30) into (29) gives
the residues R1 and R2. Following Galerkin’s method, R1 and R2 are made orthogonal with respect to
the approximate solutions given by (30), and then the determinant of the resulting system of equations
for the coefficients αm and βmn is set to zero, which for the odd values of m yields

η =
−π( n

R

)2(k+1
2

)(8R
3m

) . (31)

Considering (28) and (31), we obtain

P
2πR

=

Cπ(1−ν2)
R2 +π

(
D− B2

C

)(mπ
L

)4
− T0

(k+1
2

)(
−

( n
R

)2( 32
3m2π

)
+π

(mπ
L

)2
)

(k+1
2

)(
−

( n
R

)2( 32ν
3m2π

)
+π

(mπ
L

)2
) . (32)

The critical axial compression load Pcr is obtained by minimizing this with respect to m and n.

4. Numerical results and discussion

The functionally graded materials chosen are zirconium oxide, ZrO2, and the titanium alloy Ti-6Al-4V.
Their material properties P are given in [Touloukian 1967] as functions of temperature T , of the form

P = P0
(
1+ P1T + P2T 2

+ P3T 3) (33)

in which T = T0 +1T and T0 = 300 K (room temperature), and P0, P1, P2, and P3 are temperature
dependent coefficients that are unique to the constituent materials. Typical values for Young’s modulus
E , Poison’s ratio ν, and the coefficient of thermal expansion α of zirconium oxide and titanium alloy are
listed in Table 1. (A term in T−1 in Touloukian’s version of (33) has coefficient zero in this case and is
omitted.)

Here three comparison cases are presented for the validation of the results. The first comparison is
based on the buckling under axial compression in the absence of thermal loading. Let us assume µ= 0
and k = 1, in the Koiter and Wan–Donnell models, respectively, which corresponds to the equations for
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ZrO2 Ti-6Al-4V
P0 P1 P2 P3 P0 P1 P2 P3

E (Pa) 244.27·109
−1.371·10−3 1.214·10−6

−3.681·10−10 122.56·109
−4.586·10−4 0 0

α (Pa) 12.766·10−6
−1.491·10−3 1.006·10−5

−6.778·10−11 7.5788·10−6 6.638·10−4
−3.147·10−6 0

ν 0.28 0 0 0 0.28 0 0 0

Table 1. Temperature-dependent thermoelastic coefficients for zirconium oxide ZrO2

and titanium alloy Ti-6Al-4V. From [Touloukian 1967].

thickness ratio, h/R 0.003 0.004 0.005 0.006

this article (Koiter model) 2.40 4.26 6.65 9.58
this article (Wan–Donnell model) 2.52 4.26 6.77 9.66
[Brush and Almroth 1975] 2.40 4.26 6.65 9.58

Table 2. Buckling loads Pcr (in MN) for perfect homogeneous shells, in the absence of
thermal load (E = 70 GPa, α = 23× 10−6/K, ν = 0.3, L/R = 1).

volume fraction exponent ξ 0.0 0.2 0.5 1.0 2.0 3.0 5.0

this article (Koiter model) 85.90 95.65 106.49 118.74 133.12 141.62 151.59
this article (Wan–Donnell model) 87.89 97.68 108.91 121.81 137.05 145.98 156.27
[Shen 2004] 86.65 96.03 106.54 118.45 132.44 140.69 150.28

Table 3. Buckling temperature difference 1Tcr for perfect FGM cylindrical shells, in
the absence of axial compression (h/r = 0.025, L/R = 0.866).

a perfect cylindrical shell. If, in addition, we take Ec = Em and αc = αm (pure homogeneous metallic
shell), the solutions may be validated with the closed form solution obtained in [Brush and Almroth
1975] when 1T = 0. Table 2 shows the results obtained for a cylindrical shell made of pure aluminum
(L/R = 1) with the Koiter and Wan–Donnell imperfection models discussed in this article, together
with the values given by the closed form solution of Brush and Almorth. The comparison for the two
imperfection models, when imperfections are eliminated, is well justified.

Other comparisons are based on the buckling under thermal loading in the absence of axial compres-
sion. Assume µ= 0 and k = 1, in the Koiter and Wan–Donnell models, respectively (perfect cylindrical
shell). For uniform temperature rise loading, in the absence of axial compression, the solution may be
validated with the results obtained in [Shen 2004] for FGM shells made from Si3N4/SUS304 as shown
in Table 3. If, in addition, we take Ec = Em and αc = αm (homogenous shell), the solution may be
validated with the closed form solution obtained in [Eslami et al. 1996] for an isotropic cylindrical shell,
as shown in Table 4. As seen, in all cases the comparisons are well justified.

Figure 1 plots the variation of the ratio of critical load for the imperfect FGM cylindrical shell Pcr

to the critical load of the corresponding perfect shell Pps , subjected to axial compression and under
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Si3N4 SUS 304

h/r 0.003 0.005 0.010 0.003 0.005 0.010

this article (Koiter model) 216.42 361.01 721.29 103.07 171.84 343.52
this article (Wan–Donnell model) 216.55 360.84 721.55 103.14 171.86 343.64
[Eslami et al. 1996] 216.61 360.79 722.03 103.16 171.94 343.87

Table 4. Buckling temperature difference 1Tcr for perfect homogenous cylindrical
shells, in the absence of axial compression. (L/R = 0.866)
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Figure 1. Influence of imperfection magnitude. Left: Koiter imperfection model; right
Wan–Donnell imperfection model.

different uniform temperature rise and based on the Koiter imperfection parameter µ and Wan–Donnell
imperfection parameter k for L/R = 1.2, h/R = 0.008, and ξ = 2. As the magnitude of imperfection
increases, the buckling ratio decreases. This effect is stronger as the uniform temperature rise increases.

The influence of cylindrical shell geometry on critical axial compression load Pcr under a uniform
temperature rise 1T = 30 K for various values of the volume fraction exponent ξ = 0.5, 1, 2 (as well as
pure metal and pure ceramic) are illustrated in Figures 2 and 3. Figure 2 shows the buckling loads versus
h/R for two imperfection models when the Koiter imperfection amplitude and Wan–Donnell imperfec-
tion parameter are 0.5 and 1.2, respectively, and L/R = 1. As the ratio h/R increases, the buckling load
increases. Figure 3 represents the variation of buckling load versus L/R for two imperfection models
when the Wan–Donnell imperfection parameter and the Koiter imperfection amplitude are 2 and 0.5,
respectively, and h/R = 0.005. The critical bucking load increases as the ratio L/R increases.

The variation of Pcr versus volume fraction exponent are plotted for different values of environment
temperature in Figure 4 for the two imperfection models. Here, the Koiter imperfection amplitude and
Wan–Donnell imperfection parameter are 0.5 and 1.2, respectively, L/R = 1.2, and h/R = 0.008. As
seen in this figures, for a particular value of environment temperature (here, T = 350 K for the Koiter
model and T = 360 K for the Donnell model) the critical buckling load is almost constant for different
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Figure 2. Variation of critical buckling load with h/R according to volume fraction
exponent. Left: Koiter imperfection model; right Wan–Donnell imperfection model.
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Figure 3. Variation of buckling load with L/R according to volume fraction exponent.
Left: Koiter imperfection model; right Wan–Donnell imperfection model.

values of ξ , provided that the other parameters are kept constant. For temperatures less than this par-
ticular temperature, critical buckling load decreases as the volume fraction exponent ξ increases, and
for temperatures greater than this particular temperature, critical buckling load increases as the volume
fraction exponent ξ increases. This particular temperature, extremely depends on the shell parameters
such as material properties, geometrical parameters, and magnitude of the initial imperfection. Note
that negative values of Pcr in Figure 4, left for T = 420 K(1T = 120 K) display situations that FGM
cylindrical shell will buckle before applying any axial compression load, through existing thermal load
(thermal buckling).
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Figure 4. Critical buckling load of shell versus volume fraction exponent ξ and tempera-
ture T . Left: Koiter imperfection model; right Wan–Donnell imperfection model.

5. Conclusion

The equilibrium, stability, and compatibility equations for a simply supported imperfect functionally
graded cylindrical shell are derived. The buckling analysis of imperfect FGM cylindrical shell under
axial compressive load in thermal environments is investigated for two models of initial geometric imper-
fections, leading to the closed form solutions for the buckling load. The results reveal that effect of initial
imperfections on decreasing the buckling load is stronger for larger magnitudes of the thermal loading.
It is also shown that the buckling load of an imperfect functionally graded cylindrical shell subjected
to thermomechanical loads increases with increasing the shell thickness and/or increasing shell length.
Also results show that for a particular value of environment temperature, critical buckling load is almost
independent of volume fraction exponent. Beyond this temperature, critical buckling load increases with
increasing the volume fraction exponent and below that, critical buckling load decreases with increasing
the volume fraction exponent.
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