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MANABENDRA DAS, ERDOGAN MADENCI AND DAMODAR R. AMBUR

A special-purpose analysis tool based on the finite element method is presented for parametric design
studies of composite laminates and sandwich panels with scarf repairs. This design tool provides the
complete three-dimensional stress and strain fields in scarf-repaired panels without any requirements on
the nature of the lamination and the type of loading. The adherends are modeled using a plate element
based on a higher-order single-layer theory, and the adhesive is modeled using a solid element. The
higher-order nature of the plate theory makes it suitable for analyzing thick laminates and sandwich pan-
els comprised of numerous plies. The model takes into account geometric nonlinearity in the adherends
and assumes a bilinear stress-strain relationship for the adhesive. The responses of composite laminates
with single- and double-sided repairs and sandwich panels with both full and partial repairs of the top
face sheets are investigated.

1. Introduction

Bonded joints and repairs, in a variety of forms such as lap, step, and scarf, have become the most
common types of repairs for composite laminated and sandwich panels. The objective of a scarf repair
is to restore the static strength and durability of a composite structure that contains damage due to
unexpected impact loading on the structure, crack occurrence within the structure after longtime use,
and environmental reasons. Panels with scarf joints do not experience excessive secondary bending and
the magnitude of transverse shear and peel stress concentration is not as severe as in lap and step joints.
In fact in the case of homogeneous adherends, the stress variation inside the adhesive remains fairly
uniform. In the case of panels made of composite laminates, however, a nonuniform stress variation
inside the adhesive has been observed [Johnson 1989]. Therefore, a detailed analysis of composite
laminates for the accurate prediction of the stress and strain fields becomes critical for failure analysis.
Moreover, geometric nonlinearity due to adherend bending and material nonlinearity of the adhesive
should be taken into account for realistic predictions. With the increasing use of sandwich panels in
aircraft structures, the development of repair methods and analysis tools to investigate the responses of
these panels with scarf repair has become very important [Tomblin et al. 2004].

Analytical and numerical methods have been used in the past to examine scarf joints [Hart-Smith
1973; Erdogan and Ratwani 1971]. These methods are two dimensional in nature and the scarf repair
is analyzed based on a representative scarf joint. In a scarf joint, the entire load is transferred through
the adhesive bond, as opposed to both the undamaged base material and the repair sharing the load in
the case of a scarf repair. The two dimensional scarf joint model over-predicts the stresses inside the
adhesive and therefore underestimates the strength of the repaired panel [Soutis and Hu 1997]. Moreover,
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the adherends are assumed to be homogeneous, and arbitrary boundary conditions and loading cannot
be imposed. More recently, Mortensen and Thomsen [1997] employed the classical plate theory to
model the adherends and a nonlinear material model for the adhesive. The analysis permits adherend
bending as well as arbitrary load and boundary conditions. Finite element analysis can be employed to
overcome the limitations of the analytical methods. While comparing different finite element models
for scarf repair analysis, Odi and Friend [2002] noticed that although a considerable amount of work
had been done on bonded joints, the number of numerical analysis methods devoted to bonded repair
was inadequate. Johnson [1989] carried out a finite element analysis of scarf joints to investigate the
nonuniform stress variation in nonhomogeneous laminated composites. It was observed that due to
discontinuity in adherend stiffness, the stress variation had an oscillating trend with peaks in the vicinity
of the 0◦ plies. Similar characteristics were observed by Harman and Wang [2006], who carried out
both analytical and finite element analyses to investigate the influence of a varying scarf angle on the
shear stress distribution. Gunnion and Herszberg [2006] conducted two- and three-dimensional finite
element analyses and investigated the influence of various parameters on the average and peak values
of shear and peel stress. Their work was later extended to accommodate the elastic-plastic nature of
the adhesive [Wang and Gunnion 2008]. Baker et al. [1999] carried out a combined experimental and
computational analysis where a detailed three-dimensional finite element model was created and the
tapered scarf was modeled as a series of steps. In several studies finite element models have been used to
investigate the effect of scarf angle and stacking sequence on the failure load of panels with scarf repair
[Du et al. 2004; Kumar et al. 2006; Campilho et al. 2007]. Very often, instead of discretizing each layer
of the laminate, average material properties are utilized to represent a specific stacking sequence [Soutis
and Hu 1997; Kumar et al. 2006]. This approach reduces the size of the model considerably but the
oscillating variation of the stress field inside the adhesive layer is not captured. Although detailed three-
dimensional finite element analyses of scarf joints using solid elements can be used to provide accurate
results, these models tend to be computationally expensive due to the presence of the thin adhesive layer
and the numerous layers of plies in the laminate or the face sheet of a sandwich panel. Mesh refinement
can be significant, especially in the case of nonlinear analysis where a fine mesh might be required for
convergence. Moreover, difficulties associated with parameterizing the meshing process requires extra
effort in creating a new mesh every time a panel with a different number of plies, adhesive thicknesses,
or panel dimensions is to be analyzed.

An alternative to this approach is to use an element based on a single-layer theory, which utilizes a
modest number of degrees of freedom for the entire FE model and provides accurate results. The current
analysis utilizes one such plate element [Das et al. 2005; Das et al. 2006] for the adherents and a separate
solid element for the adhesive layer in between the adherents. The tapered scarf is modeled as a stepped
joint with numerous steps in order to replicate the taper as closely as possible. The analysis incorporates
geometric and material nonlinearity in the adherent and adhesive elements, respectively. A bilinear stress
strain relationship is used for the material model and geometric nonlinearity is incorporated based on
the total Lagrangian formulation. The model accounts for finite boundaries, the presence of a cutout or
grind-out in the skin, general loading conditions, material anisotropy, different thicknesses of the repair
patch and skin, and different repair and parent materials. The material properties are input for each ply
without any limitation on refinement in the thickness direction. While it is computationally robust and
fast, it leads to accurate stress predictions in each specific ply and the adhesive layer.
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Figure 1. Top view of a panel with scarf repair under arbitrary loading conditions.

2. Problem definition

This study concerns the analysis of scarf repairs of composite laminates and sandwich panels. The top
view of a composite laminate, or sandwich panel, with a scarf repair is illustrated in Figure 1. The panels
have a rectangular geometry with length L x and width L y . As shown in Figure 1, the panel is subjected
to forces, moments, and prescribed displacements at the edges. The composite laminate is made of
several plies with orthotropic material properties. The laminate can have either a single-sided repair or a
double-sided repair, as shown in Figures 2a and 2b. The sandwich panel can have either the full top face
sheet or only a portion of it under the repair as shown in Figures 2c and 2d. The face sheets, as well as
the core, can be composed of homogeneous, elastic, and orthotropic material layers. The problem posed
herein concerns the determination of the complete three-dimensional stress and strain fields in the base
and repair adherend and in the thin adhesive layer.

3. Present approach

The tapered scarf is modeled as a series of steps and each step consists of the adhesive layer in between
the repair and base adherend. Plate elements, based on the {3,2}-order theory, and solid elements are
utilized to model each step along the scarf repair. As shown in Figure 3, the base and repair adherends are
represented through separate plate elements, through the thickness. The adhesive layer on the other hand
is modeled using a solid element. Since all the plate elements are required to have a constant thickness,
a fictitious material with a very low stiffness value is used in the region where the adherent does not
occupy any space, as shown in Figure 3. A similar approach was adopted by Bair et al. [1991] for their
FE model based on shell elements.

Since the nodes of the plate elements are placed along the mid-surface, they are not aligned with the
nodes of the adhesive element. Hence, the nodes of the adhesive elements are offset to the mid-surface of
the adherend elements so that they coincide with the nodes of the adherend element [Carpenter 1973]. The
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Figure 2. Side view of a composite panel with (a) single- and (b) double-sided repairs
and a sandwich panel with (c) full repair of the top face sheet and (d) partial repair of
the top face sheet.

details of the element formulation for the plate and solid elements are given in subsequent sections. The
stiffness matrix and the unknown displacement vector of the super element, comprised of the adhesive
and adherends, have the following forms

K SCARF =

[
K P

b + K S
bb K S

br
K S

rb K P
r + K S

rr

]
78×78

, vT
SCARF =

{
vT

b vT
r
}
, (1)
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Figure 3. The scarf super element comprised of the two adherend plate elements with
the solid adhesive element in between them.
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Figure 4. A triangular plate element with three nodes having 13 degrees of freedom at
each node.

where K P
b and K P

r are the stiffness matrix of the base and repair adherend plate elements, respectively,
and K S corresponds to the stiffness matrix of the adhesive element. The displacement vector consists of
the nodal unknowns, vb and vr , that correspond to the base and repair plate elements, respectively. The
region outside the repair zone is modeled using a single layer of plate elements.

4. Plate element

The plate element for the adherends is based on the {3,2}-order single-layer theory [Cook and Tessler
1998; Barut et al. 2001]. The triangular element contains 13 degrees of freedom at each node, as
shown in Figure 4. These degrees of freedom consist of two in-plane displacements, (u, v), two out-
of-plane rotations, (θx , θy), and three transverse nodal displacements, (w,w1, w2), and their derivatives,
(w,x , w,y, w1,x , w1,y, w2,x , w2,y). The weighted-average in-plane displacement components in the x-
and y-directions are denoted by u and v, respectively. The weighted-average transverse displacement
is denoted by w. The weighted-average bending rotations about the negative x- and positive y-axes are
denoted by θx and θy , respectively. Their positive sign convention is shown in Figure 4. The transverse
displacements, not weighted-averaged, (w1, w2), represent the symmetric and antisymmetric expansion
modes through the thickness of the element.

As shown by Barut et al. [2001], the displacement components of the plate are defined as

ux(x, y, z)= u(x, y)+ hζθy(x, y)+
(

1
6
−
ζ 2

2

)
hw1,x(x, y)

+ h
(
ζ

5
−
ζ 3

3

)[
5
4

(
θy(x, y)+w,x(x, y)

)
+w2,x(x, y)

]
,

(2a)

u y(x, y, z)= v(x, y)+ hζθx(x, y)+
(

1
6
−
ζ 2

2

)
hw1,y(x, y)

+ h
(
ζ

5
−
ζ 3

3

)[
5
4

(
θx(x, y)+w,y(x, y)

)
+w2,y(x, y)

]
,

(2b)

uz(x, y, z)= w(x, y)+w1(x, y)ζ +w2(x, y)(ζ 2
− 1/5), (2c)

where ζ = z/h is the normalized thickness and varies in the range −1≤ ζ ≤ 1. In accordance with the
{3,2} plate theory, the in-plane displacement components vary cubically and the transverse displacement
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component varies quadratically across the thickness of the panel. At any point in the panel, the in-
plane displacement components in the x- and y-directions are represented by ux(x, y, z) and u y(x, y, z),
respectively, and the transverse displacement component by uz(x, y, z).

The definitions of the stress and moment resultants and the form of the resultant strain and curvatures
are provided in [Barut et al. 2001]. The resultant stresses and moments are expressed in terms of the
strain and curvature components as 

N
M
Q

=
 A B 0

BT D 0
0 0 G


ε

κ

γ

 , (3)

where

NT
=
{

Nxx0, Nyy0, Nzz0, Nxy0, Nxx1, Nyy1, Nxy1
}
, (4a)

MT
=
{

Mxx0,Myy0,Mzz0,Mxy0,Mxx1,Myy1,Mxy1
}
, (4b)

QT
=
{

Q yz0, Qxz0
}
, (4c)

εT
=
{
εxx0, εyy0, εzz0, γxy0, εxx1, εyy1, γxy1

}
, (4d)

κT
=
{
κxx0, κyy0, κzz0, κxy0, κxx1, κyy1, κxy1

}
, (4e)

γ T
=
{
γyz0, γxz0

}
. (4f)

The explicit forms of A, B, D, and G are given in [Barut et al. 2001]. This constitutive relation can also
be expressed in terms of the compliance matrix C in the form E = C S, where ET

=
{
εT κT γ T

}
and

ST
=
{

NT MT QT }. The governing equations concerning the equilibrium equations and continuity of
interelement displacements along the element edges are derived utilizing the principle of virtual work.
The resulting equations of equilibrium and boundary conditions are derived in [Barut et al. 2001]. The
kinematic continuity conditions are imposed not only on the weighted-average displacements and slopes,
(u, v, w, θx , θy), but also on the derivatives of the higher-order displacement modes, (w1, w2), in the
transverse direction. Therefore, the finite element implementation of the equilibrium equations requires
at least C1 interelement continuity for the out-of-plane displacement modes of w, w1, and w2. Because
of this requirement, the finite element implementation of the total potential energy functional in terms
of the assumed displacement field becomes rather difficult. The hybrid energy functional formulation
overcomes the difficulty of the C1 interelement continuity requirement because the displacements, as
well as the slopes, are independently assumed only along element boundaries, which can be rendered
identical along the common boundaries of adjacent elements. However, the kinematic compatibility
between the displacements and slopes along the element boundaries is preserved in order to avoid a
possible shear-locking phenomenon. Also, as part of the hybrid energy functional formulation, the stress
and moment resultants within the element are selected such that they satisfy the equilibrium equations.

The hybrid energy functional for an element, 5H , is defined as

5H =
1
2

∫
Ae

ST C Sd A−
∫
0e

T T
b ub d0, (5)
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in which the element boundary is denoted by 0e and its area by Ae. The vectors T b and ub include the
components of the boundary forces and boundary displacements, respectively. In accordance with the hy-
brid energy formulation, the resultant stress vector, S, must satisfy the equilibrium equations identically.
The derivation of the resultant stress vector, S, satisfying the equilibrium equations is presented in [Das
et al. 2005]. Also, the boundary displacement vector, u(k)b , containing the assumed boundary displace-
ment components, and the boundary stress vector, T (k)

b , containing the resultant stresses and moments
corresponding to the boundary displacement vector u(k)b , are given in [Das et al. 2005]. Substituting for
the stress vector, the boundary displacement and boundary stress vectors in the hybrid energy functional
result in

5H =
1
2 bT Hb+λT cb+ RT

b b− RT
v v− bT Gv+50, (6)

where

H =
∫

Ae

PT C P d A, G =
∑

k

∫
0(k)

PT B(k)
s B(k)

b L(k)d0,

Rb =

∫
Ae

ST
0 C P d A, Rv =

3∑
k=1

∫
0(k)

ST
0 B(k)

s B(k)
b L(k)d0, 50 =

1
2

∫
Ae

ST
0 C S0 d A,

(7)

in which the explicit definition of each of the matrices and vectors is given in [Das et al. 2005]. In matrix
form, the hybrid energy functional, 5H , can be rewritten as

5H =
1
2 b̂

T
Ĥ b̂+ R̂

T
b b̂− RT

v v+ b̂
T

Ĝv+50, (8)

where

b̂
T
=
{

bT ,λT }, Ĥ =
[

H cT

c 0

]
, R̂

T
b =

{
RT

b , 0T }, Ĝ =
[

G
0

]
.

In accordance with the concept of energy minimization, the first variation of the hybrid energy functional
with respect to the unknown vector b̂ of generalized coordinates yields

δ b̂
T (

Ĥ b̂+ R̂b− Ĝv
)
= 0 or b̂= Ĥ

−1(
Ĝv− R̂b

)
. (9)

With this explicit solution form, the hybrid energy functional becomes

5H =−
1
2v

T kLv+ f T
0 v+50, (10)

in which the linear stiffness matrix kL and the resultant force (load) vector f 0 are defined as

kL = Ĝ
T

Ĥ
−1

Ĝ and f T
0 = R̂

T
b Ĥ
−1

Ĝ− R̂
T
v . (11)

Finally, the element equilibrium equation is obtained by requiring the first variation of the hybrid
energy functional to vanish

δ5H = δv
T (kLv− f 0)= 0. (12)

For arbitrary variation of δv, the element equilibrium equations become

kLv = f 0. (13)
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The nonlinear analysis is based on the total Lagrangian formulation. The principle of virtual work in
the total Lagrangian formulation is given by∫

0V

∑
k

t+1t
0 S(k)δ0 E (k)d0V = δt+1t

<. (14)

In this expression, the left subscript indicates the configuration by which the quantity is measured and the
left superscript refers to the configuration of the body at a specific time. The right superscript refers to
the kth component of the Piola-Kirchoff stress, S, and Green strain, E, resultant vector. The right-hand
side of Equation (14) represents the virtual work done by the conservative external forces on the virtual
displacements. The Piola-Kirchoff stress are decomposed between times t and t +1t as

t+1t
0 S(k) = t

0S(k)+ 0S(k). (15)

The incremental Piola-Kirchoff stress vector, 0S(k), represents the incremental loading between t +1t
and t , and t

0S(k) represents the known component from time t . The Green strain at any state t +1t can
be written in terms of linear and nonlinear components as

t+1t
0 E (k) = t+1t

0 E (k)L +
t+1t
0 E0

N L . (16)

This expression can be written in terms of the unknown displacement as

t+1t
0 E (k) = B(k)T

L

(tv+ v
)
+

1
2

(tv+ v
)T B(k)

N L

(tv+ v
)
, (17)

where B(k)
L and B(k)

N L are the linear and nonlinear strain-displacement relationship vector and matrix,
respectively, corresponding to the kth strain resultant component. Based on the hybrid formulation, the
linear strain-displacement relationship matrix can be expressed as

BL = C P Ĥ
−1

Ĝ. (18)

The matrix B(k)
N L is obtained based on von Karman assumptions and therefore the current analysis is

applicable only for small rotations. The incremental strain 0 E (k) can be obtained by finding the difference
between the strain at state t +1t and t

0 E (k) = t+1t
0 E (k)− t

0 E (k) = B(k)T
L v+ tvT B(k)

N Lv+
1
2v

T B(k)
N Lv. (19)

The virtual strain increment can be expressed as

δ0 E (k) = B(k)T
L δv+ tvT B(k)

N Lδv+ v
T B(k)

N Lδv. (20)

Based on Equations (15) and (19), the expression for stress can now be written in terms of the unknown
displacements as

t+1t
0 S(k) = t

0S(k)+
∑

j

C−1
jk E ( j)

=
t
0S(k)+

∑
j

C−1
jk

(
B( j)T

L v+ tvT B( j)
N Lv+

1
2v

T B( j)
N Lv

)
, (21)

where C−1
jk represents the linear relationship between the resultant stresses and strains. Substituting the

expressions for virtual incremental strain and total stress from Equations (20) and (21) into the virtual
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work expression and neglecting the higher order terms results in(∫
0V

(∑
k

∑
j

B(k)
L C−1

jk B(k)T
L +

∑
k

∑
j

B(k)
L C−1

jk
tvT B(k)

N L +
∑

k

B(k)
N L

tvC−1
jk

t B(k)T
L

+

∑
k

B(k)
N L

tvC−1
jk

tvT B(k)
N L +

∑
k

t
0S(k)B(k)

N L

)
d0V

)
v = f e−

∑
k

t
0S(k)B(k)

L −
∑

k

t
0S(k)B(k)

N L
tv. (22)

The final nonlinear system of finite element equations can be written as

K Pv = F P , (23)

where K P
= kL + kv + kσ and P F = f e − f i . The matrices kL , kv, and kσ are the linear, initial

displacement, and geometric stiffness matrices, respectively, and f i and f e are the internal and external
force vectors, respectively. The explicit form of these matrices and vectors is as follows

kL =

∫
0V

(∑
k

∑
j

B(k)
L C−1

jk B(k)T
L

)
d0V , (24a)

kv =
∫

0V

(∑
k

∑
j

B(k)
L C−1

jk v
T B(k)

N L +
∑

k

B(k)
N L

tvC−1
jk

t B(k)T
L +

∑
k

B(k)
N L

tvC−1
jk

tvT B(k)
N L

)
d0V, (24b)

kσ =
∫

0V

(∑
k

t
0S(k)B(k)

N L

)
d0V , (24c)

f i =

∫
0V

(∑
k

t
0S(k)B(k)

L +
∑

k

t
0S(k)B(k)

N L
tv

)
d0V . (24d)

Note that by combining the linear strain-displacement relationship matrix given in Equation (18) with
Equation (24a), the linear stiffness matrix obtained from the hybrid formulation, Equation (11), can be
reproduced.

5. Adhesive element

A solid element with six nodes is used for the adhesive layer. Unlike the plate element, the adhesive
element is based on a displacement formulation and each node has three degrees of freedom. The dis-
placement field varies linearly both in the in-plane and transverse directions. Therefore, the displacement
field inside the adhesive can be expressed as

uS
=

[
Nη+ 0

0 Nη−

] [
N xy 0

0 N xy

]{
vS

bot
vS

top

}
, (25)

where uS
={uS

x uS
y uS

z }
T and vS

bot and vS
top consist of the nodal displacements corresponding to the bottom

and top surfaces, respectively. As mentioned earlier, the nodes of the solid element do not coincide with
the nodes of the adherend plate element. Therefore, in order to enforce continuity, the nodes of the
adhesive elements are offset to the mid-surface of the adherend elements. The displacements at the
nodes of the solid element are expressed in terms of the nodal displacements of the plate element, as
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Figure 5. Offset nodes of the solid element for the adhesive.

shown in Figure 5, based on the following transformation{
vS

bot
vS

top

}
=

[
T b 0
0 T r

]{
vP

b
vP

r

}
, (26)

where vP
b and vP

r are nodal displacements of the base and repair plate element, and T b and T r are
transformation matrices. The transformation matrices are constructed based on the definition of through-
the-thickness variation of the displacement field inside the adherend plate, as given in Equation (2).
Combining Equations (25) and (26), the displacement field inside the adhesive element can now be
expressed in terms of the degrees of freedom associated with the plate elements as

uS
=

[
Nη+ 0

0 Nη−

] [
N xy 0

0 N xy

] [
T (i) 0

0 T ( j)

]{
vP

b
vP

r

}
. (27)

Using the displacement variation given in Equation (27), the strain field inside the element takes the
form

εS
= BS

{
vP

b
vP

r

}
, (28)

where BS is the strain-displacement transformation matrix. Instead of using a typical shear lag model,
the adhesive layer takes into account the presence of all six components of strain such that

εS
= {εxx εyy εzz γyz γxz γxy}

T . (29)

The stiffness matrix is therefore defined as

K S
=

∫
S V

BST
DS BS dV =

[
K S

bb K S
br

K S
rb K S

rr

]
78×78

, (30)

where DS is the stress-strain relationship matrix. The isotropic adhesive material has a bilinear relation
between the effective transverse shear stress, τeff, and effective transverse shear strain, γeff. The effective
transverse shear stress and strain in the adhesive are defined as

τeff =

√
τ 2

xz + τ
2
yz (31a)
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Figure 6. Bilinear relationship between effective stress and strain.

and
γeff =

√
γ 2

xz + γ
2
yz. (31b)

As shown in Figure 6, the initial shear modulus of the bilinear adhesive behavior is denoted by G1, and
it reduces to G2 when the effective transverse shear strain, γeff, reaches the critical shear strain, γc. For a
given value of effective shear strain, the effective shear stress can be obtained from Figure 6. Thereafter,
the effective shear modulus can be obtained as

Geff = τeff/γeff. (32)

Moreover, the effective Young’s modulus can be expressed as

Eeff = 2Geff(1+ ν). (33)

Note that due to the dependence of the effective modulus on the effective strain, the system of equations
become nonlinear.

6. Results and discussion

The current analysis tool is validated against an analytical solution and the commercial finite element
analysis software ANSYS. Although both two-dimensional and three-dimensional models were created
using ANSYS, only the three-dimensional results are reported here. In the ANSYS model, two layers
of elements were used for each ply in the adherends and the adhesive was divided into three layers of
elements. PLANE 42 and SOLID 45 elements were used for the two-dimensional and three-dimensional
model, respectively. Similar to the approximation made in the current analysis tool, a series of steps were
used to represent the scarf, instead of modeling it as a smooth taper. The adhesive along with each ply
in the laminate was divided into multiple steps and one layer of solid element was used for every step.

The first problem involves the linear analysis of a two-dimensional scarf joint previously considered by
[Erdogan and Ratwani 1971]. The scarf joint is subjected to in-plane stress, and its geometry is shown in
Figure 7. The first adherend is made of aluminum with an elastic modulus E = 1.0×107 psi and Poisson’s
ratio ν = 0.3. The second adherend is made of boron-epoxy with elastic moduli Ex = 3.24× 107 psi
and Ez = 3.5× 106 psi, shear modulus G = 1.23× 106 psi , and Poisson’s ratio νx = 0.23. An epoxy
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Figure 7. Schematics of the scarf joint.

material with elastic modulus E = 4.45× 105 psi and shear modulus G = 1.65× 105 psi is used for the
thin adhesive layer. Since the analytical analysis does not permit the adherends to bend, for this problem,
the bending deformations were suppressed in the finite element analysis as well. The transverse shear
stress variation inside the adhesive layer is shown in Figure 8. Unlike a lap or step joint, the scarf joint
has a fairly uniform variation of shear stress inside the adhesive. The difference in the results from the
analytical and current finite element analysis is due to the presence of stress-free boundary condition at
the edges. The current finite element solution tries to satisfy the stress boundary condition whereas the
analytical results do not capture this feature.

The nonuniform variation of adhesive stress in a composite laminated joint is investigated next. The
two-dimensional joint has a stacking sequence of (45/90/− 45/0)5, and each ply has a thickness of
0.0072 in. The total length of the panel is 12.32 in, and the scarf ratio is 30.0. The material properties of
the plies in the base and repair adherends are given in Table 1. The 0.01-inch-thick adhesive has linear
material properties with shear modulus G = 6.0× 104 psi and Poisson’s ratio ν = 0.3. The panel is
subjected to an in-plane force of Nx = 1000.0 lbs/in; the stresses in the adhesive are shown in Figure
9. Unlike the homogeneous adherends, the stress distribution in the laminated joints has an oscillating
trend and locations of the peaks are in the vicinity of the 0◦ degree plies. The transverse shear stress,
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0
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Figure 8. Shear stress variation inside the adhesive layer of a scarf joint.
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Figure 9. Stress variation inside the adhesive layer of a scarf joint.

σxy , is the dominant component whereas the magnitude of transverse normal stress, σyy , is much smaller
even though the laminate has an unsymmetrical stacking sequence. Since the adhesive element is not
based on a typical shear-lag-type model, the in-plane normal stress, σxx , can also be computed using the
current analysis; the results are shown in Figure 9.

The next problem involves the three-dimensional scarf repair analysis of a composite laminate with
a single-sided repair. The panel has length and width of 40 in and 28 in, respectively. The inner ra-
dius of the scarf repair is 0.25 in, and the scarf ratio is 30.0. The laminate has a stacking sequence
of (45/90/−45/0)5s , and each ply has a thickness of 0.0072 in. The adhesive thickness and material
properties of the base, repair, and adhesive are the same as the scarf joint discussed earlier. The linear
and geometrically nonlinear responses of the repaired laminate under two loading conditions have been
analyzed. In the first case, a moment of Mx = 10.0 lbs-in/in is applied at the edges of the panel. The

Base Repair Core

E1(psi) 1.85× 107 1.58× 107 1.50× 102

E2(psi) 1.00× 106 8.50× 105 7.50× 101

E3(psi) 1.00× 106 8.50× 105 2.00× 105

G12(psi) 5.20× 105 4.40× 105 1.00× 103

G13(psi) 5.20× 105 4.40× 105 1.00× 103

G23(psi) 3.30× 105 2.80× 105 4.00× 104

ν12 0.34 0.34 1.20
ν13 0.34 0.34 1.00× 10−5

ν23 0.53 0.53 1.00× 10−5

Table 1. Material properties for the base, repair, and core
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Figure 10. Shear stress, τr z , variation obtained from (a) the current analysis and (b)
ANSYS for a composite panel with a single-sided repair under moment loading.

transverse shear stress inside the adhesive along the x-axis is shown in Figure 10a. The deformations
due to the applied loading are not significant enough and therefore there is hardly any difference between
the results from the linear and nonlinear analyses. The variation of the transverse shear stress obtained
from ANSYS is shown in Figure 10b; the results are in good agreement with the current analysis. In
the second case, the laminate is subjected to a moment of Mx = 10.0 lbs-in/in along with an in-plane
force of Nx = 100.0 lbs/in. Even though the panel does not experience large deformations, there is a
considerable difference between the solutions obtained from the linear and nonlinear analyses, as shown
in Figure 11a. This is due the presence of in-plane forces that introduce the stress stiffening effect, which
is not considered in the linear analysis. The results obtained from ANSYS are shown in Figure 11b; they
match the results obtained form the current analysis.

A composite laminate with a double-sided repair is considered next. The geometry, stacking sequence,
and material properties are same as the previous problem, which involved a laminate with a single-sided
repair. The panel is subjected to an in-plane force of Nx = 1000.0 lbs/in. The stress variations inside the
adhesive along lines that are 0◦, 30◦, 60◦, and 90◦ from the x-axis are shown in Figures 12a and 12b.
Since both the stacking sequence and the nature of the repair are symmetrical, the variations of shear
stresses τr z and τθ z are shown only inside the adhesive layer between the top repair and the base. A
dominant peak is observed at the inner edge of the repair, which is also the location where two 0◦ plies
exist. As expected the shear stress, τr z , is dominant along the direction of loading, that is, the x-axis,
whereas the τθ z component has significant stress concentration in the 30◦–60◦ region.

A sandwich panel with full repair of the top face sheet is considered next. The panel has length and
width of 40 in and 28 in, respectively. The inner radius of the scarf repair is 0.25 inch, and the scarf
ratio is 30.0. The top face sheet has 40 plies with a stacking sequence of (45/90/−45/0)5s and the
bottom face sheet has 8 plies with a stacking sequence of (45/90/−45/0)2. Each ply has a thickness of
0.0072 in, and the core is 1.0 in thick. The material properties of the undamaged top and bottom face



3D NONLINEAR ANALYSES OF SCARF REPAIR IN COMPOSITE LAMINATES AND SANDWICH PANELS 1655

0 1 2 3 4 5 6 7 8 9
-60

-40

-20

0

20

LINEAR

NON-LINEAR

Radial Distance r, inches

r

0 1 2 3 4 5 6 7 8 9
-60

-40

-20

0

20

LINEAR

NON-LINEAR

Radial Distance r, inches

r

Figure 11. Shear stress, τr z , variation obtained from (a) the current analysis and (b)
ANSYS for a composite panel with a single-sided repair under combined moment and
in-plane loading.

sheets correspond to the base material in Table 1. The material properties of the repair and core are
also given in Table 1. The adhesive, which is 0.01 in thick, has a bilinear stress-strain relationship. The
shear moduli of the adhesive are G1 = 6.0× 104 psi and G2 = 6.0× 102 psi, and the Poisson’s ratio is
ν = 0.3. The adhesive has a critical shear strain values of γc = 0.04. The edge of the sandwich panel
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Figure 12. Shear stresses, (a) τr z and (b) τθ z , inside the adhesive between the top repair
and base of a composite panel with a double-sided repair.
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Figure 13. (a) Shear strain, γr z , and (b) shear stress, τr z , variations obtained from the
current analysis for a sandwich under prescribed displacement.

is subjected to a displacement of ux = 0.2 in. Under the influence of the prescribed displacement, the
effective strain inside the adhesive exceeds the critical strain, thereby triggering the nonlinear material
response. The transverse shear strain, γr z , and stress, σr z , inside the adhesive along the x-axis are shown
in Figure 13. Since the effective strain in certain regions exceeds the critical value of γc = 0.04, the
elastic modulus in those regions gets degraded. This leads to higher strain values in comparison to the
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Figure 14. (a) Shear strain, γr z , and (b) shear stress, τr z , variations obtained from AN-
SYS for a sandwich under prescribed displacement.
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linear response, reduced stresses in these regions, and an additional load carried by the face sheet in the
undamaged region. As shown in Figure 14, the results from ANSYS show a similar trend.

7. Conclusion

An analysis tool for scarf repair analysis of composite laminates and sandwich panels has been developed.
Apart from analyzing two-dimensional scarf joints, the current tool can be used for three-dimensional
analysis of scarf repair. Composite laminates with single-sided or double-sided repairs and sandwich
panels with complete or partial repairs of the top face sheet can be analyzed. The analysis takes into
account both geometric and material nonlinearity. The loading, material properties, and panel geometry
can be arbitrary. Although computationally efficient, the stress and strain fields can be accurately pre-
dicted. Depending on the type and magnitude of loading, there can be a considerable difference between
the linear and nonlinear solutions.
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