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COMPOSITE SHELL INVOLVING LARGE DEFORMATION AND MATERIAL

DEGRADATION

SURENDRA KUMAR

A nonlinear finite element analysis of impact response and impact-induced damage in curved composite
laminates subjected to transverse impact by a foreign object is carried out. An eight-noded isoparametric
quadrilateral shell element incorporating a nonlinear strain displacement relation due to large deflection
is developed based on the total Lagrangian approach. The nonlinear system of equations is solved using
a Newton–Raphson incremental-iterative method. Example problems of graphite/epoxy cylindrically
curved laminates with different curvature are considered and the influence of geometrical nonlinearity
on the impact response and the resulting damage is demonstrated. The concurrent effect of material
degradation due to impact damage is also investigated.

1. Introduction

The impact damage tolerance of aircraft structural composite materials is one of the most important
design considerations in designing aircraft structures. Accordingly, the understanding of impact response
and impact damage mechanisms has drawn the attention of many investigators. A summary of most of
the earlier work is reported in [Cantwell and Morton 1991; Abrate 1991; 1994].

In spite of the extensive literature available on the subject, issues associated with complex impact
damage phenomena and the effects of several parameters still require further investigation. Most impact
problems for laminated plates have been formulated using small deflection theory [Aggour and Sun 1988;
Wu and Springer 1988; Choi and Chang 1992; Nosier et al. 1994; Pradhan and Kumar 2000], which is ad-
equate if the impact load is small. However, it is necessary to include the effect of geometric nonlinearity
if the laminate undergoes a large deflection. Ambur et al. [1995] have shown that nonlinear effects can
be significant for thin plates subjected to low-velocity impact. The inclusion of geometrical nonlinearity
in prediction of impact response and damage in thin and moderately thick laminated composites helps in
improving the accuracy of the analysis. Chandrashekhara and Schroeder [1995] have studied the impact
response of laminated curved shells using a finite element formulation based on Sander’s shell theory
considering geometric nonlinearity in the sense of the von Karman strains. However, impact damage
was not investigated in their study. Kim et al. [1997] and Her and Liang [2004] have studied the effect of
curvature on dynamic response and impact damage in cylindrical shells using a 3-D finite element formu-
lation. However, the analyses of both these papers were linear and were based on small deflection theory.
The effect of failed laminas on the stiffness of the laminate was also not accounted for in determining the
impact response. Ganapathy and Rao [1998] used a 4-noded 48 degree of freedom shell element based

Keywords: finite element analysis, geometric nonlinearity, eight noded quadrilateral shell element, composite shell, impact,
material degradation.
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on the Kirchhoff-Love thin shell theory in the finite element analysis of cylindrical/spherical shell panels.
The authors used a form of classical Hertzian contact law and predicted matrix cracking failure by apply-
ing the general Tsai-Wu failure criterion for composite materials. Although geometrical nonlinearity was
included, the study assumes that low velocity impact force and deformation can be simulated by a static
model and hence does not compute impact response as a function of time. Krishnamurthy et al. [2001]
used a shell element based on the Mindlin-Reissener assumptions for transverse shear deformation in
their parametric study of laminated cylindrical composite shells. In another paper [Krishnamurthy et al.
2003], the authors extended their work on the impact response of a laminated composite cylindrical shell
as well as a full cylinder by incorporating the classical Fourier series method into the finite element
formulation and also predicted impact-induced damage deploying the semiempirical damage prediction
model of [Choi and Chang 1992]. According to the authors, the Fourier series method, which gives
information regarding the natural frequencies of vibration of the impacted structure, provided a proper
basis for adopting the appropriate size of the analysis time step. However, the paper doesn’t address
nonlinear effects. Zhu et al. [2006] incorporated the effects of strain rate dependency and inelastic
behavior of matrix material for analyzing the mechanical response of laminated shell. It was shown by
the authors that when the rate dependent modulus and inelastic effects are considered, the shell panels
have a considerable damping effect. The study was, however, concentrated on the transient response of
a laminated shell subjected to a suddenly applied static loading uniformly distributed over the bottom
surface of the panel and did not address damage phenomena. More recently, Kumar et al. [2007] have
carried out parametric studies on impact response and damage in curved composite laminates using a 3D
eight-noded layered brick element with incompatible modes and have investigated the effect of material
degradation on both impact response and damage. However, their finite element formulations were based
on linear deformation theory.

In the present paper, a nonlinear finite element transient dynamic analysis is carried out to predict the
impact response and the impact-induced damage in a laminated composite cylindrical shell subjected to
transverse impact by a metallic impactor. An eight-noded isoparametric quadrilateral shell element incor-
porating geometrical nonlinearity due to a large deflection is implemented based on the total Lagrangian
approach. The nonlinear system of equations resulting from the large displacement formulation and
nonlinear contact law are simultaneously solved iteratively using a Newton–Raphson method. Example
problems of graphite/epoxy cylindrically curved shells with different curvature are considered and the
influence of geometrical nonlinearity on the impact response and impact-induced damage is demonstrated.
The study also comprises the simultaneous effect of stiffness reduction of the damaged region in the
laminate on impact response and the resulting damage as the solution progresses with time.

2. Mathematical formulation

Basic equations. Consider the laminated doubly curved shell shown in Figure 1. The displacement field
at any point within the shell, according to a first order shear deformation theory is given by

u(x, y, z)= u0(x, y)+ zϕx(x, y),

v(x, y, z)= v0(x, y)+ zϕy(x, y),

w(x, y, z)= w0(x, y),

(1)
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Figure 1. Problem description of impact on a general doubly curved shell.

where u is the membrane displacement in the x-direction, v is the membrane displacement in the y-
direction and w is the out-of-plane transverse displacement in the z-direction. u0, v0 and w0 are the
midplane displacements. The positive ϕx and ϕy are the cross-sectional clockwise rotations around the
y- and x-axes, respectively.

The strain-displacement relations based on Sander’s shell theory [1959] and incorporating the geomet-
rical nonlinearity given by [Stein 1986] can be written as

εx = ε
0
x + zκx , εy = ε

0
y + zκy, γxy = γ

0
xy + zκxy, γyz = γ

0
yz, γxz = γ

0
xz, (2)

where

ε0
x =

∂u0

∂x
+
w0

Rx
+

1
2

[(∂u0

∂x

)2
+

(∂v0

∂x

)2
+

(
∂w0

∂x
−

u0

Rx

)2]
,

ε0
y =

∂v0

∂y
+
w0

Ry
+

1
2

[(∂u0

∂y

)2
+

(∂v0

∂y

)2
+

(
∂w0

∂y
−
v0

Ry

)2]
, (3a)
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are the nonlinear mid-plane strains,
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are the changes in curvature, and
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are the transverse shear strains. In these equations, Rx and Ry are the radii of curvature in x and y
directions. In this equation, higher order terms for the derivatives of cross-sectional rotations and the
nonlinear terms in transverse shear strains have been neglected.

If we set
{ε̄} =

[
ε0

x ε0
y γ

0
xy κx κy κxy γ

0
yz γ

0
xz
]T
,

the laminate constitutive equation can be written as

{F} = [D̄]{ε̄}, (4)

where

{F}=
[
Nx Ny Nxy Mx My Mxy Q yz Qxz

]T
=

[ ∫ h/2

−h/2

(
σx σy τxy σx z σyz τxyz τyz τxz

)
dz
]T

(5)

is the generalized stress resultant vector1 and

[D̄] =

Ai j Bi j 0
Bi j Di j 0
0 0 Spq


is the laminate stiffness matrix, with components

(Ai j , Bi j , Di j )=

N∑
k=1

∫ zk

zk−1

C̄k
i j (1, z, z2) dz (i, j = 1, 2, 4). (6a)

(extensional, bending-stretching coupling and bending stiffness coefficients) and

Spq =

N∑
k=1

∫ zk

zk−1

αC̄k
pqdz (p, q = 5, 6). (6b)

(transverse shear stiffness coefficients). In the last two equations, N is the number of layers, α is the
shear correction factor, and C̄k

i j (i, j = 1, 2, 4, 5, 6) represent the transformed elastic constants for the
k-th layer, satisfying the relation

[C̄] = [T ]T [C][T ], (7)

where [T ] is the transformation matrix relating the strains in the ply principal directions to those in the
shell reference axis and [C] is elasticity matrix relating the strains within the ply to the stresses in the
ply coordinate system.

Finite element model. Using the principle of virtual work, the equation of equilibrium after including
the inertia forces at time tn+1 can be given as

{9n+1} =

∫∫
[B]T {Fn+1} dx dy+

∫∫
[N ]T [P]{ün+1} dx dy−{Rn+1}, (8)

1Here Nx , Ny , Nxy are the internal in-plane force resultants per unit length, Mx , My , Mxy are the internal moment resultants
and Qyz , Qxz are the transverse shear resultants per unit length.
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where {9n+1} is residual vector, [B] strain-displacement matrix corresponding to (3a)–(3c), {Fn+1} is
the stress resultant vector at any point, [N ] is the shape function matrix, {ün+1} is the acceleration vector
at any point and {Rn+1} is the applied load vector. The inertia matrix of the laminate [P] is defined as

[P] =


p 0 0 0 0
0 p 0 0 0
0 0 p 0 0
0 0 0 I 0
0 0 0 0 I

 , (9)

with

p =
N∑

k=1

∫ zk

zk−1

ρkdz and I =
N∑

k=1

∫ zk

zk−1

z2ρkdz, (10)

where ρk is the mass density of the k-th layer.
In the large displacement problem,

[B] = [BL ] + [BN L ]

and
{Fn+1} = [D̄]

[
[BL ] +

1
2 [BN L ]

]
{Un+1} = [D̄][B̄]{Un+1}, (11)

where [BL ] is the contribution from the linear part of the strain and 1
2 [BN L ] is the contribution from the

quadratic part of the strain and involves linear functions of the translational components of the element
nodal degree of freedom vector {Un+1}.

In (8),
{ün+1} = [N ]{Ün+1}. (12)

Using the Newmark time integration method with a constant average acceleration (α = 0.5 and β = 0.25),
the nodal acceleration vectors {Ün+1} can be expressed in terms of nodal displacements {Un+1} as

{Ün+1} =
1

β(1t)2
{Un+1}−

(
1

β(1t)2
{Un}+

1
β(1t)

{U̇n}+
1− 2β

2β
{Ün}

)
. (13)

Equations (12) and (13) can be put into (8), yielding

{9n+1} =

∫∫
[B]T {Fn+1} dx dy+

1
β(1t)2

(∫∫
[N ]T [P][N ] dx dy

)
{Un+1}−{RM

n+1}−{Rn+1}. (14)

{RM
n+1} can be thought of as the load vector due to inertia term at time tn+1 and is given by

{RM
n+1} = [M]

(
1

β(1t)2
{Un}+

1
β(1t)

{U̇n}+
1− 2β

2β
{Ün}

)
, (15)

with [M] =
∫∫
[N ]T [P][N ] dx dy the mass matrix.

In the present analysis, the nonlinear equation (14) is solved iteratively using a Newton–Raphson
scheme. It is, therefore, necessary to find the relation between {d9n+1} and {dUn+1} by taking the
variation of the residual force, (14), with respect to {Un+1}. This relation is

[K T
n+1] δ{Un+1} = δ{9n+1}, (16)
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where

[K T
n+1] =

∫∫
[B]T [D̄][B] dx dy+

∫∫
[G]T [Sn+1][G] dx dy

+
1

β(1t)2

(∫∫
[N ]T [P][N ] dx dy

)
−
δ{Rn+1}

δ{Un+1}
(17)

is the tangent stiffness matrix, in whose expression we have used the following notations:

[S] =
[

Nx [I ] Nxy[I ]
sym Ny[I ]

]
is the matrix of the stress resultant array (with [I ] the 3× 3 identity matrix), and [G] is matrix of shape
function derivatives, defined by

{gn+1} = [G]{Un+1},

where

{g} =
[
∂u0

∂x
∂v0

∂x

(
∂w0

∂x
−

u0

Rx

)
∂u0

∂y
∂v0

∂y

(
∂w0

∂y
−
v0

Ry

)]T

.

Calculation of contact force. In order to model contact conditions between the impactor and the lami-
nate, the modified version of the Hertzian contact law proposed by [Yang and Sun 1982] based on static
indentation tests for cylindrical shell is used in this study. This approach determines the relationship
between the contact force, Fc with the indentation depth, α. Since the contact region is generally small
in comparison with the dimensions of the shell, the resultant contact force is represented as a point load.

The contact laws as proposed in [Yang and Sun 1982] during loading, unloading and reloading phases
are not reproduced here for the sake of brevity; they can be written in a general form as

Fc
n+1 = φ(αn+1)= φ(dn+1−wn+1)= φ

(
dn + ḋn1t −

1
4

Fc
n + Fc

n+1

m
(1t)2−wn+1

)
, (18)

where ϕ represents a nonlinear relation, dn+1 is the displacement of the centre point of the impactor
at the (n+ 1)-th time-step and is calculated by applying Newmark’s method to the equation of motion
of the impactor as in (18). wn+1 is the displacement of the mid-surface of the laminate at the impact
point in the direction of impact. The last term in (17) consists of d Fc

n+1/dwn+1, which can be found by
differentiating (18).

Impact damage analysis. It is well known that damage in composite materials is generally complicated
consisting of multiple failure modes such as fibre breakage, fibre pullout, matrix cracking, fibre-matrix
debonding, delamination between plies, etc. Several investigators have demonstrated that upon impact
by a low-velocity projectile, the major part of the damage in the composite laminate is caused by matrix
cracking and delamination. Because the tensile failure stress for the fibre is high, damage caused by fibre
breakage is generally very limited and confined to the region under and near the contact area between the
impactor and the laminate. Based on the experimental observations on low-velocity impact, Choi et al.
[1991] reported that intraply matrix cracking is the initial damage mode. Delamination initiates once
the matrix crack reaches the interface between the ply groups having different fibre orientations after
propagating throughout the thickness of the ply group consisting of the cracked ply. This type of matrix
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crack can be referred to as the “critical matrix crack”. Several further investigations have indicated that
there exists a strong interaction between matrix cracking and delamination and the extent of delamination
propagation effectively depends upon the location of matrix cracks.

In the present study, a three-dimensional matrix failure criterion originally proposed in [Hashin 1980]
and modified in [Choi et al. 1991] is used. In the latter reference it was shown that there are only three
major stresses contributing to transverse matrix cracking in the principal material coordinate system.
These are the in-plane transverse normal stress σy , the interlaminar transverse shear stress τyz and the
out-of-plane normal stress σz . However, the out-of-plane normal stress σz is found to be negligibly
small compared to the others and decreases rapidly at locations away from the impacted area. Thus, the
criterion for the n-th plygroup is simplified as(

nσ̄y

nY

)2

+

(
nτ̄yz

nSi

)2

= e2
m, (19)

where

Y =

{
Yt if σ̄y ≥ 0,

Yc if σ̄y < 0.

In (19), x-y-z is the right-handed ply coordinate system with x-axis representing the fibre direction.
Yt Yc and Si are the in situ ply transverse tensile strength, in situ ply transverse compressive strength and
in situ interlaminar shear strength respectively within the laminate and em is the strength ratio which
indicates failure if its value exceeds unity. The bar over the stress components indicates that stresses are
averaged within the n-th ply in the thickness direction for predicting the critical matrix cracking.

Although the above equation was proposed in [Choi et al. 1991] for the case of line-loading impact,
several further investigators [Choi and Chang 1992; Pradhan and Kumar 2000; Her and Liang 2004;
Krishnamurthy et al. 2001; Krishnamurthy et al. 2003; Kumar et al. 2007] assumed this equation to be
equally applicable to point-nose impact. However, the present author is of the view that for point-nose
impact on curved laminates, the in-plane shear stress τxy as found in Hashin’s matrix failure criterion
[1980] must be incorporated in (19) for more accurate estimation.

In (19), in situ ply strength refers to the strength of a single ply within a laminate which is consider-
ably different from that measured directly from a unidirectional composite. This difference is generally
attributed to the thickness effect of the laminate, adjacent ply constraints and thermal residual stresses
[Flaggs and Kural 1982; Peters 1984; Chang and Lessard 1991]. Here empirical relations proposed by
[Chang and Lessard 1991] are adopted for calculating in situ ply strengths as a function of the laminate
thickness and stacking sequence. These relations are given as

Yt = Y 0
t

(
1+ A

sin(1θ)
N B

)
, Si = S0

xy

(
1+C

sin(1θ)
N D

)
. (20)

In (20), Y 0
t is the transverse tensile strength of a [90n]s laminate (n ≥ 6), S0

xy is the ply shear strength
measured from a unidirectional composite with more than eight layers, 1θ is the minimum ply angle
difference between the ply under consideration and its neighbouring plies and N is the number of consec-
utive plies of the same ply angle. A, B, C and D are material parameters determined from experiment
[Chang and Lessard 1991].
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A semiempirical criterion to estimate the extent of delamination in composite was proposed in [Choi
and Chang 1992], which is based on major stresses attributed to delamination formation. However, the
present paper is focussed only on the prediction of critical matrix cracking, since geometrical nonlinearity
and the material degradation concept used here will have similar effects on both critical matrix cracking
and delamination.

Material degradation concept. Once the critical matrix cracking is predicted at any point within a par-
ticular ply group of the shell using the criterion (19), the load carrying capability of the shell decreases.
This stiffness loss must be taken into account before the solution proceeds further. Two strategies can
be applied to describe the postfailure behaviour of the material. One option is to assume that material
fails instantaneously and stiffness values in the corresponding directions are immediately set to zero.
Another approach is to use a postfailure model such as those reported in [Ladevèze and LeDantec 1992;
Matzenmiller et al. 1995; Johnson et al. 2001; Iannucci and Willows 2006] based on continuum damage
mechanics approach. This postfailure model characterizes the growth of damage by a gradual decrease in
the corresponding stiffness values using some damage evolution parameter until they reach a final value
of zero. It is obvious that, this damage model will provide considerable improvement in the prediction
of damage as compared to the instantaneous failure model particularly for the impact of high velocity
ranges. This approach may also reduce or eliminate nodal oscillations which may occur in the case of
instantaneous failure because of the sudden release of finite amounts of energy. However, this modelling
strategy has an inherent complexity in implementation and requires knowledge of the energy dissipation
process as a function of the damage mode and its propagation, which must be determined experimentally
for a specific damage mode.

For the sake of simplicity, the instantaneous failure model is adopted in the present analysis and the
constitutive relation for the damaged element is modified by the use of the reduced material properties
such as the one reported in [Choi et al. 1991]. This reduced elastic property matrix can be modified for
the present shell element as given below:

[Cred] =


Ex 0 0 0 0
0 0 0 0 0
0 0 Gxy 0 0
0 0 0 0 0
0 0 0 0 Gzx

 . (21)

Equation (21) is derived based on the reasoning that the damaged region within the element cannot
endure any additional in-plane transverse tensile stress and interlaminar transverse shear stress due to
the presence of the matrix crack. In order to take into account the partial failure of the element within
a ply group, the [C] matrix is replaced by the [Cred] matrix in (7) during Gaussian integration only for
those gauss points of the ply group in the element where the failure criterion is satisfied.

This simplified instantaneous stiffness reduction method is reasonable for low-velocity impact in the
sense that a general tool is always sought for to predict the combined effect of various damage modes
on the performance of the composite structure with complex geometry and loading conditions. Further,
this approach will generally not lead to a singularity of the global finite element stiffness matrix, since in
the 2D shell element formulation, the whole thickness of the laminate is analysed as an aggregate. For



IMPACT RESPONSE IN LAMINATED COMPOSITE SHELL INVOLVING LARGE DEFORMATION 1749

the same reason, the nodal oscillations will be much less prominent as compared to three-dimensional
finite element solutions. Further, stiffness modifications on a gauss point basis will partly ensure gradual
stiffness reduction of failed elements.

3. Numerical results and discussions

The above nonlinear finite element formulation was implemented in a specially developed computer code
and successfully validated with existing numerical solutions available in literature.

Having validated the present approach, some example problems of T300/976 graphite/epoxy laminated
cylindrical shells with different curvatures have been considered to study the impact behaviour of curved
composite laminate. Effects of geometrical nonlinearity and material degradation on impact response and
resulting damage are also investigated. The problem description of impact on a general doubly curved
shell is also depicted in Figure 1. The impacted side is the first layer in the stacking sequence.

Validation problem: Impact response of a rectangular glass/epoxy laminated plate. A square E-glass
epoxy cross-ply [0/90/0] laminated plate with a side length of 140 mm and thickness 4.29 mm clamped
around the four edges is analyzed. The impactor is a blunt-ended steel circular cylinder having diameter
9.525 mm, length 25.4 mm and mass 0.01417 kg and traveling at an initial velocity of 22.6 ms−1. The
material properties of the 1002E-glass epoxy are taken as follows:

Ex = 40.0 GPa, Ey = Ez = 8.27 GPa, Gxy = Gxz = 4.13 GPa, G yz = 0.03 GPa,

νxy = νyz = νxz = 0.25, ρ = 1901.5 kg m−3.

The linear and nonlinear solutions of the plate central transverse deflection as a function of time have
been compared in Figure 2 with experimental results from [Takeda et al. 1981] and finite element results
from [Aggour and Sun 1988]. Good agreement is observed between the present result and the numerical
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 Figure 2. Comparison of plate central transverse deflection in a 140 mm × 140 mm
× 4.29 mm E-glass epoxy cross-ply laminate with clamped edges and impacted by
14.175 gm steel projectile at a velocity of 22.6 ms−1.
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result. The reasons of discrepancy between numerical and experimental results were well explained in
[Aggour and Sun 1988]. It is also apparent from the figure that nonlinear effect is not significant in this
case mainly because the plate central deflection is considerably less than the plate thickness.

Validation problem: Clamped [0/90] asymmetric cross-ply cylindrical shell panel subjected to uniform
load. As an example of large deflection of composite shell, the asymmetric cross-ply cylindrical shell
panel investigated in [Reddy and Chandrashekhara 1985] is considered. The radius and length of the
cylindrical shell panel are 64.5 m and 12.9 m respectively. The angle subtended by the arc is 0.2 radian.
The thickness of the shell is 64.5 mm. The material properties used are:

Ex = 172 GPa, Ey = Ez = 7 GPa, Gxy = G yz = Gxz = 3.5 GPa, νxy = νyz = νxz = 0.25.

The load-deflection curve of the nonlinear solution is given in Figure 3 along with the results of the
[Reddy and Chandrashekhara 1985]. Fairly good agreement is seen.

Impact response. T300/976 Graphite/epoxy cylindrical shells of different dimensions and curvatures
with [904/08/904] lay-up are considered. At first, [904/08/904] cylindrical shell is taken with a = b =
300 mm, Rx = R = 10a, and Ry =∞ in Figure 1. The shell is clamped on its edges and is subjected
to impact by a steel mass of 300 gm having a half sphere head of 10 mm diameter and initial velocity
7 ms−1. The material property data of fiberite T300/976 graphite/epoxy composite are considered as
follows [Choi and Chang 1992]:

• Material constants: ply thickness = 0.14224 mm, ρ = 1540 kg m−3, Ex = 156 GPa,
Ey = Ez = 9.09 GPa, Gxy = Gxz = 6.96 GPa, G yz = 3.24 GPa, νxy = νxz = 0.228, νyz = 0.4.

• Lamina strengths: Y 0
t = 45 MPa, Yc = 252 MPa, S0

xy = 105 MPa.

• Empirical parameters: A = 1.3, B = 0.7, C = 2.0, D = 1.0.
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 Figure 3. Load-deflection curve for clamped [0/90] asymmetric cross-ply cylindrical
shell panel subjected to uniform load.
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The results of contact force, impactor displacement and shell centre displacement are presented in
Figure 4 for both linear and nonlinear analyses. A reduction in maximum contact force and increase in
contact duration and maximum central deflection is observed in the nonlinear solution of the shell with
curvature R = a when compared with linear results. Although the peak contact force also increased in the
nonlinear solution of shell with curvature R = 10a, the contact duration and the maximum shell deflection
decreased significantly. The effect of shell curvature is also shown in the Figure. Both the contact duration
and the amplitude of shell response decrease with decrease in the shell radius indicating that increasing the
curvature has a stiffening effect on the cylindrical shell. However, the results signify that a nonlinear ap-
proach has caused a reduction in flexural rigidity of the shell having higher stiffness due to curvature while
this has resulted in an increase in flexural rigidity of the shell having lower curvature-induced stiffness.
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 Figure 4. Contact force, impactor displacement and centre displacement in
graphite/epoxy cylindrical shells ([904/08/904]) (a = b= 300 mm; R = 10a and R = a),
with clamped edges and impacted by blunt-ended steel cylinder of nose radius 5 mm and
mass 300 gm having initial velocity of 7 ms−1.
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Impact-induced damage. The impact-induced damage in the form of critical matrix cracking is studied
for the above cylindrical shell. The shell with [904/08/904] lay-up with dimensions a = b = 300 mm
and curvature R = a is subjected to an impact by a steel mass of 300 gm and nose radius 5 mm traveling
at a velocity of 7 ms−1. Critical matrix cracking takes place in the bottom [904] ply group as shown in
Figure 5. The value of strength ratio, em (critical matrix cracking failure criterion) at any point in the
shell is found to be maximum in the bottom [904] ply group at time approximately 1056µs in case of
linear analysis and 1212µs in case of nonlinear analysis. The region where em is greater than or equal
to unity represents the location of the critical matrix cracking. The failure contour is extended much
wider along the fibre direction of the cracked [904] ply group than in the direction normal to the fibre
direction. Considerable changes in failure profile and a small increase in the damage region are observed
in the case of the nonlinear solution even if the maximum contact force was lower as compared to the
linear result (Figure 4). This occurs mainly because in the nonlinear case both the bending deformation
and hence the bending stress are higher which significantly contributes to matrix cracking. Though the
damage primarily occurs near the impact site, the figure indicates that for clamped shell panels damage
can also evolve near the boundaries.

Material degradation effects. The effect of reducing the stiffness of damaged elements within the lam-
inas concurrently while computing the impact response and damage is also studied. For this case, a
[904/08/904] layup cylindrical shell of dimensions a = b = 100 mm and curvature R = a is taken. The
impactor is a steel mass of 200 gm having a half sphere head of 10 mm diameter and initial velocity
5 ms−1. The nonlinear results of contact force, impactor displacement and shell center deflection are
plotted in Figure 6 for both the cases in which the reduction of stiffness was considered and was not
considered. There is a sizeable reduction in peak contact force and increase in both contact duration
and maximum shell deflection indicating that overall stiffness of the laminate has reduced considerably
when material degradation is incorporated in the solution. The value of the strength ratio, em at any
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Figure 5. Contours of maximum strength ratio em (A= 0.2, B = 0.5, C = 1.0) in bottom
[904] ply of [904/08/904] lay-up cylindrical shell (dimensions: a = b = 300 mm; R = a)
with clamped edges and impacted by a 300 gm mass at a velocity of 7 ms−1. Left: linear
analysis; right: nonlinear analysis.
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point in the shell is found to be a maximum at approximately 472µs in case of unmodified stiffness
and at approximately 608µs in case of modified stiffness. The critical matrix cracking profile is plotted
in Figure 7 for both the cases. A comparison of the two halves of the figure indicates that the critical
matrix cracking has further extended in the direction of the fibre and has reduced in the direction normal
to the fibre direction due to material degradation. This is mainly because loads that were sustained by
the elements prior to damage are consequently transferred to adjacent elements. It is obvious that this
stiffness modification concept will give better results and smooth failure contours with increasing mesh
density and decreasing analysis time-step as appropriate.

Although it would be more appropriate to present some sample results depicting improvements brought
by incorporating material degradation effects in the finite element solution, an indirect estimation can
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 Figure 6. Effect of material degradation on contact force, impactor displacement and
centre deflection in graphite/epoxy cylindrical shell ([904/08/904] lay-up) (a = b =
100 mm; R = a; nonlinear analysis), with clamped edges and impacted by blunt-ended
steel cylinder of nose radius 5 mm and mass 200 gm having initial velocity of 5 ms−1.
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Figure 7. Effect of material degradation on maximum strength ratio em (A= 0.2,
B= 0.5, C = 1.0) in bottom [904] ply of [904/08/904] lay-up cylindrical shell (dimen-
sions: a= b= 300 mm; R= a) with clamped edges and impacted by a 200 gm mass at a
velocity of 5 ms−1. Left: without material degradation; right: with material degradation.

be made with regard to the verification problem of Figure 2. One of the reasons cited in [Aggour and
Sun 1988] for the inconsistency between numerical and experimental results in Figure 2 was that as
the contact time between impactor and plate increases, the failure in the form of matrix cracking and
delamination may have started in the laminate reducing its overall stiffness and natural frequency. As
in Figure 6, it is expected that if the material degradation concept is integrated in the solution of prob-
lem of Figure 2, the contact duration will increase and the mismatch between finite element result and
experimental observation will reduce considerably.

4. Conclusion

A finite element and transient dynamic analysis of laminated composite cylindrical shells subjected to
transverse impact has been performed using a nonlinear finite element shell formulation and implemented
by a specially developed computer code. The tangent stiffness matrix accounting for the geometric
nonlinearity is formulated using a generalized Green’s strain tensor. The nonlinear system of equations
was solved using a Newton–Raphson incremental-iterative method by considering suitable displacement
and force convergence norms. Some numerical examples of graphite/epoxy laminated cylindrical shells
have been considered with different curvature and nonlinear geometrical effects on impact response
and the resulting damage has been studied. Some example problems are also considered in which the
stiffness of the failed elements within the laminate is concurrently reduced to account for their loss of
load-carrying capability due to matrix cracking. The following are some important observations made
from the present study:

1. When the geometrical nonlinearity was included, considerable changes in the time-variation of
contact force, impactor displacement and shell deflection occurred for the problems considered.
This difference in impact response is found to be significantly dependent on the shell curvature
considered.
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2. Although damage primarily occurs near the impact site, damage can also evolve near the boundaries
for clamped shell panels. A considerable change in the critical matrix cracking profile is noticed
when a nonlinear approach is used in the solution.

3. The material property degradation approach used here is found to provide reasonable results and
can be easily implemented in cases when a general tool is required to predict the combined effect of
various damage modes on the performance of the composite structure with complex geometry and
loading conditions.

4. When the stiffness of the failed region is reduced, there is a sizeable reduction in peak contact force
in combination with increase in both contact duration and maximum shell deflection. Owing to
material property degradation, the shape and extent of critical matrix cracking is noticeably changed
extending largely in fibre direction while shrinking in the direction normal to the fibre direction of
the cracked ply-group.
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