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Functionally graded materials (FGMs) are two-phase composites with continuously changing microstruc-
ture adapted to performance requirements. Traditionally, the overall behavior of FGMs has been deter-
mined using local averaging techniques or a given smooth variation of material properties. Although
these models are computationally efficient, their validity and accuracy remain questionable, since a link
with the underlying microstructure (including its randomness) is not clear. In this paper, we propose
a numerical modeling strategy for the linear elastic analysis of FGMs systematically based on a realis-
tic microstructural model. The overall response of FGMs is addressed in the framework of stochastic
Hashin–Shtrikman variational principles. To allow for the analysis of finite bodies, recently introduced
discretization schemes based on the finite element method and the boundary element method are em-
ployed to obtain statistics of local fields. Representative numerical examples are presented to compare
the performance and limitations of both schemes. To gain insight into similarities and differences be-
tween these methods and to minimize technicalities, the analysis is performed in the one-dimensional
setting.

1. Introduction

Generally speaking, the ultimate goal of every design is a product which fully utilizes the properties
of the materials used in its construction. This philosophy, in the larger context, naturally leads to the
appearance of multiphase composites with microstructure adapted to operation conditions [Petrtýl et al.
1996; Bendsøe and Sigmund 2004; Ray et al. 2005]. Functionally graded materials (FGMs) present one
important man-made class of such material systems. Since their introduction in 1984 in Japan as barrier
materials for high-temperature components, FGMs have proved to be an attractive choice for numerous
applications such as wear resistant coatings, optical fibers, electrical razor blades and biomedical tools
[Neubrand and Rodel 1997; Uemura 2003]. To provide a concrete example, consider a microstructure of
Al2O3/Y-ZrO2 ceramics (see Figure 1) engineered for the production of all-ceramic hip bearings. In this
case, controlled composition and porosity allow us to achieve better long-term performance and hence
lower clinical risks when compared to traditional metallic materials [Anné et al. 2006].

As typical of all composites, the analysis of FGMs is complicated by the fact that the explicit discrete
modeling of the material microstructure results in a problem which is intractable due to its huge number
of degrees of freedom (DOFs) and/or its intrinsic randomness. Models with given smoothly varying
material data are often employed as the most straightforward answer to this obstacle. When the spatial
nonhomogeneity is assumed to follow a sufficiently simple form, this premise opens the route to very

Keywords: functionally graded materials, statistically nonuniform composites, microstructural model of fully penetrable
spheres, Hashin–Shtrikman variational principles, finite element method, boundary element method.
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Figure 1. Graded microstructure of Al2O3/Y-ZrO2 ceramics. (Courtesy of J. Vleugels,
K.U. Leuven.)

efficient numerical schemes, such as specialized finite elements [Santare and Lambros 2000], boundary
element techniques [Sutradhar and Paulino 2004], meshless methods [Ching and Chen 2007], and local
integral equations [Sládek et al. 2005]. Thanks to their simplicity, these methods can be rather easily
generalized to more complex issues such as coupled thermal-mechanical problems [Noda 1999] or crack
propagation [Kandula et al. 2005]. Although this approach is very appealing from the computational
point of view, its validity remains rather questionable as it contains no direct link to the underlying
heterogeneous microstructure.

One possibility in establishing such a connection is to assert that the FGM locally behaves as a homo-
geneous composite characterized by a given volume fraction distribution and then use well established
local effective media theories; see [Milton 2002; Böhm 2008] for more details. Local averaging tech-
niques have attracted considerable attention due to their simplicity comparable to the previous class of
models; see [Markworth et al. 1995; Cho and Ha 2001] for an overview and comparison of various local
micromechanical models in the context of FGMs. An exemplary illustration of the capabilities of this
modeling paradigm is the work [Goupee and Vel 2006] which provides an efficient algorithm for FGM
composition optimization when taking into account coupled thermomechanical effects. Still, despite a
substantial improvement in the physical relevance of the model, local averaging methods may lead to
inaccurate results. This was demonstrated by systematic studies [Reiter et al. 1997; Reiter and Dvorak
1998], which clearly show that the local averaging technique needs to be adapted to the detailed character
of the microstructure in a neighborhood of the point under consideration. When considering the local
averaging techniques, however, such information is evidently not available as all the microstructural data
was lumped into volume fractions only.

Another appealing approach to FGM modeling is an adaptive discrete modeling of the structure. In
order to avoid the fully detailed problem, a simplified model based on, for example, local averaging
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techniques is solved first. Then, in regions where the influence of the discreteness of the microstructure
is most pronounced, the microstructure with all its details is recovered to obtain an accurate solution.
Such a modeling strategy has been, for example, adopted in [Grujicic and Zhang 1998] when using the
Voronoi cell finite element method, introduced by Ghosh et al. [1995] or more recently in [Vemaganti and
Deshmukh 2006], in the framework of goal oriented modeling. Without a doubt, this approach yields the
most accurate results for a given distribution of phases. However, its extension to include the inevitable
randomness of the microstructure seems to be an open problem.

The systematic treatment of FGMs as random, statistically nonhomogeneous composites offers, on the
other hand, a possibility to apply the machinery of statistical continuum mechanics [Beran 1968; Torquato
2001]. In this framework, overall response of the media is interpreted using the ensemble, rather then
spatial, averages of the involved quantities. The first class of methods stems from the description of
the material composition by a nonstationary random field. This approach was pioneered by Ferrante
and Graham-Brady [2005] and further refined in [Rahman and Chakraborty 2007], where the random
field description was applied to the volume fractions of the involved phases and the overall statistics
were obtained using local averaging methods. Such a strategy, however, inevitably leads to the same
difficulties as in the case of deterministic analysis with a given variation of volume fractions. Alternative
methods exploit the tools of mechanics of heterogeneous media. This gives rise to a correct treatment
of nonlocal effects when combined with appropriate techniques for estimating the statistics of local
fields. Examples of FGM oriented studies include the work of Buryachenko and Rammerstorfer [2001]
who employ the multiparticle effective field method or the study by Luciano and Willis [2004] based
on the Hashin–Shtrikman energy principles; see also [Buryachenko 2007] for a comprehensive list of
references in this field. Both works, however, being analytically based, concentrate on deriving explicit
constitutive equations for FGMs and therefore work with infinite bodies neglecting the finite size of the
microstructure.

The goal of this paper is to make the first step in formulating a numerical model which is free of
the above discussed limitations. The microstructural description is systematically derived from a fully
penetrable sphere model introduced by Quintanilla and Torquato [1997], which is briefly reviewed in
Section 2. The statistics of local fields then follow from reformulation of the Hashin–Shtrikman (H–S)
variational principles introduced, for example, in [Willis 1977; Willis 1981] and summarized in the cur-
rent context in Section 3 together with the Galerkin scheme allowing us to treat general bodies proposed
by Luciano and Willis [2005] or Procházka and Šejnoha [2003]. Section 4 covers the application of
the finite element method (FEM) following [Luciano and Willis 2005; Luciano and Willis 2006] and the
boundary element method (BEM) in the spirit of [Procházka and Šejnoha 2003]. Finally, based on results
of a parametric study executed in Section 5, the comparison of both numerical schemes when applied
to FGM modeling is performed in Section 6 together with a discussion of future improvements of the
model. In order to make the presentation self-contained and to minimize technicalities, the attention is
restricted to an one-dimensional elasticity problem (or, equivalently, to a simple laminate subject to body
forces varying in one direction [Luciano and Willis 2001]).

In the following text, we adopt the matrix notation commonly used in the finite element literature.
Hence, a, a and A denote a scalar quantity, a vector (column matrix), and a general matrix, respectively.
Other symbols and abbreviations are introduced in the text as needed.
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2. Microstructural model

As already indicated, the morphological description adopted in this work is the one-dimensional case
of a microstructural model studied in [Quintanilla and Torquato 1997]. A particular realization can be
depicted as a collection of N rods of length ` distributed within a structure of length L , see Figure 2.
The position of the i-th rod is specified by the x coordinate of its reference point xi , which in our case
coincides with the midpoint of a rod.

PSfrag replacements
`

Lx

xi

Figure 2. Example of microstructural model realization.

The microstructure gradation is prescribed by an intensity function ρ(x), with the product ρ(x) dx
giving the expected number of reference points in an infinitesimal neighborhood around x . Using the
theory of general Poisson processes, the probability of finding exactly m points located in a finite-sized
interval I is given by Quintanilla and Torquato [1997]

Pm(I )=
µρ(I )m

m!
exp

(
−µρ(I )

)
, with µρ(I )=

∫
I
ρ(x) dx . (1)

Further, to provide a suitable framework for the description of the microstructure related to the model,
we attach the symbol α to a particular microstructure realization (see Figure 2) from a sample space S

endowed with a probability measure p. Then, the ensemble average of a random function f (x, α) is
defined as1

〈 f 〉(x)=
∫

S

f (x, α)p(α) dα.

Now, interpret Figure 2 as a distribution of white and black phases. For a given configuration α, the
distribution of a phase r is described by the characteristic function χr (x;α) as

χr (x;α)=

{
1 if x is located in phase r,

0 otherwise,
(2)

where r = 1 is reserved for the white phase (matrix) while r = 2 denotes the black phase (rod). The
elementary statistical characterization of the model is provided by the one-point probability function
Sr , defined as Sr (x) = 〈χr 〉(x), giving the probability of finding a point x included in the phase r .
Recognizing that the probability of locating x in the white phase coincides with the probability that the
interval I (x)= [x − `/2, x + `/2] will not be occupied by any reference point and using (1), we obtain

S1(x)= P0
(
I (x)

)
= exp

(
−

∫ x+`/2

x−`/2
ρ(t) dt

)
.

1To simplify the exposition, we introduce the following notation: for a real-valued random function f (x, α) : R×S→ R,
by writing f (x;α) we mean a deterministic function of x ∈ R related to a given fixed realization (that is, f (x;α) : R→ R). In
other words, f (x;α) := f (x, β)|β=α .
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The one-point probability function S2(x) follows from the identity

S1(x)+ S2(x)= 1, (3)

which is a direct consequence of the adopted definition of the characteristic function; recall (2).
By analogy, we can introduce the two-point probability function Srs as

Srs(x, y)=
∫

S

χr (x, α)χs(y, α)p(α) dα,

quantifying the probability that a point x will be located in phase r while y stays in the phase s. For
r = s = 1, the descriptor coincides with the probability that the union of intervals I (x) and I (y) will not
be occupied by a reference point, yielding

S11(x, y)= P0
(
I (x)∪ I (y)

)
. (4)

The remaining functions Srs can be directly expressed from S11 by exploiting identity (3). In particular:

S12(x, y)= S1(x)− S11(x, y),

S21(x, y)= S1(y)− S11(x, y),

S22(x, y)= 1− S1(x)− S1(y)+ S11(x, y).

Finally, to provide a concrete example, consider a piecewise linear intensity function

ρ(x)=


ρa, 0≤ x ≤ a,
ρa + kρ(x − a), a < x ≤ b,
ρb, b < x ≤ L ,
0, otherwise,

where kρ = (ρb− ρa)/(b− a). The corresponding one- and two-point probability functions, evaluated
using an adaptive Simpson quadrature [Gander and Gautschi 2000], are shown in Figure 3. Obviously,
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Figure 3. One-point (left) and two-point (right) probability functions for a = 0.25L ,
b = 0.75L , L = 1 m, ρa =− log(0.25/`) and ρb =− log(0.75/`). On the right, `= 0.1.
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the shape of the one-point probability function directly follows from the intensity profile (up to some
boundary effects due to the extension of ρ by zero outside of � and smoothing phenomena with the length
scale ` demonstrating the “geometrical” size effect present in the model). The two-point probability
function then contains further details of the distribution of individual constituents.

3. Hashin–Shtrikman variational principles

The geometrical description introduced provides a solid basis for the formulation of a stochastic model
of one-dimensional binary functionally graded bodies. We will concentrate on the simplest case of linear
elasticity with deterministic properties of single components.

3.1. Problem statement. Consider a bar of cross-sectional area 1 m2, represented by the interval �=
(0, L) with the boundaries ∂�= {0, L}, fixed at ∂�u , subject to a body force b(x) and tractions t at ∂�t

(see Figure 4). For a given realization α, the displacement field u(x;α) follows from the energy min-
imization problem u(x;α) = arg minv(x)∈V5(v(x);α), where arg minx∈X f (x) denotes the minimizer
of f on X , V is the realization-independent set of kinematically admissible displacements, v is a test
displacement field, and the energy functional 5 is defined as

5
(
v(x);α

)
=

1
2

∫
�

ε
(
v(x)

)
E(x;α)ε

(
v(x)

)
dx −

∫
�

v(x)b(x) dx −
(
v(x)t(x)

)∣∣∣
∂�t
,

with the strain field ε(v(x))= dv
dx
(x) and the Young modulus E in the form

E(x;α)= χ1(x;α)E1+χ2(x;α)E2, (5)

where Ei denotes the deterministic Young modulus of the i-th phase.
Now, given the probability distribution p(α), the ensemble average of displacement fields follows

from the variational problem [Luciano and Willis 2005]:

〈u〉(x)=
∫

S

(
arg min

v(x,α)∈V×S
5
(
v(x), α

))
p(α) dα. (6)

In theory, the previous relation fully specifies the distribution of displacement fields. The exact specifica-
tion of the set S is, however, very complex and the probability distribution p(α) is generally not known.
Therefore, the solution needs to be based on partial geometrical data such as the one- and two-point
probability functions introduced in Section 2.

3.2. Hashin–Shtrikman decomposition. Following the seminal ideas of Hashin and Shtrikman [1962]
and Willis [1977], the solution of the stochastic problem is sought as a superposition of two auxiliary
problems, each characterized by constant material data E0.

�
�
�
�
�
�
�

�
�
�
�
�
�
�
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Figure 4. The one-dimensional elasticity problem associated with realization α.
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Figure 5. Problem decomposition: top, deterministic reference case; bottom, stochastic
polarization problem.

In the first reference case (Figure 5, top), the homogeneous structure is subject to the body force b and
the boundary tractions t . The second, the polarization problem shown in Figure 5, bottom, corresponds
to a homogeneous body loaded by polarization stress τ arising from the stress equivalence conditions
σ(x;α)= E(x;α)ε(x;α)= E0ε(x;α)+ τ(x;α). The unknown polarization stress now becomes a new
variable to be determined as the stationary point of the two-field Hashin–Shtrikman–Willis functional (see
[Willis 1977; Procházka and Šejnoha 2004] and [Bittnar and Šejnoha 1996, Chapter 1.8], for example)(

u(x;α), τ (x;α)
)
= arg min

v(x)∈V
stat

θ(x;α)∈T(α)
U
(
v(x), θ(x;α);α

)
, (7)

where θ denotes an admissible polarization stress from the realization-dependent set T(α), arg stat
x∈X

f (x)
stands for a stationary point of f on X , and a new energy functional U is defined as

U
(
v(x), θ(x;α);α

)
=

1
2

∫
�

ε
(
v(x)

)
E0ε

(
v(x)

)
dx −

∫
�

v(x)b(x) dx −
(
v(x)t(x)

)∣∣∣
∂�t

+

∫
�

θ(x;α)ε
(
v(x)

)
dx +

1
2

∫
�

θ(x;α)
(
E(x;α)− E0)−1

θ(x;α) dx . (8)

The minimization with respect to v in (7) can be efficiently performed using the Green’s function
technique. To that end, we introduce a decomposition of the displacement field

u(x;α)= u0(x)+ u1(x;α), (9)

where u0 solves the reference problem, while u1 denotes the displacement field due to a test stress
polarization field θ . Note that the determination of u0 is a standard task, which can be generally solved
by a suitable numerical technique (see Sections 4.1 and 4.2). By introducing the Green’s function of the
reference problem satisfying

E0 ∂
2G0

∂x2 (x, y)+ δ(x − y)= 0,

with boundary conditions (n denotes the outer normal, recall Figure 4)

G0(x, y)= 0 for x ∈ ∂�u, T 0(x, y)= E0 ∂G0(x, y)
∂x

n(x)= 0 for x ∈ ∂�t , (10)
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we relate the u1 component and the associated strain field ε1 to the polarization stresses θ via [Luciano
and Willis 2005]

u1(x;α)=−
∫
�

∂G0(x, y)
∂y

θ(y;α) dy =−
∫
�

10(x, y)θ(y;α) dx,

ε
(
u1(x;α)

)
=−

∫
�

∂2G0(x, y)
∂x∂y

θ(y;α) dy =−
∫
�

00(x, y)θ(y;α) dx .

(11)

By exploiting the optimality properties of the minimizing displacement u(x;α) and upon exchanging
the order of optimization, Equation (8) can be, after some steps described in, for example, [Willis 1981;
Luciano and Willis 2005], recast solely in terms of the polarizations

τ(x;α)= arg stat
θ(x;α)∈T(α)

H
(
θ(x;α);α

)
,

where the condensed energy functional is defined as

H
(
θ(x;α);α

)
= min
v(x)∈V

U
(
v(x), θ(x;α);α

)
=50(u0(x))+

∫
�

θ(x;α)ε
(
u0(x)

)
dx

−
1
2

∫
θ(x;α)

(
E(x;α)− E0)−1

θ(x;α) dx −
1
2

∫
�

∫
�

θ(x;α)00(x, y)θ(y;α) dx dy,

with 50 denoting the total energy of the reference structure.
With the Hashin–Shtrikman machinery at hand, the stochastic problem introduced by (6) can be solved

by repeating the previous arguments in the probabilistic framework. In particular, taking the ensemble
average of (9) and (11)1 yields

〈u〉(x)= u0(x)−
∫
�

10(x, y)〈τ 〉(y) dy, (12)

where the expectation 〈τ 〉 is a solution of the variational problem

〈τ 〉(x)=
∫

S

(
arg stat

θ(x,α)∈T(α)×S
H(θ(x, α), α)

)
p(α) dα. (13)

Again, due to limited knowledge of the detailed statistical characterization of the phase distribution, the
previous variational problem can only be solved approximately. In particular, we postulate the following
form of the polarization stresses:

τ(x, α)≈ χ1(x, α)τ1(x)+χ2(x, α)τ2(x),

θ(x, α)≈ χ1(x, α)θ1(x)+χ2(x, α)θ2(x),

where τr and θr are now the realization-independent polarization stresses related to the r -th phase. Plug-
ging the approximation into (13) leads, after some manipulations detailed in [Willis 1981; Šejnoha and
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Zeman 2000], to the variational principle

(
τ1(x), τ2(x)

)
= arg stat

(θ1(x),θ2(x))
50(u0(x)

)
+

2∑
r=1

∫
�

θr (x)Sr (x)ε
(
u0(x)

)
dx

−
1
2

2∑
r=1

∫
�

θr (x)Sr (x)(Er − E0)−1θr (x) dx −
1
2

2∑
r=1

2∑
s=1

∫
�

∫
�

θr (x)Srs(x, y)00(x, y)θs(y) dx dy,

meaning that the true phase polarization stresses τr satisfy the optimality conditions (r = 1, 2)∫
�

θr (x)Sr (x)(Er − E0)−1τr (x) dx

+

2∑
s=1

∫
�

∫
�

θr (x)Srs(x, y)00(x, y)τs(y) dy dx =
∫
�

θr (x)Sr (x)ε
(
u0(x)

)
dx, (14)

for arbitrary θr .

3.3. Discretization. Two ingredients are generally needed to convert the conditions (14) to the finite-
dimensional system: representation of the reference strain field and the Green’s function-related quanti-
ties and discretization of the phase polarization stresses. The first step is dealt with in detail in Section
4; now it suffices to consider the approximations ε0,h0(x),10,h0(x) and 00,h0(x, y), where h0 denotes a
parameter related to the discretization of the reference problem.2

Next, we reduce (14) to a finite-dimensional format using the standard Galerkin procedure. To that
end, we introduce the discretization of the phase polarization stresses

τr (x)≈ Nτh1(x)dτh0h1
r , θr (x)≈ Nτh1(x)dθh1

r , (15)

where Nτh1 is the matrix of (possibly discontinuous) shape functions controlled by the discretization
parameter h1; dθh1

r and dτh0h1
r denote the DOFs of trial and true polarization stresses, the latter related to

the discrete Green’s function. Introducing the approximations (15) in the variational statement (14) and
using the arbitrariness of dθh1

r leads to a system of linear equations

Kτh1
r dτh0h1

r +

2∑
s=1

Kτh0h1
rs dτh0h1

s = Rτh0h1
r , (16)

with the individual terms given by (r, s = 1, 2)

Kτh1
r =

∫
�

Nτh1(x)TSr (x)[Er − E0
]
−1Nτh1(x) dx, (17)

Kτh0h1
rs =

∫
�

∫
�

Nτh1(x)TSrs(x, y)00,h0(x, y)Nτh1(y) dx dy, (18)

Rτh0h1
r =

∫
�

Nτh1(x)TSr (x)ε0,h0(x) dx . (19)

2To be more precise, the goal is not to obtain accurate estimates of the Green’s function-related operators themselves, but
rather to approximate the action of the operators; see Section 5.2 for further discussion.
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Finally, once the approximate values of phase polarization stresses are available, the elementary sta-
tistics of the displacement field follow from the discretized form of (12):

〈u〉(x)≈ 〈u〉h0h1(x)= u0,h0(x)−
2∑

r=1

(∫
�

10,h0(x, y)Sr (y)Nτh1(y) dy
)

dτh0h1
r . (20)

Note that additional information such as conditional statistics can be extracted from the polarization
fields in postprocessing steps similar to (20); see [Luciano and Willis 2005; 2006] for more details.

4. Reference problem and Green’s function-related quantities

4.1. Finite element method. The solution of the reference problem follows the standard finite element
procedures, see for examples [Bittnar and Šejnoha 1996; Krysl 2006]. Nevertheless, we briefly repeat
the basic steps of the method for the sake of clarity.3 The reference displacement u0 follows from the
identity ∫

�

ε
(
v(x)

)
E0ε

(
u0(x)

)
dx =

∫
�

v(x)b(x) dx +
(
v(x)t(x)

)∣∣∣
∂�t
, (21)

which should hold for any test function v ∈ V. Within the conforming finite element approach, the
unknown displacement u0 and the test function v together with the associated strain field are sought in
a finite-dimensional subspace Vh0 ⊂ V

u0(x)≈ u0,h0(x)= Nuh0(x)duh0, v(x)≈ vh0(x)= Nuh0(x)dvh0, (22)

ε
(
u0(x)

)
≈ ε

(
u0,h0(x)

)
= Buh0(x)duh0, ε

(
v(x)

)
≈ ε

(
vh0(x)

)
= Buh0(x)dvh0, (23)

where Nuh0 is the displacement interpolation matrix and Buh0 denotes the displacement-to-strain matrix.
Using the discretized fields, (21) reduces to the system

Kuh0 duh0 = Ruh0, (24)

where

Kuh0 =

∫
�

Buh0(x)TE0Buh0(x) dx, Ruh0 =

∫
�

Nuh0(x)Tb(x) dx +
(
Nuh0(x)t(x)

)∣∣∣
∂�t
. (25)

Solving the system for duh0 enables us to obtain the ε0,h0 approximation using (23)1.
The discretized version of the Green’s function follows from (21) with t = 0 and b = δ(y− x) (see

(24) and (25)2),
G0(x, y)≈ G0,h0(x, y)= Nuh0(x)(Kuh0)−1Nuh0(y)T.

The remaining Green’s function-related quantities can now be expressed directly from (11) and (11)2,
leading to

10(x, y)≈10,h0(x, y)= Nuh0(x)(Kuh0)−1Buh0(y)T, (26)

00(x, y)≈ 00,h0(x, y)= Buh0(x)(Kuh0)−1Buh0(y)T. (27)

3Recall that for simplicity, we assume homogeneous Dirichlet boundary conditions only. The treatment of the nonhomoge-
neous data can be found in [Luciano and Willis 2005, Appendix A].



MICROSTRUCTURE-BASED MODELING OF ELASTIC FUNCTIONALLY GRADED MATERIALS 1783

4.2. Boundary element discretization. Following the standard BEM procedures (see for examples [Bit-
tnar and Šejnoha 1996; Duddeck 2002]), we start from the Betti identity written for the reference problem∫

�

d2v

dξ 2 (ξ)E
0u0(ξ) dξ =

(
n(ξ)ε(v(ξ))E0u0(ξ)− v(ξ)t0(ξ)

)∣∣∣
∂�(ξ)
−

∫
�

v(ξ)b(ξ) dξ, (28)

and apply the test displacement in the form v(ξ)= G0,∞(ξ, x), where G0,∞ is the infinite body Green’s
function defined as the solution of

E0 ∂
2G0,∞(ξ, x)

∂ξ 2 + δ(x − ξ)= 0,G0,∞(ξ, x)= G0,∞(x, ξ). (29)

In the one-dimensional setting, this quantity is provided by [Luciano and Willis 2001, Equation (13)]

G0,∞(x, ξ)=−
1

2E0 |x − ξ |,

and the integral identity (28), written for any x ∈�, receives the form

u0,h0(x)=
(
G0,∞(x, ξ)t0,h0(ξ)− T 0,∞(x, ξ)u0,h0(ξ)

)∣∣∣
∂�(ξ)
+

∫
�

G0,∞(x, ξ)b(ξ) dξ, (30)

where the tractions T 0,∞(x, ξ) are defined analogously to (10)2 as

T 0,∞(x, ξ)= E0 ∂G0,∞(x, ξ)
∂ξ

n(ξ)=
(
H(x − ξ)− 1

2

)
n(ξ), for ξ ∈ ∂�, (31)

and H denotes the Heaviside function. Imposing the consistency with boundary data for x→ 0+ and
x→ L− yields the system of two linear equations

E0u0,h0(L)− E0u0,h0(0)− Lt0,h0(L)=
∫
�

ξb(ξ) dξ, (32)

E0u0,h0(L)− E0u0,h0(0)− Lt0,h0(0)=
∫
�

(L − ξ)b(ξ) dξ. (33)

Since one component of the pair (u0,h0, t0,h0) is always specified on ∂� and ∂�u
6= ∅, the previous

system uniquely determines the unknown boundary data (that is, u0,h0 on ∂�t and t0,h0 on ∂�u), needed
to evaluate (30).4

Making use of the identity 2E0∂x G0,∞(x, ξ) = 1− 2H(x − ξ), the associated strain field can be
expressed as

ε0,h0(x)=
(
∂G0,∞(x, ξ)

∂x
t0,h0(ξ)

)∣∣∣∣
∂�(ξ)

+

∫
�

∂G0,∞(x, ξ)
∂x

b(ξ) dξ

=
1

2E0

(
t0,h0(L)− t0,h0(0)−

∫ x

0
b(ξ) dξ +

∫ L

x
b(ξ) dξ

)
. (34)

4It can be verified that (30) now provides the exact one-dimensional displacement field rather than an approximate one.
Nevertheless, to keep the following discussion valid in the multidimensional setting and consistent with Section 4.1, we keep
the index “h0” in the sequel.
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Analogously to the finite element treatment, the expression for the finite-body Green’s function starts
from (28) with b = δ(y − ξ) and boundary data (10). Following the specific form of (30) (and allow-
ing for a slight inconsistency in notation), we introduce a decomposition of the Green’s function into
the discretization-independent infinite-body part and the discretization-dependent boundary contribution
G0(x, y)≈ G0,∞(x, y)+G0,h0(x, y), where the boundary part, written for x ∈� and y ∈�, assumes
the form

G0,h0(x, y)=
(
G0,∞(x, ξ)T 0,h0(ξ, y)− T 0,∞(x, ξ)G0,h0(ξ, y)

)∣∣∣
∂�(ξ)

,

with the boundary displacements G0,h0 and tractions T 0,h0 at ξ ∈ ∂� due to a unit impulse at y determined
from a linear system (compare with (32) and (33))

E0G0,h0(L , y)− E0G0,h0(0, y)− LT 0,h0(L , y)= y, (35)

E0G0,h0(L , y)− E0G0,h0(0, y)− LT 0,h0(0, y)= L − y. (36)

The expression for 10 is derived following an analogous procedure. We exploit the infinite-body–
boundary split 10(x, y)≈10,∞(x, y)+10,h0(x, y), and obtain the first part directly from the definition
(11)

10,∞(x, y)=
∂G0,∞(x, y)

∂y
=

1
2E0

(
2H(x − y)− 1

)
.

The boundary-dependent part now follows from

10,h0(x, y)=
(

G0,∞(x, ξ)
∂T 0,h0(ξ, y)

∂y
− T 0,∞(x, ξ)

∂G0,h0(ξ, y)
∂y

)∣∣∣∣
∂�(ξ)

,

with the y-sensitivities of the boundary data evaluated from (35)–(36) as

E0 ∂G0,h0(L , y)
∂y

− E0 ∂G0,h0(0, y)
∂y

− L
∂T 0,h0(L , y)

∂y
= 1, (37)

E0 ∂G0,h0(L , y)
∂y

− E0 ∂G0,h0(0, y)
∂y

− L
∂T 0,h0(0, y)

∂y
=−1. (38)

The BEM-based approach is completed by approximating the 00 function. In particular, we get

00(x, y)≈ 00,∞(x, y)+00,h0(x, y), (39)

00,∞(x, y)=
∂10,∞(x, y)

∂x
=

1
E0 δ(x − y), (40)

00,h0(x, y)=
∂10,h0(x, y)

∂x
=

(
G0,∞(x, ξ)

∂x
∂T 0,h0(ξ, y)

∂y

)∣∣∣∣
∂�(ξ)

=
1

2E0

(
∂T 0,h0(L , y)

∂y
−
∂T 0,h0(0, y)

∂y

)
. (41)

Finally note that the previous procedure can be directly translated to multidimensional and/or vectorial
cases; see [Procházka and Šejnoha 2003, Section 3] for more details.
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5. Numerical examples

Before getting to the heart of the matter, we start by converting the relations (16)–(20) to the fully
discrete format by replacing the integrals by a numerical quadrature and selecting a specific form of
shape functions Nτh1 . To that end, we introduce a set of integration points {ζ1, ζ2, . . . , ζNζ } as well as
associated integration weights {w1, w2, . . . , wNζ } and evaluate the components of the system matrix and
right-hand side vector as

Kτh1
r ≈

Nζ∑
i=1

wi Nτh1(ζi )
TSr (ζi )[Er − E0

]
−1Nτh1(ζi ), (42)

Kτh0h1
rs ≈

Nζ∑
i=1

Nζ∑
j=1

wiw j Nτh1(ζi )
TSrs(ζi , ζ j )0

0,h0(ζi , ζ j )Nτh1(ζ j )

+

∫
�

∫
�

Nτh1(x)TSrs(x, y)00,∞(x, y)Nτh1(y) dx dy, (43)

Rτh0h1
r ≈

Nζ∑
i=1

Nτh1(ζi )
TSr (ζi )ε

0,h0(ζi ), (44)

〈u〉h0h1(x)≈ u0,h0(x)−
2∑

r=1

Nζ∑
i=1

wi1
0,h0(x, ζi )Sr (ζi )Nτh1(ζi )dτh0h1

r

−

2∑
r=1

(∫
�

10,∞(x, y)Sr (y)Nτh1(y) dy
)

dτh0h1
r , (45)

with the convention 00,∞
=10,∞

≡ 0 for the FEM-based approximation of the polarization problem. The
basis functions and integration schemes employed below, based on a uniform partitioning of � into Ne

cells �e of length h1 = L/Ne, are defined by Figure 6. In particular, the specification of the polarization
stress in terms of P0 shape functions requires 2Ne DOFs (meaning one DOF per cell and phase), while
the P1 and P−1 discretizations are parametrized using 2(Ne+ 1) or 4Ne values, respectively.

PSfrag replacements
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Figure 6. Choice of shape functions and integration points related to the e-th cell:
(a) piecewise-constant basis functions (P0) and the Gauss–Legendre quadrature of or-
der 1 (GL1), (b) piecewise-linear discontinuous basis functions (P−1) and the Gauss–
Legendre quadrature of order 2 (GL2), and (c) piecewise linear continuous basis func-
tions (P1) and Newton–Cotes quadrature of order 1 (NC1). ◦ represent cell nodes, ©
degrees of freedom, and � integration points.
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Note that the BEM-related infinite-body contributions appearing in (43) and (45) are still kept explicit,
as they are available in the closed form and can be treated separately. In the present case, action of the
00,∞ operator is local — recall (41) — while the quantities related to 10,∞ are evaluated at cell nodal
points and linearly interpolated to the interior of a cell to account for the discontinuity of the integrand.

To summarize, the following factors significantly influence the accuracy of the discrete Hashin–
Shtrikman scheme:

• approximation of the Green’s function of the comparison body,

• the basis functions and numerical quadrature used to discretize the polarization problem,

• the Young’s modulus of the reference body E0,

• contrast of the Young moduli of individual phases (E2/E1),

• the characteristic size of the microstructure with respect to the analyzed domain (`/L).

All these aspects are studied in detail in the rest of this section. Two representative examples of structures
subject to a uniform body force b and homogeneous mixed and Dirichlet boundary data are considered,
see Figure 7,

statically determinate structure: u(0, α)= 0, t (L , α)= 0, (46)

statically indeterminate structure: u(0, α)= 0, u(L , α)= 0. (47)

In both cases, the heterogeneity distribution is quantified according to the model introduced in Section
2 with the one- and two-point probability functions plotted in Figure 3. Moreover, taking advantage of
the one-dimensional setting, we systematically compare the obtained numerical results against reliable
reference values determined by extensive Monte Carlo (MC) simulations, introduced next.

5.1. Direct simulation results. For the purpose of the following discussion, the reference values of the
average displacement fields 〈u〉MC(x) together with the 99.9% interval estimates [〈u−〉MC(x), 〈u+〉MC(x)]
are understood as the piecewise linear interpolants of discrete data sampled by the MC procedure de-
scribed in detail in the Appendix. In addition, the homogenized displacement field uH(x), corresponding
to a deterministic structure with the position-dependent elastic modulus

1
EH(x)

=
S1(x)

E1
+

S2(x)
E2

, (48)

is introduced to assess the performance of the local averaging approach. Figure 7 stores several repre-
sentative results plotted using dimensionless quantities.

As apparent from Figure 7, the obtained statistics of overall response exhibit rather narrow confidence
intervals, implying the reliability and accuracy of the MC estimates. For the statically determinate
structure, the locally homogenized solution coincides with the ensemble average of the displacement
fields, as demonstrated by the overlap of the simulation results with the homogenized data. The converse
is true (with the 99.9% confidence) for the statically indeterminate case, where these two results can
be visually distinguished from each other. The mismatch (which increases with increasing E2/E1 or
`/L) clearly demonstrates that even in the one-dimensional setting local averaging may lead to incorrect
values when treating nonhomogeneous random media. These results are consistent with the fact that
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Figure 7. Reference MC solution; (a) statically determinate and (b) indeterminate prob-
lems; MC results correspond to 99.9% confidence interval estimates, H refers to homog-
enized solution.

in the statically determinate case, the stress field σ(x, α) is independent of α as follows from the one-
dimensional equilibrium equations ∂xσ(x, α)+ b(x) = 0 and the deterministic value of the traction
at x = L due to the boundary condition provided by (46)2. In the latter case, however, the traction
value as well as the stress field become configuration-dependent. Such an effect does not appear in the
classical homogenization setting, where for `/L→ 0 the harmonic average is known to represent the
homogenized solution exactly [Murat and Tartar 1997]. This result naturally justifies the application of
approaches based on higher-order statistics to FGMs, with the H–S method being the most prominent
example.

5.2. Effect of the Green’s function approximation. In order to illustrate the effect of the approximate
Green’s function, we restrict our attention to the statistically determinate structure and employ the stan-
dard piecewise linear basis functions Nuh0 to evaluate the 00,h0 function in the FEM setting using (27).
Figure 8 allows us to perform the qualitative assessment of the results for different choices of basis
functions, integration schemes, and discretization parameters h0.

Evidently, a suitable choice of discretization parameter h0 is far from straightforward. From all the
possibilities presented in Figure 8a, only the combinations h1 = h0 with the P0/GL1 discretization
of the polarization problem and h1 = 2h0 with the P−1/GL2 scheme are capable of reproducing the
homogenized solution, while all the remaining possibilities lead to inaccurate results often accompanied
by an oscillatory response. On the other hand, the h0-independent BEM-based solutions show correct
response for all discretizations of the polarization problem (and are virtually independent of the scheme
used due to the sufficiently low value of the h1 parameter, see Section 5.5).

To shed a light on such phenomena, consider the FEM approximation of the 00,h0 function plotted in
Figure 9a. The piecewise linear basis functions used to express the reference displacements imply the
piecewise constant values of 00,h0(x, y) approximating the exact expression 1

E0 δ(x − y), see (39). As
pointed out by Luciano and Willis [2006], however, the accuracy of the HS scheme is governed by the
correct reproduction of the action of the 00(x, y) operator rather than the local values. In the present
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context, it follows from (44) that such a requirement is equivalent to the accurate representation of the
00(x, y) operator action for x coinciding with the integration points related to the selected numerical
quadrature. It can be verified that this condition is satisfied only for the two aforementioned discretiza-
tions of the reference problem. In particular, for the P0/GL1 combination we obtain (see Figures 9a and
10a) ∫

�e

00(ζe, ξ)τr (ξ) dξ ≈ we0
0,h0(ζe, ζe)dτh0h1

e,r = h1
1

E0h0
dτh0h1

e,r =
dτh0h1

e,r

E0 ,

meaning that the numerical scheme reproduces the action of 00 exactly.
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Figure 8. Influence of the approximate Green’s function for the statically determinate
problem: (a) FEM-based solution, and (b) BEM-based solution. E2/E1= 10, E0/E1= 5,
`/L = 0.1, and h1/`= 0.25.
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Figure 9. (a) Finite element approximation of the Green’s function and (b) convergence
rates of FEM vs. BEM; E2/E1 = 10, E0/E1 = 5, and `/L = 0.1.
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Figure 10. Valid combinations of the discretized Green’s function and the polarization
stresses: (a) P0/GL1 and (b) P−1/GL2; � are finite element nodes.

Using Figures 9a and 10b, we find the analysis of the P−1/GL2 discretization completely analogous:

∫
�e

00(ζ2e−1, ξ)τr (ξ) dξ ≈ w2e−10
0,h0(ζ2e−1, ζ2e−1)d

τh0h1
2e−1,r =

h1

2
1

E0h0
dτh0h1

2e−1,r =
dτh0h1

2e−1,r

E0 ,

∫
�e

00(ζ2e, ξ)τr (ξ) dξ ≈ w2e0
0,h0(ζ2e, ζ2e)d

τh0h1
2e,r =

dτh0h1
2e,r

E0 ,

which explains the good performance of the particular discretization scheme.
To allow for the quantitative comparison, we exploit the fact that the exact solution is available for

the statically determinate case and introduce a relative L2 error measure

ηh0h1
H =

∥∥〈u〉h0h1(x)− uH(x)
∥∥

L2(�)∥∥uH(x)
∥∥

L2(�)

. (49)

The resulting convergence rates of the FEM- and BEM-based approaches are shown in Figure 10b with
the integrals in (49) evaluated using an adaptive Simpson quadrature [Gander and Gautschi 2000] with
a relative accuracy of 10−6. Clearly, the performance of the BEM-based scheme is slightly superior to
the (properly tuned) FEM approach. By a sufficient resolution of the reference problem, however, both
approaches become comparable. Moreover, the results confirm the good performance of the P0 and P1

schemes when compared to the P−1 discretization, which requires about twice the number of DOFs of
the former schemes for the same cell dimensions h1 (recall Figure 6). Similar conclusions can also be
drawn for the statically indeterminate case. Therefore, in view of the above comments, we concentrate
on the BEM approach in the sequel and limit the choice of basis functions to P0 and P1 only.

5.3. Influence of the integration scheme and basis functions. Thus far, we have investigated the combi-
nation of the polarization numerical quadratures and shape functions, for which the location of integration
points coincides with the position of DOFs. Figure 11 shows the convergence plots for the relevant basis
function/integration scheme pairs. To address also the statically determinate case, the relative error is
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now related to the MC data, leading to the definition

ηh0h1
MC =

∥∥〈u〉h0h1(x)−〈u〉MC(x)
∥∥

L2(�)∥∥〈u〉MC(x)
∥∥

L2(�)

. (50)

In addition, two comparative values are introduced: the relative error of the homogenized solution H
(determined by (50) with 〈u〉h0h1 replaced by uH) and the relative error associated with the 〈u−〉MC or
〈u+〉MC function, appearing as the interval estimate (IE) line.

For the statistically determinate structure, the observed behavior is rather similar to the one reported
in Section 5.2. In particular, Figure 11a confirms that the H–S solution quickly reaches an accuracy
comparable with the confidence intervals (indicated by the grey area) and eventually converges to the
homogenized solution, with the exception of the P1/GL1 combination resulting in a singular system
matrix (16). Moreover, the superiority of the GL2 quadrature over the lower-order scheme is evident; the
proper representation of spatial statistics seems to be more important than smoothness of the polarization
shape functions.

Figure 11b shows the results for the statically indeterminate case. With 99.9% confidence, the results
quantitatively demonstrate that the homogenized solution differs from the MC data. The H–S solution
gives an error of about 50% of the value of the homogenized solution, but ceases to attain the accuracy
set by the confidence interval. It should be kept in mind that the H–S result actually delivers an estimate
pertinent to the fixed value of parameter E0 and all random one-dimensional media characterized by the
two-point statistics (4).

5.4. Influence of the reference media and phase contrast. Having identified the intrinsic limitation of
the H–S approach, we proceed with the last free parameter of the method: the choice of the reference
medium. To that end, we introduce the parameterization of the Young modulus
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Figure 11. Influence of the choice of numerical discretization: (a) statically determinate
and (b) indeterminate structures; E2/E1 = 5, `/L = 0.1, E0/E1 = 3, and IE denotes the
error associated with the 99.9% confidence interval estimate.
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Figure 12. Influence of the choice of the reference media: (a) statically determinate and
(b) indeterminate structures; `/L = 0.1, and P0/GL2 discretization.

Note that for the phases indexed such that E1 < E2, ω = 0 and ω = 1 correspond to the rigorous lower
and upper bounds on the ensemble average of the energy stored in the structure and, consequently, to
the positive- or negative-definite system matrix [Procházka and Šejnoha 2004; Luciano and Willis 2005].
The intermediate values lead to energetic variational estimates and to a symmetric indefinite system
matrix. Figure 12 illuminates the effect of ω, plotted for two representative contrasts of the phase moduli
and h1/` ratios.

In the first case, see Figure 12a, the choice of the reference media has almost negligible effect on
the H–S solution error; the slight influence observed for the coarse discretization completely disappears
upon cell refinement. This is not very surprising, as the homogenized solution depends on the first-
order statistics only — recall (48) — and therefore can be retained by the discrete H–S method (up to
controllable errors) for any choice of E0. Results for the statically indeterminate structure, on the other
hand, show a significant sensitivity to the value of ω. By a proper adjustment of the reference medium,
the error can be reduced by an order of magnitude and can eventually reach the accuracy of extensive MC
sampling. With increasing phase moduli contrast, however, the range of such ω values rapidly decreases;
for E2/E1 = 100 one needs to satisfy 9 · 10−4 . ω . 1.5 · 10−3 in order to recover the MC results. It
is noteworthy that these values agree rather well with the particular choice of reference media used by
Matouš [2003] when modeling composites with a high phase contrast using the methodology proposed
by Dvorak and Srinivas [1999].

5.5. Influence of microstructure size. Finally, we investigate the influence of the microstructure size.
Figure 13 summarizes the obtained results for a moderate phase contrast and the optimal setting of the
H–S method identified in the previous sections. A similar conclusion can be reached for both case studies:
for all three `/L values, the H–S method is capable of reaching an accuracy of MC confidence intervals
for the cell length h1 approximately equal to half of the microscopic length scale `. In other words,
keeping the same number of DOFs as used to discretize the polarization problem, the accuracy of the
method increases with the increasing `/L ratio, which is exactly an opposite trend to that of the classical
deterministic homogenization.
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Figure 13. Influence of microstructure size: (a) statically determinate and (b) indeter-
minate structures; E2/E1 = 5, ω = 0.2, `/L = 0.05, and P0/GL2 discretization.

6. Conclusions

In the present work, the predictive capacities of numerical methods based on the Hashin–Shtrikman–
Willis variational principles, when applied to a specific model of functionally graded materials, have been
systematically assessed. By restricting attention to the one-dimensional setting, an extensive parametric
study has been executed and the results of numerical schemes have been verified against reliable large-
scale Monte Carlo (MC) simulations. On the basis of the obtained data, we are justified in stating that:

• The Hashin–Shtrikman based numerical method, when set up properly, is capable of delivering
results with accuracy comparable to detailed MC simulations and, consequently, of outperforming
local averaging schemes.

• When applying the finite element method (FEM) to the solution of reference problem, the employed
discretization has to be compatible with the numerics used to solve the polarization problem. If this
condition is satisfied, the additional FEM-induced errors quickly become irrelevant.

• For the discretization of the reference problem, it appears to be advantageous to combine a low order
(discontinuous) approximation of the polarization stresses with a higher order quadrature scheme
to concisely capture the heterogeneity distribution.

• The correct choice of the reference medium has the potential to substantially decrease the error.
Unfortunately, apart from [Dvorak and Srinivas 1999], we fail to give any a priori estimates of the
optimal value for statistically nonhomogeneous structures.

• For accurate results, the characteristic cell size should be around 2–5 times smaller than the typical
dimensions of the constituents.

The bottleneck in the current implementation is the solution of system (16), since it leads to a fully
populated system matrix. Fortunately, as illustrated by Figure 14, the conditioning of the polarization
problem seems to be dominated by the phase contrast rather than the discretization of the reference
problem, which opens the way to efficient iterative techniques.
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Figure 14. Sensitivity of conditioning of system matrix of the polarization problem:
(a) statically determinate and (b) indeterminate structures; `/L = 0.05, ω= 0.2, P0/GL2

scheme, and the condition number is estimated using the algorithm from [Higham and
Tisseur 2000].

The next extension of the method would involve generalization to a multidimensional setting. For the
FEM-based treatment, the key aspect remains a more rigorous analysis of the combined effect of the
discretized 00 operator, basis functions and integration scheme employed for the polarization problem.
The multidimensional BEM approach, on the other hand, requires a careful treatment of the singularities
of the Green’s function-related quantities [Procházka and Šejnoha 2003] which are suppressed in the
current one-dimensional setting. Such work will be reported separately in our future publications.
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Appendix: Overview of the simulation procedure

A crude MC method is employed to estimate the statistics of the local fields. In particular, given a number
of simulations Nα, sampling points 0= y0 < y1 < . . . < yNs = L , and an upper bound on the intensity
ρ∗ ≥ supx∈[0,L] ρ(x), the following steps are repeated for α = 1, 2, . . . , Nα:

Microstructure generation: Construction of a microstructural sample is based on a two-step proce-
dure proposed for general Poisson processes in [Stoyan et al. 1987, Section 2.6]. First, the number
of reference points N ∗p(α) is determined by simulating a Poisson random variable with mean ρ∗L .
The coordinates of the reference points z∗1(α), z∗2(α), . . . , z∗N∗p(α)(α) then follow from a realization
of N ∗p(α) independent random variables uniformly distributed on a closed interval [0, L]. Second,
each point in the set is deleted with a probability 1−ρ(z∗p(α))/ρ

∗, leading to a (relabeled) sequence
of Np(α) particle centers z p(α).



1794 ZAHRA SHARIF-KHODAEI AND JAN ZEMAN

Solution of the one-dimensional problem: With the microstructure realization fixed, the displace-
ment of sampling points is computed by the recursion

uMC(ys;α)= uMC(ys−1;α)+

∫ ys

ys−1

t (0;α)−
∫ x

0 b(ξ) dξ
E(x;α)

dx, (A.1)

where the Young modulus is provided by (5) with the characteristic function χ1 defined as

χ1(x;α)= 1 ⇔ min
p=1,2,...,Np(α)

∣∣x − z p(α)
∣∣> `

2
,

and the boundary data u(0;α) and t (0;α) determined from a generalization of the system of bound-
ary equations (32)–(33).

After completing the sampling phase, the first- and second-order local statistics are assessed using the
unbiased values

〈u〉MC(ys)≈
1

Nα

Nα∑
α=1

uMC(ys;α), σ 2
MC(ys)≈

1
Nα − 1

Nα∑
α=1

(
〈uMC〉(ys)− uMC(ys;α)

)2
,

to arrive at the γ -confidence interval estimates [Rektorys 1994, Section 34.8]

〈u〉(ys) ∈
[
〈u−〉MC(ys), 〈u+〉MC(ys)

]
=

[
〈u〉MC(ys)− t(1+γ )/2,Nα−1

σMC(ys)
√

Nα
, 〈u〉MC(ys)+ t(1+γ )/2,Nα−1

σMC(ys)
√

Nα

]
,

where tβ,n denotes the inverse of the Student’s t distribution function for value β and n DOFs.
The reference results reported in Section 5 correspond to the values obtained for Nα =100,000 simula-

tions, confidence level γ = 99.9%, 101 equidistant sampling points, and with the integral (A.1) evaluated
with an adaptive Simpson quadrature [Gander and Gautschi 2000] with the relative tolerance set to 10−6.
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