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A careful examination of a dynamic mode I crack problem leads to the conclusion that the commonly
used boundary conditions do not always hold in the case of an applied crack face loading, so that a
modification is required to satisfy the equations. In particular, a transient compressive stress wave travels
along the crack faces, moving outward from the loading region on the crack face. This does not occur
in the quasistatic or steady state problems, and is a special feature of the transient dynamic problem
that is important during the time interval immediately following the application of crack face loading.
We demonstrate why the usual boundary conditions lead to a prediction of crack face interpenetration,
and then examine how to modify the boundary condition for a semi-infinite crack with a cohesive zone.
Numerical simulations illustrate the resulting approach.

1. Introductory remarks

The subject of the present contribution is unsteady, dynamic crack propagation in brittle polymers. The
subject has received considerable attention in the literature, mostly focused upon experimental and nu-
merical studies with comparatively few results obtained via analytical methods. Analytical solutions
to select canonical fracture boundary value problems have an important role to play in gaining a deep
understanding of the physical processes involved in dynamic fracture of polymeric materials and their
numerical simulation. However, constructing analytical solutions to such boundary values, even subject
to various simplifying idealizations, presents many technical obstacles.

There is a growing literature devoted to constructing analytical solutions to dynamic fracture boundary
value problems in the context of either linear elasticity or viscoelasticity. Broberg [1999] and Freund
[1990] give extensive accounts of these developments prior to 2000. Analytical solutions for dynamic
steady (constant crack speed) crack growth in linear viscoelastic materials have been constructed for
both mode III (antiplane shear) [Herrmann and Walton 1989; Walton 1987] and mode I (planar opening)
[Walton 1990; Herrmann and Walton 1994] fracture conditions.

For dynamic, unsteady crack growth, the catalog of analytical solutions in the literature is much
smaller, and almost entirely confined to mode III cracks in elastic material, two exceptions being a paper
by Saraikin and Slepyan [1979], which points the way to solving dynamically accelerating mode I cracks
in elastic material but does not explicitly exhibit a full solution for general loading, and those by Walton
and Leise [2003; 2004] which consider a mode III accelerating crack in a linear viscoelastic material.
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A number of analytical solutions for dynamic, accelerating mode III crack problems in the setting of
linear elasticity have been constructed, both without a cohesive zone [Walton and Herrmann 1992; Leise
and Walton 2001b; 2001a] and with a cohesive zone [Costanzo and Walton 1997; 1998]. The subject of
the present contribution is to generalize this work to the setting of mode I fracture with a cohesive zone
exhibiting nonlinear constitutive behavior modeling an infinitesimally thin evolving craze field in front
of an accelerating crack tip. In future work, we will show how this approach can be generalized to a
cohesive zone with nonlinear, time dependent constitutive behavior.

2. Mode I crack problem

Consider an infinite, isotropic, homogeneous elastic body with a planar crack along the xz-plane for
x < `(t) under mode I conditions, where x = `(t) locates the crack tip. We can reduce the problem to
the xy-plane since the displacement and stress are independent of z, and we can restrict attention to the
upper half-plane y > 0 if we apply a crack face loading symmetric with respect to the xz-plane. The
goal is to determine the crack face displacement due to a time-dependent loading, which we accomplish
by adapting the method of Saraikin and Slepyan [1979; 2002] to obtain a boundary integral equation
relating the stress and displacement along the x-axis for t > 0.

Let uk(x, y, t) denote the displacement and σi j (x, y, t) the components of the Cauchy stress tensor.
The equations of motion in the context of plane strain are

ρü1 = (2µ+ λ)u1,11+µu1,22+ (µ+ λ)u2,12,

ρü2 = (2µ+ λ)u2,22+µu2,11+ (µ+ λ)u1,12,

while the relevant constitutive relations are

σ12 = µ(u1,2+ u2,1), σ22= λu1,1+ (2µ+ λ)u2,2.

The initial conditions are
ui (x, y, 0)= 0 and u̇i (x, y, 0)= 0,

and we assume σi j → 0 as x2
+ y2
→∞. The mode I assumption is that σ12(x, 0, t)= 0, for all x and

t . The classical crack problem assumes a known loading on the crack faces:

σ22(x, 0, t)=3(x, t) for x < `(t).

Note that this implies that off the support of 3(x, t), the crack faces are stress free.
The classical crack tip model has u2(x, 0, t) = 0 for x > `(t) and a square root singularity in the

stress σ22 at the crack tip. Alternatively, one can insert a cohesive zone to the right of the crack tip and
impose a law such as σ22(x, 0, t)= F(u2(x, 0, t)) in the cohesive zone (thereby eliminating the crack tip
singularity in the stress). One can then use a critical crack opening displacement criterion to determine
the crack tip position: when the displacement at the edge of the cohesive zone reaches the critical value
δc, the material can no longer support stress and the crack extends. The function F should then satisfy
F(u)≥ 0, F(0)= 0, and F(δc)= 0.

We show below that this classical crack model (whether a sharp crack model or a cohesive zone model)
can exhibit a logical inconsistency by predicting crack surface interpenetration.
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3. Integral equation derivation

Defining Fourier and Laplace transforms (as used in [Saraikin and Slepyan 1979]) via

f̂ (p, y, t)=
∫
∞

−∞

ei px f (x, y, t)dx,

ˆ̄f (p, y, s)=
∫
∞

0
e−st f̂ (p, y, t)dt,

the transformed equations of motion become (assuming the initial conditions of uk(x, y, 0) = 0 and
u̇k(x, y, 0)= 0 for k = 1, 2)

ρs2 ˆ̄u1 =−p2(2µ+ λ) ˆ̄u1+µ
∂2

∂y2
ˆ̄u1− i p(µ+ λ)

∂

∂y
ˆ̄u2, (3-1)

ρs2 ˆ̄u2 = (2µ+ λ)
∂2

∂y2
ˆ̄u2− p2µ ˆ̄u2− i p(µ+ λ)

∂

∂y
ˆ̄u1, (3-2)

and the constitutive relations become

ˆ̄σ 12 = µ
( ∂
∂y
ˆ̄u1− i p ˆ̄u2

)
, (3-3)

ˆ̄σ 22 =−i pλ ˆ̄u1+ (2µ+ λ)
∂

∂y
ˆ̄u2. (3-4)

The general solutions of equations (3-1) and (3-2) that vanish as y→∞ are

ˆ̄u1 = A1(p, s)e−α(p,s)y + B1(p, s)e−β(p,s)y, (3-5)

ˆ̄u2 = A2(p, s)e−α(p,s)y + B2(p, s)e−β(p,s)y, (3-6)

where αA1 = i p A2, −i pB1 = βB2, and

α(p, s)=
√

p2+ s2/c2
L ,

β(p, s)=
√

p2+ s2/c2
S.

Here

cL =

√
2µ+ λ
ρ

is the longitudinal wave speed and cS =
√
µ/ρ is the shear wave speed. The functions α(p, s) and β(p, s)

are decomposed into square roots of linear functions, e.g., α(p, s) =
√

i p+ s/cL
√
−i p+ s/cL , taken

with positive real part (branch cut for
√
ζ is taken along negative real axis in the z-plane). Substituting

(3-5)–(3-6) into (3-3)–(3-4) and taking the limit y→ 0 yields

ˆ̄σ 12(p, 0, s)=
ρs2α(p, s)

p2−α(p, s)β(p, s)
ˆ̄u1(p, 0, s)− i p

(
2µ+

ρs2

p2−α(p, s)β(p, s)

)
ˆ̄u2(p, 0, s),

ˆ̄σ 22(p, 0, s)= i p
(

2µ+
ρs2

p2−α(p, s)β(p, s)

)
ˆ̄u1(p, 0, s)+

ρs2β(p, s)
p2−α(p, s)β(p, s)

ˆ̄u2(p, 0, s).
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The plane strain problem can be simplified to a single equation by assuming that there is no shear surface
traction, σ12(x, 0, t)= 0 for all x . This assumption leads to the relation

ˆ̄σ(p, s)=
µ2 R(p, s)
ρs2α(p, s)

ˆ̄u(p, s), (3-7)

where σ(x, t)= σ22(x, 0, t) and u(x, t)= u2(x, 0, t). The Rayleigh function R(p, s) is defined by

R(p, s)= 4p2α(p, s)β(p, s)− (2p2
+ s2/c2

S)
2.

Note that the Rayleigh function R(p, s) has zeros only at p =±is/cR . Define the transfer function ˆ̄S to
be

ˆ̄S(p, s)=
ρs2α(p, s)
µ2 R(p, s)

,

and let ˆ̄P = 1/ ˆ̄S. These transfer functions can be decomposed as

ˆ̄P(p, s)= ˆ̄P+(p, s) ˆ̄P−(p, s) and ˆ̄S(p, s)= ˆ̄S+(p, s) ˆ̄S−(p, s)

in such a manner that the functions S±(x, t) and P±(x, t) satisfy the following conditions:

S+(x, t)= P+(x, t)= 0 whenever x > cL t or x < 0, (3-8)

S−(x, t)= P−(x, t)= 0 whenever x <−cL t or x > 0. (3-9)

This leads to the integral equation (as derived in [Saraikin and Slepyan 1979]):

S+ ∗∗ σ = P− ∗∗ u, (3-10)

where double asterisks refer to convolution with respect to both x and t :

f ∗∗ g(x, t)=
∫ t

0

∫
∞

−∞

f (x − r, t − s)g(r, s) dr ds.

We use a slightly different factorization than [Saraikin and Slepyan 1979] (in which the goal was
to restrict the support of these functions in order to derive the stress intensity factor). The original
decomposition in [Saraikin and Slepyan 1979] and the one given below differ only by a factor of s, effec-
tively removing a time derivative from the expression for S+ and thereby easing numerical computations
involving that function. We do not need the stress intensity factor here, since we consider a cohesive
zone, so the changes to the support properties of S± due to this slight difference do not pose a difficulty
for us. This small alteration to the factorization is solely to reduce the complexity of the computations
of the stress and displacement expressions (which involve convolutions with S+ and a related function
T− defined below).

We decompose the transfer function ˆ̄S(p, s) as follows:

ˆ̄S+ =
√

as− i p
s(cs− i p)

D+(i p/s), ˆ̄S− =−
b2s
√

as+ i p
2µ(b2− a2)(cs+ i p)

D−(i p/s),
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where a = 1
cL

, b = 1
cS

, c = 1
cR

, and

D±(i p/s)= 1+
∫ b

a

F1(u)du
u∓ i p/s

, F1(u)= γ (u) exp[ℵ(u)],

γ (u)=
4
π

u2
√

b2− u2
√

u2− a2√
(b2− 2u2)4+ 16u4(b2− u2)(u2− a2)

, ℵ(u)=
1
π

P.V .
∫ b

a
ϕ(α)

dα
α− u

,

ϕ(α)= tan−1 4α2
√

b2−α2
√
α2− a2

(b2− 2α2)2
= sin−1 4α2

√
b2−α2

√
α2− a2√

(b2− 2α2)4+ 16α4(b2−α2)(α2− a2)
.

The reciprocal of D±(i p/s) is given by

D−1
±
(i p/s)= 1+

∫ b

a

F2(u)du
u∓ i p/s

, where F2(u)=−γ (u) exp[−ℵ(u)].

4. Crack face interpenetration

We now carefully examine the integral equation S+ ∗∗σ = T− ∗∗Du= D(T− ∗∗u), where T− is defined as

P− = D ◦ T− and D =
(

c
∂

∂t
−
∂

∂x

)
.

Examination of the functions S+ and T− yields some unexpected results. The basic definitions are

G1(s)= 1− H(b− s)
∫ b

s
F1(u)

√
u− a
u− s

du
c− u

,

G2(s)= 1+ H(b− s)
∫ b

s
F2(u)

du
√

u− a
√

u− s
,

S+(x, t)=
H(x)
√
πx

H(t − ax)
[

G1(t/x)− H(c− t/x)B

√
c− a

c− t/x

]
,

T−(x, t)=−
2µ(b2

− a2)

b2

[
H(−x)
√
−πx

H(t + ax)G2(−t/x)
]
,

(4-1)

where

B = G1(a)= 1−
∫ b

a
F1(u)

du
c− u

.

See Figures 1 and 2 for graphs of G1(s)− H(c− s)B
√
(c− a)/(c− s) and G2(s).

Suppose (b/a)2 ≥ 2, corresponding to a nonnegative Poisson ratio λ. The numerical results shown in
Figures 1 and 2 indicate that the function T−(x, t) is always negative for −cL t < x < 0, while S+(x, t)
changes sign: S+(x, t) < 0 for cRt < x < cL t , limt/x→c− S+(x, t) = −∞ due to the term involving
1/
√

c− t/x , and S+(x, t) > 0 for 0< x < cRt .
Consider the following scenario. Suppose the loading σ−(x, t) = 3(x, t) has support on a fixed

interval (−d − L ,−d), on which it is always negative, and further suppose that the cohesive zone has
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Figure 1. Graph of G1(s)− H(c− s)B
√
(c− a)/(c− s) on the left and of G2(s) on

the right for a = 1, b = 2.0, 3.0, and c ≈ 2.14, 3.17, respectively. The function
G1(s)− H(c− s)B

√
(c− a)/(c− s) involves a square root singularity and sign switch

at s = c = 1/cR . while G2(s) is always positive.

1.2 1.4 1.6 1.8 2.0
s

- 2.0

- 1.5

- 1.0

- 0.5

0.0

0.5

1.0
1.05 1.10 1.15 1.20
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- 0.010

- 0.005
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Figure 2. Graphs of G1(s)− H(c− s)B
√
(c− a)/(c− s) for a = 1, b = 1.5, and c ≈

1.68, showing that even for values of b close to a
√

2 this function remains negative on
the interval (a, c).

not yet begun opening (implying zero stress on the unloaded crack faces and to the right of the crack tip).
Let R be the region in the xt-plane defined by

−d + cRt < x <−d + cL t and t > 0.

If (x, t) ∈ R, then S+ is negative on the domain involved in the convolution (S+ ∗∗3)(x, t) and so this
convolution will be positive. See Figure 3. The integral equation relating stress and displacement is

S+ ∗∗3= D(T− ∗∗ u);

integrate both sides with respect to Rayleigh characteristic to remove the derivative D. If (x, t) ∈ R, then
this integral is along a line segment contained within R. Hence the integral of S+ ∗∗ σ will be positive if
(x, t) ∈ R. Since T− is nonpositive, the integral equation implies that the displacement must be negative
on some portion of the crack face. See Figure 4 for a simulation showing that this negative displacement
appears in the context of a cohesive zone as well.
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Figure 3. Graph of S+(x, t) convolved with the loading (with L = 10) on the crack
face, where b = 2. Profiles of (S+ ∗∗3)(x, t) are shown for times t = 1, 2, . . . , 10 (in
dimensionless units). This convolution is usually negative, but at the extreme right is
positive, as only the region where S+ is negative is involved in the convolution for these
values.

5. Implications

This reasoning implies that we cannot assume zero stress on the unloaded (“free”) portion of the crack
faces. This would mean that other solution methods for mode I fracture that explicitly assume zero stress
on the unloaded portion of the crack faces are also missing the small compressive stress occurring behind
the longitudinal wave front. That is, we are not free to specify a priori the stress on the entire crack face
and the parts of the boundary where displacement is zero, contrary to common assumption.

1 2 3 4
x

2

4

6

8

10

u

Original BCs

Revised BCs

0 5 10 15 20 25
t0

1

2

3

4

x

Figure 4. Example with b = 2, showing negative displacements from integral equation
calculations under the assumption that the unloaded crack faces and the region to the
right of the cohesive zone will be stress-free. The graph on the left shows the dis-
placement profiles at times t = 1, 2, . . . , 10 (in dimensionless units), where the crack
tip begins accelerating at t ≈ 6.1. While these negative displacements are very small
compared to those in the loading interval, they do have a significant effect in preventing
the crack faces from properly opening and so significantly impact transient crack tip
calculations, as shown in the graph on the right of the crack tip position x = `(t).
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If the loading is changing — cycling, for example — the resulting boundary values could be quite
complicated and involve multiple regions where the stress must be computed. The problem becomes
similar to a crack closure problem, for which stresses on the crack faces must be computed.

6. Modification of the boundary conditions

Since negative displacement doesn’t make physical sense, the boundary conditions must be modified.
We can’t assume that the stress is always zero on the part of the crack face where the applied load is zero
(or in the region to the right of a cohesive zone). There can be a small compressive stress traveling at the
longitudinal wave speed that must be calculated as part of the solution (as depicted in Figure 5). Perhaps
this is due to the point on the crack face where the displacement first equals zero acting as a pivot: the
crack face to the left of the pivot is pushed up and so the crack face to the right tends to be pressed down.
This compressive stress wave will continue along the boundary, moving out from the applied loading
interval in both positive and negative directions.

Consider the integral equation (3-10) in the case that the loading increases in strength over time on a
loading interval [−d − L ,−d], where the right end is a nonzero distance from the crack tip. Let 3(x, t)
represent the crack face loading and u− the crack face displacement. Let u+ represent the cohesive zone
displacement, so that σ+ = F(u+) is the cohesive stress. Regions of compressive stress will travel out
from the left and right edges of the loading interval on the crack face with speed cL . Let the curve
x = r(t) mark the front edge of the region of compressive stress traveling to the right; this also marks
where the displacement becomes zero. Note that r(0)=−d < `(0), so x = r(t) begins to the left of the
crack tip path x = `(t) and typically crosses it. Let σr represent the stress in the region r(t) < x < cL t .
For x >−d − L , the integral equation (3-10) expands to

S+ ∗∗ F(u+)+ S+ ∗∗ σr + S+ ∗∗3= P− ∗∗ u++ P− ∗∗ u−. (6-1)

This can be used to solve for the displacements u+ and u−. We also need to calculate σr . Fortunately,

{

Applied loading to crack faces

u(x,t)>0

σ(x,t)<0

{

Opening

crack faces

u(x,t)>0

σ(x,t)=0

{

Closed

crack faces

u(x,t)=0

σ(x,t)<0

x=-d-L-cLt

x=-d-L x=-d
x=-d+cLt

This endpoint where u(x,t)=0 must

be determined (is moving in time).

Figure 5. New scheme with a compressive stress in front of the opening portion of the
crack faces. The curve x = r(t) where the opening displacement becomes zero and the
compressive stresses for x > r(t) must be determined.
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the T− ∗∗ u± terms in this case drop out, so the integral equation reduces to

S+ ∗∗ σr =−S+ ∗∗ F(u+)− S+ ∗∗3, (6-2)

for x > r(t).

7. Numerical methods

We discretize using a grid in characteristic coordinates η = t + ax and ξ = t − ax , after nondimension-
alizing the integral equations (length with respect to δc, time with respect to aδc, and stress with respect
to µ, where δc is the critical crack opening displacement). In the simulations shown in the figures, we
implicitly refer to the dimensionless slownesses a = 1, b = cL/cS , and c = cL/cR . We use continuous
piecewise linear approximations of the displacement (using triangles) and continuous piecewise quadratic
approximations of the stress on quadrilaterals. This is compatible with the various convolution domains,
including on the crack face and in the cohesive zone.

The basic process is to step with respect to increasing values of ξ . For each ξ value, we find nodal
values of the displacement and stress for increasing values of η on the grid. There are three cases:

(1) Solve (6-1) for u−(x, t) if x <min{`(t), r(t)}.
(2) Solve (6-1) for u+(x, t) if `(t) < x < r(t).
(3) Solve (6-2) for σr (x, t) if r(t) < x < cL t .

In each case, all the required values in the integral equation will be known from previous steps.
The computations are done efficiently by precomputing all needed convolutions on two prototype

triangles and a quadrilateral. These can then be used repeatedly to avoid redundant integrations. These
precomputed convolution values scale with the step size, so this lengthy set of computations only needs
to be done once.

For examples of simulations, see Figures 6 and 7. In these examples,3(x, t)= 0.08t (x+d)(x+d+L)
on [−d − L ,−d] and equals zero otherwise, where d = 0.2 and L = 10 (all in dimensionless units). The

- 1.5 - 1.0 - 0.5 0.5 1.0 1.5 2.0
x

2

4

6

8

10

u

1 2 3 4 5 6 7
x

- 4

- 3

- 2

- 1

1

Σ

Figure 6. Example of a simulation using the revised scheme. Profiles of the displace-
ment u and stress σ for times t = 1, 2, . . . , 10, all in dimensionless units. See Section
7 for modeling details. The stress equals zero at the crack tip, is positive within the
cohesive zone, and negative in the region to the right of the cohesive zone.
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b = 2.5
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t
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0.10
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0.25
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0.35

v

Figure 7. Comparison of crack tip paths and speeds for different ratios b = cL/cS , using
dimensionless units.

crack tip is initially located at x = 0, and begins to run once the opening displacement equals 1 at
the crack tip position (which is the left edge of the cohesive zone). The crack propagates according
to a critical crack opening displacement criterion. The cohesive zone law in dimensionless units is
F(u)= 6.75u(1− u)2 (maximum cohesive stress equals 1). The right edge path r(t) is determined by
calculating the value of η at which the displacement will first equal zero for the current value of ξ . We
use step size 4ξ =4η = 0.1 in all simulations.

8. Concluding remarks

The problem considered is that of the unsteady, dynamic propagation of a semi-infinite, pure mode I crack
in a brittle polymer. The bulk material is modeled as an infinite, homogeneous, isotropic linearly elastic
body with a crack with a cohesive zone ahead of the advancing crack tip. The cohesive zone constitutive
behavior is modeled through a nonlinear elastic-like response relation incorporating an evolving damage
parameter. It was shown that the classical crack paradigm that assumes zero stress outside the loading
interval and cohesive zone must be modified in this unsteady, dynamic mode I setting since it predicts
zones of crack face interpenetration in a neighborhood of the crack tip (Figure 4). Consequently, the
classical crack/cohesive zone model must be generalized to include a contact/slip zone between the fully
opened crack and the cohesive zone (Figure 5). The extent of the contact/slip zone must be determined
as part of the boundary value problem solution by imposition of the requirement that the displacement
discontinuity across the fracture plane (the crack opening displacement) must be everywhere nonnegative.
This effect is not seen in dynamic steady-state or transient quasistatic analyses or in the transient dynamic
mode III case; it follows from properties of the Dirichlet-to-Neumann map appropriate for transient,
dynamic mode I fracture problems.
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