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ANALYSIS OF MULTIPLE AXISYMMETRIC ANNULAR CRACKS

EBRAHIM ASADI, SHAHRIAR FARIBORZ AND MOJTABA AYATOLLAHI

The solution of axisymmetric Volterra climb and glide dislocations in an infinite domain is obtained
by means of the Hankel transforms. The distributed dislocation technique is used to construct integral
equations for a system of coaxial annular cracks where the domain is under axisymmetric tensile load.
These equations are solved numerically to obtain the dislocation density on the surfaces of the cracks.
The dislocation densities are employed to determine stress intensity factors for annular and penny-shaped
cracks.

1. Introduction

Large elastic bodies containing multiple interacting cracks situated far from the boundary may be consid-
ered as infinite regions weakened by cracks. An infinite domain containing a penny-shaped crack under
axisymmetric tension is the simplest three-dimensional problem in fracture mechanics. The solution
of this problem dates back to an article by Sneddon [1946], wherein the exact solution to the problem
was derived. The solution of a penny-shaped crack under general loading in the form of Fourier series is
rendered in the book by Kassir and Sih [1975]. Guidera and Lardner [1975] used the Somigliana formula
to analyze a penny-shaped crack. The component of displacement discontinuity was presented as the
solution of a system of three integral equations. A penny-shaped crack in a transversely isotropic infinite
body subjected to arbitrary normal and shear tractions was solved by Fabrikant [1987]. Collins [1962]
treated the problem of an infinite elastic solid containing two parallel penny-shaped cracks where the axis
of symmetry of the problem passed through the centers of the cracks. In his study, the representation of
displacement field devised by Green and Zerna [1954] was used to reduce the problem to the solution of
a system of four Fredholm integral equations. The formulation, however, becomes extremely involved
where the number of cracks increases. Isida et al. [1985] analyzed two elliptical parallel cracks by
means of the body force method. Interaction among multiple penny-shaped cracks was studied by several
investigators, see for example [Kachanov and Laures 1989] and for the most recently published article
[Zhan and Wang 2006]. In the former article, the method developed by the first author for the analysis
of several cracks was employed to study the interaction of arbitrarily located penny-shaped cracks in a
three-dimensional body. In the latter study, the boundary collocation technique and average method for
surface traction of cracks were used to solve the governing equations. The stress intensity factor for an
annular crack situated in an infinite space under general loading was determined by Nied and Erdogan
[1983] and by Selvadurai and Singh [1985] and Clements and Ang [1988] under axisymmetric normal
loading. Eigenstrain solutions for axisymmetric crack problems in terms of Lipschitz–Hankel integrals
was derived by Korsunsky [1995]. The stress fields are hypersingular at the eigenstrain ring yielding
hypersingular integral equations for the ensuing crack problem.

Keywords: infinite domain, axisymmetric, annular crack, Volterra dislocation, dislocation density, Hankel transform.
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In the present paper, utilizing the Popkovich–Neuber potentials, the solution of axisymmetric climb
and glide edge dislocations is carried out by means of the Hankel transformation in an infinite isotropic
domain. The stress components exhibit the well-known Cauchy-type singularity at dislocation location.
The distributed dislocation method Hills et al. [1996] is employed to formulate integral equations for
the dislocation density functions on a system of annular and/or penny-shaped coaxial cracks under the
axisymmetric remote tensile load. These equations are of Cauchy singular type which are solved numer-
ically. The modes I and II stress intensity factors at the crack edges are obtained and the interaction of
two coaxial cracks is investigated. The interaction of annular cracks embedded in a half-space or strip
under axisymmetric conditions may be analyzed by the procedure devised in this article.

2. Solution of the Volterra ring dislocation

In the linear theory of elasticity for isotropic materials neglecting the body force, the displacement vector
u may be represented in terms of a harmonic vector B and a harmonic scalar B0 that is, the well-known
Popkovich–Neuber solution [Lur’e 1964] as

u = B−
1

4(1− ν)
grad( R · B+ B0), (1)

where ν is the Poisson’s ratio of the material and R is the position vector. For axisymmetric problems it
is convenient to utilize cylindrical coordinates and choose B = B3k, where k is the unit vector in axial
direction. Therefore, the components of displacement vector by virtue of R = rer + zez yield

ur =−
1

4(1− ν)

(
∂B0

∂r
+ z

∂B3

∂r

)
, uθ = 0, uz =

3− 4ν
4(1− ν)

B3−
1

4(1− ν)

(
∂B0

∂z
+ z

∂B3

∂z

)
. (2)

The constitutive relationships in axisymmetric problems of linear elasticity are

σrr =
2µ

1− 2ν

[
(1− ν)

∂ur

∂r
+ ν

(
ur

r
+
∂uz

∂z

)]
, σθθ =

2µ
1− 2ν

[
(1− ν)

ur

r
+ ν

(
∂ur

∂r
+
∂uz

∂z

)]
,

σzz =
2µ

1− 2ν

[
(1− ν)

∂uz

∂z
+ ν

(
ur

r
+
∂ur

∂r

)]
, σr z = µ

(
∂ur

∂z
+
∂uz

∂r

)
, σrθ = σθ z = 0,

(3)

where µ is the elastic shear modulus of the material. Substituting (2) into (3), we arrive at the stress
components in terms of the potentials B0 and B3:


σrr

σθθ
σzz

σr z

=
µ

2(1− ν)



2ν
∂B3

∂z
−
∂2

∂r2 (B0+ zB3)

2ν
∂B3

∂z
−

1
r
∂

∂r
(B0+ zB3)

2(1− ν)
∂B3

∂z
−

(
∂2 B0

∂z2 + z
∂2 B3

∂z2

)
(1− 2ν)

∂B3

∂r
−
∂

∂r

(
∂B0

∂z
+ z

∂B3

∂z

)


. (4)
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The conditions representing a Volterra-type climb ring dislocation located at r = a, z = 0 in a three
dimensional infinite domain with the line of dislocation in radial direction are

uz(r, 0+)− uz(r, 0−)= δz H(a− r). (5)

The conditions for a glide dislocation read as

ur (r, 0+)− ur (r, 0−)= δr H(a− r), (6)

where in (5) and (6), δz and δr designate the dislocation Burgers vectors and H(· · · ) is the Heaviside
step-function. Moreover, the continuity of traction vector on the line of dislocation requires that

σzz(r, 0+)= σzz(r, 0−) and σr z(r, 0+)= σr z(r, 0−). (7)

For climb edge dislocation the problem is symmetric with respect to the plane z = 0, whereas it is
antisymmetric for glide dislocation. Therefore, it is convenient to analyze the two problems separately.
For the symmetric problem the half-space z > 0 is subjected to the boundary conditions

uz(r, 0)=
δz

2
H(a− r) and σr z(r, 0)= 0. (8)

The boundary conditions for glide dislocation for the region z > 0 are

ur (r, 0)=
δr

2
H(a− r) and σzz(r, 0)= 0. (9)

Consequently, the dislocation solutions for the climb and glide dislocations reduce to the solutions of
two harmonic equations

∂2 Bi

∂r2 +
1
r
∂Bi

∂r
+
∂2 Bi

∂z2 = 0 i = 0, 3, z > 0, (10)

subjected to boundary conditions (8) and (9), respectively. The solution to (10) is achieved by means of
the Hankel transform. The Hankel transform of order ν of a sufficiently regular function f (r) is defined
[Sneddon 1972] as

F(ξ)=
∫
∞

0
r f (r)Jν(ξr)dr , (11)

where Jν(· · · ) is the Bessel function of first kind of order ν. The inversion of Hankel transform yields

f (r)=
∫
∞

0
ξF(ξ)Jν(ξr)dξ . (12)

The zero order Hankel transform of (10), assuming that the potentials are O(r−α) as r→∞ for some
α > 0.5, leads to two second order ordinary differential equations

d2 B̄i (ξ, z)
dz2 − ξ 2 B̄i (ξ, z)= 0 i = 0, 3, z > 0, (13)

where B̄0(ξ, z) and B̄3(ξ, z) are zero order Hankel transforms of B0(r, z) and B3(r, z), respectively. The
solution of (13) and (14), which is finite as z→∞, is readily known

B̄i (ξ, z)= Qi (ξ)e−ξ z i = 0, 3. (14)
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We substitute boundary conditions (8) and (9) into (2) and (4), take the Hankel transform of the resultant
equations and utilize (14) to obtain

Q0(ξ)= (2ν− 1)a
J1(ξa)
ξ 2 δz, Q3(r, z)= a

J1(ξa)
ξ

δz (15)

for climb and

Q0(ξ)= (ν− 1)aπ
η(ξ, a)
ξ 2 δr Q3(r, z)=

aπ
2
η(ξ, a)
ξ

δr (16)

for glide dislocation. In (16) the function η(ξ, a) is defined as

η(ξ, a)= J0(ξa)H1(ξa)− J1(ξa)H0(ξa), (17)

where Hν(· · · ) stands for the Struve function of order ν [Abramowitz and Stegun 1964]. The displace-
ment and stress components in view of (14)–(16), (12), (2) and (4) yield

ur =
a

4(1− ν)

∫
∞

0

[
δz(2ν− 1+ ξ z)J1(ξa)+πδr

(
ν− 1+

ξ z
2

)
η(ξ, a)

]
J1(ξr)e−ξ z dξ,

uz =
a

4(1− ν)

∫
∞

0

[
δz(2(1− ν)+ ξ z)J1(ξa)+

πδr

2
(1− 2ν+ ξ z)η(ξ, a)

]
J0(ξr)e−ξ z dξ,

σrr =
µa

2(1− ν)

{
δz

∫
∞

0
J1(ξa)

[
ξ(ξ z− 1)J0(ξr)+

1
r
(1− 2ν− ξ z)J1(ξr)

]
e−ξ z dξ

+
πδr

2

∫
∞

0
η(ξ, a)

[
ξ(ξ z− 2)J0(ξr)+

1
r
(2(1− ν)− ξ z)J1(ξr)

]
e−ξ z dξ

}
,

σθθ =
µa

2(1− ν)

{
δz

∫
∞

0
J1(ξa)

[
−2νξ J0(ξr)+

1
r
(2ν− 1+ ξ z)J1(ξr)

]
e−ξ z dξ

+
πδr

2

∫
∞

0
η(ξ, a)

[
−2ξν J0(ξr)+

1
r
(2(ν− 1)+ ξ z)J1(ξr)

]
e−ξ z dξ

}
,

σzz =
−µa

2(1− ν)

∫
∞

0

[
δzξ(1+ ξ z)J1(ξa)+

πδr

2
ξ 2zη(ξ, a)

]
J0(ξr)e−ξ z dξ,

σr z =
µa

2(1− ν)

∫
∞

0

[
−δzξ

2z J1(ξa)+
πδr

2
ξ(1− ξ z)η(ξ, a)

]
J1(ξr)e−ξ zdξ, z > 0.

(18)

The stress and displacement fields for climb ring dislocation were obtained by Kroupa [1960] using the
Galerkin solution of linear elasticity theory and solving the ensuing biharmonic equation. The solution
in [Kroupa 1960] may be recovered by putting δr = 0 in (18). In order to study the asymptotic behavior
of stress components σzz and σr z at the dislocation location, we set z = 0 in the last two equations in (18),
and arrive at

σzz(r, 0)=−
µaδz

2(1− ν)

∫
∞

0
ξ J1(ξa)J0(ξr)dξ, (19)
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σr z(r, 0)=
µaπδr

4(1− ν)

∫
∞

0
ξ J1(ξr)η(ξ, a)dξ, z > 0.

These two integrals can be found in [Gradshteyn and Ryzhik 1980], and substituting their values gives

σzz(r, 0)=
µδza

π(1− ν)
E(r/a)
r2− a2 , r < a,

σr z(r, 0)=
µπaδr

4(1− ν)

{∫
∞

0
ξ J1(ξr)

[
J0(ξa)

(
H1(ξa)−

2
π
− Y1(ξa)

)
− J1(ξa)(H0(ξa)−

2
πξa
− Y0(ξa))

]
dξ

−
2
πar
+

4
π2 E(r/a)

[
a/r

r2− a2 +
1

ar

]}
, r < a,

σzz(r, 0)=
µδzr

π(1− ν)

[
E(a/r)
r2− a2 −

K (a/r)
r2

]
, r > a,

σr z(r, 0)=
µπaδr

4(1− ν)

{∫
∞

0
ξ J1(ξr)

[
J0(ξa)

(
H1(ξa)−

2
π
− Y1(ξa)

)
− J1(ξa)

(
H0(ξa)−

2
πξa
− Y0(ξa)

)]
dξ

−
2

raπ
+

4
π2

[
E(a/r)
r2− a2 +

E(a/r)− K (a/r)
a2

]}
, r > a.

(20)

In (20) K (· · · ) and E(· · · ) are the complete elliptic integrals of the first and second kind, and Yν(· · · )
is the Bessel function of the second kind of order ν. The integrals in (20) are regular; thus, the stress
components are Cauchy singular as r → a, which is a well-known feature of the stress fields caused
by Volterra-type dislocations. It is noteworthy to mention that the assumption of axisymmetry of glide
dislocation implies the vanishing of Burgers vector δr at the origin of coordinates leading to σr z(0, 0)= 0.
Moreover, the asymptotic expansion of complete elliptic integral shows that E(r)=π/2+O(r2) as r→ 0.
Therefore, the stress fields in (20) are bounded at the origin.

3. Axisymmetric crack formulation

Let climb and glide dislocations with densities Bz(ρ) and Br (ρ) respectively be distributed on an annular
crack situated at z = z0 with inner radius ρ and outer radius ρ+ dρ. The axial and shear stress at a point
with coordinates (r, z) due to the above distribution of dislocations on the crack surface are

σzz(r, z)=−
µ

2(1− ν)

[
ρBzdρ

∫
∞

0
ξ(1+ ξ |z− z0| )J1(ξρ)J0(ξr) e−ξ |z−z0|dξ

+
ρπBr dρ

2

∫
∞

0
ξ 2 sgn(z− z0)|z− z0|η(ξ, ρ)J0(ξr)e−ξ |z−z0|dξ

]
,
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σr z(r, z)=
µ

2(1− ν)

[
−ρBzdρ

∫
∞

0
ξ 2 sgn(z− z0)|z− z0| J1(ξρ)J1(ξr) e−ξ |z−z0|dξ

+
ρπBr dρ

2

∫
∞

0
ξ(1− ξ |z− z0|)J1(ξr)η(ξ, ρ)e−ξ |z−z0|dξ

]
.

Let the medium be weakened by N1 annular and N − N1 penny-shaped coaxial cracks situated at the
axial coordinates z j , j = 1, 2, . . . , N . The inner and outer radii of annular cracks are aj and bj , j =
1, 2, . . . , N1 respectively and the radii of penny-shaped cracks are bj , j = N1+ 1, . . . , N . The cracks
configurations may be expressed in parametric form as

rj (s)= rcj + L j s, −1< s < 1, j = 1, 2, . . . , N , (21)

where rcj = (bj + aj )/2 and L j = (bj − aj )/2. The traction components on the surface of i-th crack
caused by dislocations distributed on all N cracks surfaces yield

σzz(ri (s), zi )=
µ

2(1− ν)

N∑
j=1

L j

∫ 1

−1

[
Kzz(ri (s), rj (t))Bz j (t)+ Kzr (ri (s), rj (t))Br j (t)

]
dt,

σr z(ri (s), zi )=
µ

2(1− ν)

N∑
j=1

L j

∫ 1

−1

[
Kr z(ri (s), rj (t))Bz j (t)+ Krr (ri (s), rj (t))Br j (t)

]
dt,

(22)

where the kernels in the above equations are

Kzz(ri (s), rj (t))=
∫
∞

0
−ξrj (t)(1+ ξ |zi − z j | )J1(ξrj (t))J0(ξri (s)) e−ξ |zi−z j |dξ,

Kzr (ri (s), rj (t))=
π

2

∫
∞

0
−ξ 2rj (t) sgn(zi − z j )|zi − z j |η(ξ, rj (t))J0(ξri (s))e−ξ |zi−z j |dξ,

Kr z(ri (s), rj (t))=
∫
∞

0
−ξ 2rj (t) sgn(zi − z j )|zi − z j | J1(ξrj (t))J1(ξri (s)) e−ξ |zi−z j |dξ,

Krr (ri (s), rj (t))=
π

2

∫
∞

0
ξrj (t)(1− ξ |zi − z j |)η(ξ, rj (t))J1(ξri (s))e−ξ |zi−z j |dξ .

(23)

Since stress components (20) are Cauchy singular at the dislocation location, the system of integral
equations(22) for the density functions are Cauchy singular for i = j as s→ t . Employing the definition
of the dislocation density function, the crack opening displacement for an annular crack becomes

u+k j (s)− u−k j (s)= L j

∫ s

−1
Bk j (t)dt, k = z, r. (24)

The displacement field is single-valued away from the crack surfaces. Thus, the dislocation density for
the j-th annular crack is subjected to the closure requirement∫ 1

−1
Bk j (t)dt = 0, j = 1, 2, . . . , N1, k = z, r. (25)

To obtain the dislocation density, the integral equations (22) and (25) are to be solved simultaneously.
The stress fields exhibit a square-root singularity at the crack tips. Therefore, the dislocation densities
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for annular cracks are taken as

Bk j (t)=
gk j (t)
√

1− t2
, −1≤ t ≤ 1, j = 1, 2, . . . , N1, k = z, r. (26)

A penny-shaped crack is considered as an annular edge crack. Taking the embedded crack tip at t = 1,
the dislocation density functions for penny-shaped cracks may be written as

Bk j (t)= gk j (t)

√
1+ t
1− t

, −1≤ t ≤ 1, j = N1+ 1, . . . , N , k = z, r. (27)

The functions gk j (t) in (26)–(27) are continuous in −1 ≤ t ≤ 1. The numerical solution of integral
equations (22) and (25) is carried out by the procedure developed in [Faal et al. 2006]. Substituting (26)
and (27) into (22) and (25) and discretizing the domain −1 ≤ t ≤ 1 by n + 1 segments, the integral
equations are reduced to the following system of N × n linear algebraic equations:

H11 H12 H13 . . . H1N

H21 H22 H23 . . . H2N

H31 H32 H33 . . . H3N
...

...
...

. . . . . .

HN1 HN2 HN3 . . . HN N




g1(tk)
g2(tk)
g3(tk)
...

gN (tk)

=


q1(sr )

q2(sr )

q3(sr )
...

q N (sr )

 , (28)

where the collocation points are

sr = cos
(πr

n

)
, r = 1, . . . , n− 1 and tk = cos

(
π

2k− 1
2n

)
, k = 1, . . . , n. (29)

The components of the matrix and vectors in (28) are

Hi j =



A j1ki j (s1, t1) A j2ki j (s1, t2) · · · A jnki j (s1, tn)
A j1ki j (s2, t1) A j2ki j (s2, t2) · · · A jnki j (s2, tn)

...
...

...

A j1ki j (sn−1, t1) A j2ki j (sn−1, t2) · · · A jnki j (sn−1, tn)
A j1 Bi j (t1) A j2 Bi j (t2) . . . A jn Bi j (tn)


,

g j (tk)=
[
gz j (t1) gr j (t1) · · · gz j (tn) gr j (tn)

]T
, j = 1, . . . , N , (30)

q j (sr )=
[
σzz(rj (s1), z j ) σr z(rj (s1), z j ) · · · σzz(rj (sn−1), z j )σr z(rj (sn−1), z j )

]T
,

j = 1, 2, . . . , N1,

q j (sr )=
[
σzz(rj (s1), z j ) σr z(rj (s1), z j ) · · · σzz(rj (sn−1), z j ) σr z(rj (sn−1), z j )

σzz(rj (−1), z j ) σr z(rj (−1), z j )
]T
, j = N1+ 1, . . . , N ,
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where superscript T stands for transposition and

A jk =
π

n

{
1, j = 1, 2, . . . , N1,

1+ tk, j = N1+ 1, . . . , N , k = 1, 2, . . . , n,

Bi j =
π

n

{
δi j L i , j = 1, 2, . . . , N1,

ki j (−1, tk), j = N1+ 1, . . . , N , k = 1, 2, . . . , n,

ki j (sr , tk)= L j

[
Kzz(ri (s), rj (t)) Kzr (ri (s), rj (t))
Kr z(ri (s), rj (t)) Krr (ri (s), rj (t))

]
.

(31)

In (31), δi j in the Bi j is the Kronecker delta and the components of matrix ki j (sr , tk) are defined in
(23). The modes I and II stress intensity factors for an annular crack with inner and outer radii, a and b,
respectively, are defined as{

ka
I

ka
I I

}
= lim

r→a−

√
2(a− r)

{
σzz(r, 0)
σr z(r, 0)

}
and

{
kb

I
kb

I I

}
= lim

r→b+

√
2(r − b)

{
σzz(r, 0)
σr z(r, 0)

}
. (32)

Substituting the axial and shear stress components into (32) yields{
kaj

I
kaj

I I

}
=

√
L j

2(1− ν)

{
gz j (−1)
gr j (−1)

}
and

{
kbj

I
kbj

I I

}
=−

√
L j

2(1− ν)

{
gz j (1)
gr j (1)

}
, j = 1, 2, . . . , N1. (33)

Analogously, for the penny-shaped crack, stress intensity factors becomes{
k j

I
k j

I I

}
=−

√
L j

√
2(1− ν)

{
gz j (1)
gr j (1)

}
, j = N1+ 1, . . . , N . (34)

The solution of the system (28) should be substituted into (33) and (34) to determine stress intensity
factors.

4. Numerical results

In what follows, the Poisson’s ratio of the medium ν = 0.25 and remote constant tensile traction σ0 is
applied in the axial direction. In the first example, we consider an annular crack with inner and outer
radii a and b, respectively. The nondimensional stress intensity factors K/K , where K = σ0

√
(b− a)/2

for different crack aspect ratios a/b together with the results obtained in [10, 12], are given in Table 1.
The nondimensional stress intensity factors K I /K 0

I and K I I /K 0
I of two parallel penny-shaped cracks

with radius a, where K 0
I = σ0

√
a/π is the stress intensity factor of a penny-shaped crack with radius

a situated in an infinite domain, are presented in Table 2 for different values of distance d between the
cracks and compared against those of [Isida et al. 1985; Kachanov and Laures 1989; Zhan and Wang
2006]. The interaction of parallel cracks results in the mode II stress intensity factor which decays by
increasing the distance between cracks. As it may be observed, except for K I /K 0

I where d/2a = 0.05,
the results of the above two examples are in excellent agreement with the cited references confirming
the validity of the methodology.

The applicability of the procedure is demonstrated by solving two examples with more complicated
geometries. Two concentric cracks, a penny-shaped crack surrounded by an annular crack are considered.
The dimensions of the annular crack, b/2 and b, remain fixed, whereas the radius of the penny-shaped



ANALYSIS OF MULTIPLE AXISYMMETRIC ANNULAR CRACKS 9

a/b
Present [Clements and Ang 1988] [Nied and Erdogan 1983]

K a/K K b/K K a/K K b/K K a/K K b/K

0.01 5.7720 0.9013 5.784 0.901 5.922 0.900
0.1 1.9698 0.9091 1.972 0.909 1.972 0.909
0.2 1.5005 0.9180 1.502 0.918 1.502 0.918
0.3 1.3091 0.9270 1.310 0.927 1.310 0.927
0.4 1.2035 0.9363 1.204 0.936 1.204 0.936
0.5 1.1363 0.9461 1.137 0.946 1.137 0.946
0.6 1.0907 0.9559 1.091 0.956 1.089 0.957
0.7 1.0576 0.9662 1.058 0.966 1.057 0.967
0.8 1.0329 0.9768 1.033 0.977 1.032 0.978
0.9 1.0141 0.9880 1.015 0.988 1.014 0.988
0.99 1.0008 0.9983 1.001 0.998 1.001 0.99

Table 1. Stress intensity factors of an annular crack.

d/2a
Present [ZW 2006] [I+ 1985] [KL 1989]

K I /K 0
I K I I /K 0

I K I /K 0
I K I I /K 0

I K I /K 0
I K I I /K 0

I K I /K 0
I

0.05 0.6966 0.1923 ——— ——— ——— ——— 0.7386
0.15 0.7351 0.1623 ——— ——— ——— ——— ———
0.25 0.7671 0.1381 0.7678 0.1382 0.7759 0.1390 0.7678
0.35 0.7950 0.1173 0.7955 0.1173 ——— ——— 0.7898
0.5 0.8313 0.0903 0.8316 0.0903 0.8356 0.0910 0.8249
0.75 0.8810 0.0551 0.8813 0.0551 0.8828 0.0549 0.8781
1 0.9185 0.0322 0.9187 0.0322 0.9189 0.0325 0.9176
1.5 0.9617 0.0114 0.9616 0.0114 0.9613 0.0115 0.9614
2 0.9841 0.0040 0.9802 ——— 0.9802 0.0041 ———
5 1.0000 0.0000 0.9983 ——— 0.9990 ——— ———

Table 2. Interaction of two parallel identical penny-shaped cracks under normal loading.
[ZW 2006] = [Zhan and Wang 2006]; [I+ 1985] = [Isida et al. 1985]; [KL 1989] =
[Kachanov and Laures 1989].

crack, a, changes. Figure 1 shows the nondimensional mode I stress intensity factors K/K0 of the two
cracks, where K0 = σ0

√
b/π . The variation of K/K0 at the outer edge of the annular crack is negligible,

which may be attributed to the large distance between this edge and the penny-shaped crack.
In the last example two interacting identical annular cracks with a/b = 0.5 are considered. The

dimensionless stress intensity factors at the inner and outer edges are given in Table 3. For d/b ≥ 5
the interaction vanishes and the problem reduces to an annular crack in infinite medium. It is, however,
interesting to note that the mode II stress intensity factor at the inner edge of cracks does not decrease
monotonically with increasing distance between cracks. For cracks with the present dimensions, K a

I I/K
has a local maximum at d/b ' 1.5.
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Figure 1. Stress intensity factors of two interacting concentric cracks.

d/b K a
I /K K b

I /K K a
I I/K K b

I I/K

0.05 0.7937 0.6637 0.2049 0.1771
0.15 0.8372 0.7053 0.1566 0.1423
0.25 0.8729 0.7386 0.1179 0.1176
0.35 0.9049 0.7676 0.0842 0.0961
0.5 0.9481 0.8059 0.0427 0.0704
0.75 1.0057 0.8530 0.0025 0.0446
1 1.0414 0.8810 0.0129 0.0315
1.5 1.0790 0.9079 0.0162 0.0191
2 1.0977 0.9230 0.0087 0.0088
5 1.1362 0.9461 0.0000 0.0000

Table 3. Interaction of two parallel identical annular cracks under normal loading for
a/b = 0.5.
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