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Analytical solutions of functionally graded material (FGM) shells with embedded magnetostrictive lay-
ers are presented in this study. These magnetostrictive layers are used for vibration suppression in the
functionally graded shells. Higher order shear deformation theory is employed to study the vibration
suppression characteristics. The exact solution for the FGM shell with simply supported boundary con-
ditions is based on the Navier solution procedure. Negative velocity feedback control is used. The para-
metric effect of the location of the magnetostrictive layers, material properties, and control parameters
on the suppression effect are investigated in detail. Higher order shear deformation theory has significant
influence on the prediction of the vibration response of thick shells. Further, it is found that the shortest
vibration suppression time is achieved by placing the actuating layers farthest from the neutral plane,
that the use of thinner smart material layers leads to better vibration attenuation characteristics, and that
the vibration suppression time is longer for a smaller value of the feedback control coefficient.

A list of symbols can be found starting on page 54.

1. Introduction

A number of materials have been used in sensor/actuator applications. Piezoelectric materials, magne-
tostrictive materials, shape memory alloys, and electrorheological fluids have all been integrated with
structures to make smart structures. Among these materials piezoelectric, electrostrictive, and magne-
tostrictive materials have the capability to serve as both sensors and actuators. Piezoelectric materials
exhibit a linear relationship between the electric field and strains for low field values (up to 100 V/mm).
This relationship is nonlinear for large fields, and the material exhibits hysteresis. Further, piezoelectric
materials show dielectric aging and hence lack reproducibility of strains, that is, a drift from zero state
of strain is observed under cyclic electric field applications.

An ideal actuator, for distributed embedded application, should have high energy density, negligible
weight, and point excitation with a wide frequency bandwidth. Terfenol-D, a magnetostrictive material,
has the characteristics of being able to produce strains up to 2000 and an energy density as high as
0.0025 J m−3 in response to a magnetic field. Goodfriend and Shoop [1992] reviewed the material prop-
erties of Terfenol-D with regard to its use in vibration isolation. Anjanappa and Bi [1994] investigated the
feasibility of using embedded magnetostrictive mini actuators for smart structure applications, such as
vibration suppression of beams. Bryant et al. [1993] presented experimental results of a magnetostrictive
Terfenol-D rod used in dual capacity as a passive structural support element and an active vibration
control actuator. Krishna Murty et al. [1997] proposed magnetostrictive actuators that take advantage of
the ease with which the actuators can be embedded and the use of the remote excitation capability of
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magnetostrictive particles as new actuators for smart structures. This work is limited to flexible beam
theory.

Friedmann et al. [2001] used the magnetostrictive material Terfenol-D in high speed helicopter rotors
and studied the vibration reduction characteristics. Vibration and shape control of flexible structures
are achieved with the help of actuators and a control law. The response of functionally graded material
(FGM) shells is also studied by Loy et al. [1999], Pradhan et al. [2000], Woo and Meguid [2001], and
He et al. [2002]. Many modern techniques have been developed in recent years to meet the challenge
of designing controllers that suit the function under the required conditions. There have been a number
of studies on vibration control of flexible structures using magnetostrictive materials [Bryant et al. 1993;
Anjanappa and Bi 1994; Krishna Murty et al. 1997; Giurgiutiu et al. 2001; Pradhan et al. 2001]. Higher
order shear deformation theory (HSDT) is discussed in [Reddy 1984a; 1984b]. Kadoli and Ganesan
[2006], Haddadpour et al. [2007], Li [2008], Pradyumna and Bandyopadhyay [2008], and Matsunaga
[2009] described various vibration analyses of functionally graded materials. Although there have been
important research efforts devoted to characterizing the properties of Terfelon-D, fundamental informa-
tion about the variation in elastomagnetic material properties in a thick functionally graded shell is not
available.

In the present work vibration control of functionally graded shells is studied using HSDT. Exact solu-
tions are developed for simply supported doubly curved functionally graded shells with magnetostrictive
layers. This closed form solution exists for FGM shells where the coefficients A16, A26, B16, B26, D16,
D26, and A45 are equal to zero. A simple negative velocity feedback control is used to actively control
the dynamic response of the structure through a closed loop control. Numerical results of the vibration
suppression effect for various locations of the magnetostrictive layers, material properties, and control
parameters are presented. The influence of HSDT on thick FGM shells is also investigated.

2. Theoretical formulation

Kinematic description. Figure 1, left, shows a differential element of a doubly curved shell element
with constant curvatures along two coordinate directions (ξ1, ξ2), where (ξ1, ξ2, ζ ) denote the orthogonal
curvilinear coordinates such that the ξ1 and ξ2 curves are the lines of curvature on the middle surface
(ζ = 0). Thus, in the doubly curved shell panel considered here, the lines of the principal curvature
coincide with the coordinate lines. The values of the principal radii of curvature of the middle surface
are denoted by R1 and R2. The position vector of a point (ξ1, ξ2, 0) on the middle surface is denoted by
r , and the position of an arbitrary point (ξ1, ξ2, ζ ) is denoted by R (see Figure 1, top right). The square
of the distance ds between points (ξ1, ξ2, 0) and (ξ1+ dξ1, ξ2+ dξ2, 0) is determined as [Pradhan 2005]

(ds)2 = d r.d r = α2
1(dξ1)

2
+α2

2(dξ2)
2, (1)

in which d r = g1dξ1+ g2dξ2, the vectors g1 and g2 (gi = ∂ r/∂ξi ) are tangent to the ξ1 and ξ2 coordinate
lines and α1, α2 are the surface metrics:

α2
1 = g1.g1, α2

2 = g2.g2 (2)

The square of the distance d S between (ξ1, ξ2, ζ ) and (ξ1+ dξ1, ξ2+ dξ2, ζ + dζ ) is given by

(d S)2 = d R.d R = L2
1(dξ1)

2
+ L2

2(dξ2)
2
+ L2

3(dζ )
2, (3)
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Figure 1. Geometry and stress resultants of a doubly curved shell.

in which d R =
∂R
∂ξ1

dξ1+
∂R
∂ξ2

dξ2+
∂R
∂ζ

dζ and L1, L2, and L3 are the Lamé coefficients

L1 = α1

(
1+ ζ

R1

)
, L2 = α2

(
1+ ζ

R2

)
, L3 = 1. (4)

Displacement field. We assume the following form of the displacement field, consistent with the as-
sumptions of a thick shell theory as explained in [Reddy and Liu 1985]:

ū1(ξ1, ξ2, ζ, t)= L1
α1

u1(ξ1, ξ2, t)+ ζφ1(ξ1, ξ2, t)−C1ζ
3
(
φ1+

∂u3
α1∂ξ1

)
,

ū2(ξ1, ξ2, ζ, t)= L2
α2

u2(ξ1, ξ2, t)+ ζφ2(ξ1, ξ2, t)−C1ζ
3
(
φ2+

∂u3
α1∂ξ2

)
,

ū3(ξ1, ξ2, ζ, t)= u3(ξ1, ξ2, t),

(5)

where
1
∂xi
=

1
αi

1
∂ξi

(i = 1, 2), (6)

(ū1, ū2, ū3) are the displacements of a point (ξ1, ξ2, ζ ) along the (ξ1, ξ2, ζ ) coordinates, and (u1, u2, u3)

are the displacements of a point (ξ1, ξ2, 0) on the mid surface of the shell. C1 is a constant, which
depends on shell thickness. The strain-displacement relations are written as

ε1

ε2

ε6

=

ε0

1

ε0
2

ε0
6

+ ζ

ε1

1

ε1
2

ε1
6

+ ζ 3


ε2

1

ε2
2

ε2
6

 ,
{
γ4

γ5

}
=

{
γ 0

4

γ 0
5

}
+ ζ 2

{
γ 1

4

γ 1
5

}
, (7)
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where


ε0

1

ε0
2

ε0
6

=


∂u1
∂x1
+

1
R1

u3

∂u2
∂x2
+

1
R2

u3

∂u2
∂x1
+
∂u1
∂x2


,


ε1

1

ε1
2

ε1
6

=


∂φ1
∂x1
∂φ2
∂x2

∂φ2
∂x1
+
∂φ1
∂x2


,


ε2

1

ε2
2

ε2
6

=−C1



∂φ1
∂x1
+
∂2u3

∂x2
1

∂φ2
∂x2
+
∂2u3

∂x2
2

∂φ2
∂x1
+
∂φ1
∂x2
+2 ∂2u3
∂x1∂x2


,

{
γ 0

4

γ 0
5

}
=


φ2+

∂u3
∂x2

φ1+
∂u3
∂x1

 ,
{
γ 1

4

γ 1
5

}
=−C2


φ2+

∂u3
∂x2

φ1+
∂u3
∂x1

 , (8)

and (φ1, φ2) are rotations of a transverse normal line about the ξ2 and ξ1 coordinate axes, respectively:

φ1 =−
∂u3
∂ξ1

, φ2 =−
∂u3
∂ξ2

. (9)

The constants C1 and C2 are defined as

C1 =
4

3h2 , C2 = 3C1. (10)

Constitutive relations. Suppose that the shell is composed of N functionally graded layers. The stress-
strain relations of the k-th layer, whether structural layer or actuating/sensing layer, in the shell coordinate
system are given as

σ1

σ2

σ4

σ5

σ6



(k)

=


Q11 Q12 0 0 0
Q12 Q22 0 0 0
0 0 Q44 0 0
0 0 0 Q55 0
0 0 0 0 Q66


(k)

ε1

ε2

ε4

ε5

ε6

− ζ


ce31

e32

0
0

e36



(k)

H, (11)

where Q(k)
i j are the stiffnesses of the k-th layer and

Q11 =
EFGM

1− ν2
FGM

, Q12 =
νFGM EFGM

1− ν2
FGM

, Q22 = Q11, Q44 = Q55 = Q66 = GFGM. (12)

The superscript k on Qi j as well as on the engineering constants EFGM, νFGM, and so on are omitted
for brevity. In Equation (11), H denotes the intensity of the magnetic field. H is applied normal to the
thickness of the shell. ei j are the magnetostrictive material coefficients.

Feedback control. A velocity feedback control is used in the present study. In the velocity feedback
control, the magnetic field intensity H is expressed in terms of the coil current I (ξ1, ξ2, t) as

H(ξ1, ξ2, t)= kc I (ξ1, ξ2, t). (13)

Current I is related to the transverse velocity u̇3 component as

I (ξ1, ξ2, t)= c(t)∂u3
∂t

(14)
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where kc is the magnetic coil constant and is related to the number of coil turns nc, the coil width bc, and
the coil radius rc by

kc =
nc√

b2
c + 4r2

c

. (15)

The parameter c(t) is known as the control gain.

Equations of motion. The equations of motion are derived from the dynamic version of the principle
of virtual work. By integrating the displacement gradients by parts and setting the coefficients δu1, δu2,
δu3, δφ1, and δφ2 to zero separately (the moment terms in the first two equations are omitted) we get

∂N1
∂x1
+
∂N6
∂x2
= I 1

∂2u1
∂t2 + I 2

∂2φ1
∂t2 − I 3

∂2u3
∂t2 ,

∂N6
∂x1
+
∂N2
∂x2
= J 1

∂2u2
∂t2 + J 2

∂2φ2
∂t2 − J 3

∂2u3
∂t2 ,

∂Q1
∂x1
+
∂Q2
∂x2
−C2

(
∂K1
∂x1
+
∂K2
∂x2

)
+C1

(
∂2 P1

∂x2
1
+ 2 ∂2 P6

∂x1∂x2
+
∂2 P2

∂x2
2

)
−

N1
R1
−

N2
R2
+ q

= I 3
∂3u1
∂x1∂t2 + I 5

∂3φ1
∂x1∂t2 + J 3

∂3u2
∂x2∂t2 + J 5

∂3φ2
∂x2∂t2 + I1

∂2u3
∂t2 −C2

1 I7

(
∂4u3

∂x2
1∂t2
+

∂4u3

∂x2
2∂t2

)
,

∂M1
∂x1
+
∂M6
∂x2
− Q1+C2K1−C1

(
∂P1
∂x1
+
∂P6
∂x2

)
= I 2

∂2u1
∂t2 + I 4

∂2φ1
∂t2 − I 5

∂3u3
∂x1∂t2 ,

∂M6
∂x1
+
∂M2
∂x2
− Q2+C2K2−C1

(
∂P6
∂x1
+
∂P2
∂x2

)
= J 2

∂2u2
∂t2 + J 4

∂2φ2
∂t2 − J 5

∂3u3
∂x2∂t2 , (16)

where the forces Ni , the moments Mi , the third-order moments Pi , and the shear forces Q1, Q2, K1, and
K2 are defined as

(Ni ,Mi , Pi )=

N∑
k=1

∫ ζk

ζk−1

σ
(k)
i (1, ζ, ζ 3)dζ (i = 1, 2, 6),

(Q1, K1)=

N∑
k=1

∫ ζk

ζk−1

σ
(k)
5 (1, ζ 2)dζ, (Q2, K2)=

N∑
k=1

∫ ζk

ζk−1

σ
(k)
4 (1, ζ 2)dζ.

(17)

The inertia-driven terms I i and J i are defined as

I 1 = I1+
2
R1

I2, I 2 = I3+
1
R1

I3−C1

(
I4+

1
R1

I5

)
, I 3 = C1

(
I4+

1
R1

I5

)
,

J 1 = I1+
2
R2

I2, J 2 = I3+
1
R2

I3−C1

(
I4+

1
R2

I5

)
, J 3 = C1

(
I4+

1
R2

I5

)
,

I 4 = I3−C1

(
2I5−C1 I7

)
, I 5 = C1

(
2I5−C1 I7

)
, J 4 = I 4, J 5 = I 5.

(18)

The inertia terms are defined as

(I1, I2, I3, I4, I5, I7)=

N∑
k=1

∫ ζk

ζk−1

ρ(k)(1, ζ, ζ 2, ζ 3, ζ 4, ζ 6)dζ, (19)

where ρ(k) is the density of the k-th layer and N is the number of layers in the laminate.
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Shell constitutive equation. Using Equations (7) and (11) in (17) we get the following constitutive equa-
tions for the actuator embedded shell:
{N }
{M}
{P}

=
[A] [B] [E][B] [D] [F]
[E] [F] [H ]



{ε0
}

{ε1
}

{ε2
}

−

{N }
{M}
{P}


M

,

{
{Q}
{K }

}
=

[
[A] [D]
[D] [F]

]{
γ 0

γ 1

}
−

{
{Q}
{K }

}M

, (20)

where the shell stiffness coefficients (Ai j , Bi j , Di j , Ei j , Fi j , and Hi j for i, j = 1, 2, 6) are defined by

(Ai j , Bi j , Di j , Ei j , Fi j , Hi j )=

N∑
k=1

∫ ζk+1

ζk

Q̄(k)
i j (1, ζ, ζ

2, ζ 3, ζ 4, ζ 6)dζ (21)

and the shell stiffness coefficients (Ai j , Di j , and Fi j for i, j = 4, 5) are defined by

(Ai j , Di j , Fi j )=

N∑
k=1

∫ ζk+1

ζk

Q̄(k)
i j (1, ζ

2, ζ 4)dζ (i, j = 4, 5). (22)

The magnetostrictive stress resultants ({N M
i }, {M

M
i }, and {K M

i } for i = 1, 2) are defined by{
N M

1

N M
2

}
=

N∑
k=m1,m2,...

∫ ζk+1

ζk

{
ē31

ē32

}
Hζ dζ = ckc

N∑
k=m1,m2,...

∫ ζk+1

ζk

{
ē31

ē32

}
∂u3

∂t
dζ ≡

{
A31

A32

}
∂u3

∂t
,

{
M M

1

M M
2

}
=

N∑
k=m1,m2,...

∫ ζk+1

ζk

{
ē31

ē32

}
ζHζ dζ = ckc

N∑
k=m1,m2,...

∫ ζk+1

ζk

{
ē31

ē32

}
∂u3

∂t
ζ dζ ≡

{
B31

B32

}
∂u3

∂t
,

{
K M

1

K M
2

}
=

N∑
k=m1,m2,...

∫ ζk+1

ζk

{
ē31

ē32

}
ζ 3 Hζ dζ = ckc

N∑
k=m1,m2,...

∫ ζk+1

ζk

{
ē31

ē32

}
∂u3

∂t
ζ 3 dζ ≡

{
C31

C32

}
∂u3

∂t
,

(23)

where

Ai j = ckc

∑
k=m1,m2,...

ē(k)i j (ζk+1− ζk), i = 3, j = 1, 2,

Bi j =
1
2 ckc

∑
k=m1,m2,...

ē(k)i j (ζ
2
k+1− ζ

2
k ), i = 3, j = 1, 2,

Ci j =
1
4 ckc

∑
k=m1,m2,...

ē(k)i j (ζ
4
k+1− ζ

4
k ), i = 3, j = 1, 2,

(24)

and m1, m2, . . . denote the layer numbers of the magnetostrictive (or any actuating/sensing) layers.

Functionally graded material. The material properties PFGM of the FGM are controlled by the volume
fractions V f i and the individual material properties Pi of the constituent materials:

PFGM =

nm∑
i=1

Pi V f i . (25)
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Figure 2. Left: functionally graded shell with embedded magnetostrictive layers. Right:
exploded sectional view.

In the present case two different materials are particle mixed to form the FGM material. A schematic of
the FGM shell with magnetostrictive layers is shown in Figure 2. The left half of the figure shows two
layers of magnetostrictive materials placed symmetrically away from the neutral plane of the FGM shell.
A zoomed view of section AA is shown on the right. Assuming there are no defects like voids or foreign
particles in the FGM material, the sum of the volume fractions of all the constituent materials is unity:

nm∑
i=1

V f i = 1. (26)

For example, metal and ceramic materials (nm = 2) are mixed to form the FGM shell. The volume
fractions of the metal and ceramic materials are calculated by simple integration of the distribution
over a domain. Different problems of interest have different expressions for the volume fractions. For
bending problems of plates and shells the volume fractions of the metal (Vm) and ceramic (Vc) materials
are defined as

Vm =

(h−2z
2h

)Rn
, Vc = 1− Vm, (27)

where z is the thickness coordinate (−h/2 ≤ z ≤ h/2) and h represents the shell thickness. Rn is the
power law exponent (0 ≤ Rn ≤∞). Here Vm varies from 100% to 0% as z varies from −h/2 to h/2.
Similarly Vc varies from 0% to 100% as z varies from −h/2 to h/2. For various Rn values the average Vm

and Vc are depicted in the top and bottom of Figure 3, respectively. The Young’s modulus and Poisson’s
ratio of a FGM shell made up of two different materials are expressed as

EFGM = (E2− E1)
(2z+h

2h

)Rn
+ E1, νFGM = (ν2− ν1)

(2z+h
2h

)Rn
+ ν1. (28)

E1, E2, and EFGM are the Young’s moduli of the constituent materials and the FGM material, respectively.
ν1, ν2, and νFGM are the Poisson’s ratios of the constituent materials and the FGM material, respectively.
From Equation (28) we note that at z = −h/2, the FGM material properties are the same as those of
material 1, while at z = h/2, they are the same as those of material 2. Thus, the FGM material properties
vary smoothly across the thickness, from material 1 at the inner surface to material 2 at the outer surface.
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Figure 3. Volume fractions of metal and ceramic materials in the FGM shell.

Two different FGM materials are considered in the present study: FGM1 consists of stainless steel
and nickel (Figure 2b), while FGM2 consists of nickel and aluminum oxide. The material properties of
stainless steel, nickel, and aluminum oxide are listed in Table 1. The material properties of the FGM
shells are calculated at room temperature.

Young’s Modulus E (GPa) Poisson’s ratio Density (kg m−3)
Stainless steel 201.04 0.3262 7900
Nickel 244.27 0.2882 8909
Aluminum oxide 349.55 0.260 3970

Table 1. Material properties of FGM constituent materials.
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3. Analytical solution

The equations of motion (16) can be expressed in terms of the displacements (u1, u2, u3, φ1, φ2) by
substituting the force and moment resultants from (20). Further, one can derive the equation of motion
(16) for homogeneous shells. An exact solution for the partial differential equations (16) on arbitrary
domains and for general boundary conditions is not possible. However, for simply supported shells
whose projection in the x1, x2-plane is a rectangle and for a lamination scheme of antisymmetric cross-
ply or symmetric cross-ply type the equations (16) are solved exactly. The Navier solution exists if
Ai6 = Bi6 = Di6 = Ei6 = Fi6 = Hi6 = 0 (i = 1, 2), and A45 = D45 = F45 = 0 [Reddy 1984a]. The
simply-supported boundary conditions for the HSDT are assumed to be

u1(x1, 0, t)= 0, u1(x1, b, t)= 0, u2(0, x2, t)= 0, u2(a, x2, t)= 0,

u3(x1, 0, t)= 0, u3(x2, b, t)= 0, u3(0, x2, t)= 0, u3(a, x2, t)= 0,

N1(0, x2, t)= 0, N1(a, x2, t)= 0, N2(x1, 0, t)= 0, N2(x1, b, t)= 0,

M1(0, x2, t)= 0, M1(a, x2, t)= 0, M2(x1, 0, t)= 0, M2(x1, b, t)= 0,

P1(0, x2, t)= 0, P1(a, x2, t)= 0, P2(x1, 0, t)= 0, P2(x1, b, t)= 0,

φ1(x1, 0, t)= 0, φ1(x1, b, t)= 0, φ2(0, x2, t)= 0, φ2(a, x2, t)= 0,

(29)

where a and b denote the lengths along the x1 and x2 axes, respectively. The boundary conditions in (29)
are satisfied by the following expansions [Reddy 2004]:

u1(x1, x2, t)=
∞∑

n=1

∞∑
m=1

Umn(t) cosαx1 sinβx2, u2(x1, x2, t)=
∞∑

n=1

∞∑
m=1

Vmn(t) sinαx1 cosβx2,

u3(x1, x2, t)=
∞∑

n=1

∞∑
m=1

Wmn(t) sinαx1 sinβx2,

φ1(x1, x2, t)=
∞∑

n=1

∞∑
m=1

Xmn(t) cosαx1 sinβx2, φ2(x1, x2, t)=
∞∑

n=1

∞∑
m=1

Ymn(t) sinαx1 cosβx2.

(30)

Substituting (30) into (16), we obtain
S11 S12 S13 S14 S15

S21 S22 S23 S24 S25

S31 S32 S33 S34 S35

S41 S42 S43 S44 S45

S51 S52 S53 S54 S55




Umn

Vmn

Wmn

Xmn

Ymn

+


0 0 C13 0 0
0 0 C23 0 0
0 0 C33 0 0
0 0 C43 0 0
0 0 C53 0 0




U̇mn

V̇mn

Ẇmn

Ẋmn

Ẏmn



+


M11 0 M13 M14 0

0 M22 M23 0 M25

M31 M32 M33 M34 M35

M41 0 M43 M44 0
0 M52 M53 0 M55




Ümn

V̈mn

Ẅmn

Ẍmn

Ÿmn

=


0
0

Qmn

0
0

 , (31)
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S11 = A11α
2
+ A66β

2, S12 = S21 = A12αβ + A66αβ,

S13 = S31 =−A11
1
R1
α− A12

1
R2
α−C1 E11α

3
−C1 E12αβ

2
−C1 E662αβ2,

S14 = S41 = B11α
2
−C1 E11α

2
+ B66β

2
−C1 E66β

2, S15 = S51 = B12αβ −C1 E12αβ + B66αβ −C1 E66αβ,

S22 = A66α
2
+ A22β

2, S23 = S32 =−2C1 E66α
2β − A12

1
R1
β − A22

1
R2
β −C1 E12α

2β −C1 E22β
3,

S24 = S42 = B66αβ −C1 E66αβ + B12αβ −C1 E12αβ, S25 = S52 = B66α
2
−C1 E66α

2
+ B22β

2
−C1 E22β

2,

S33 = A55α
2
− 2C2 D55α

2
+ A44β

2
− 2C2 D44β

2
+C2

2 F55α
2
+C2

2 F44β
2

+ 2C1 E11
1
R1
α2
+ 2C1 E12

1
R2
α2
+C2

1 H11α
4
+C2

1 H12α
2β2
+ 2C2

1 H66α
2β2
+ 2C1 E12

1
R1
β2

+ 2C1 E22
1
R2
β2
+C2

1 H12α
2β2
+C2

1 H22β
4
− A11

1
R2

1
− 2 1

R1 R2
A12− A22

1
R2

2
,

S34 = S43 = A55α− 2C2 D55α+C2
2 F55α−C1 F11α

3
+C2

1 H11α
3
− 2C1 F66αβ

2

+ 2C2
1 H66αβ

2
+C2

1 H12αβ
2
−

1
R1

B11α+C1
1
R1

E11α−
1
R2

B12α+C1
1
R2

E12α,

S35 = S53 = A44β − 2C2 D44β +C2
2 F44β −C1 F12α

2β +C2
1 H12α

2β − 2C1 F66α
2β + 2C2

1 H66α
2β

−C1 F22β
3
+C2

1 H22β
3
−

1
R1

B12β +C1
1
R1

E12β −
1
R2

B22β +C1
1
R2

E22β,

S44 = D11α
2
− 2C1 F11α

2
+ D66β

2
− 2C1 F66β

2
− A55+ 2C2 D55−C2

2 F55+C2
1 H11α

2
+C2

1 H66β
2,

S45 = S54 = D66αβ + D12αβ − 2C1 F66αβ − 2C1 F12αβ +C2
1 H12αβ −C1 F66αβ +C2

1 H66αβ,

S55 = D66α
2
− 2C1 F66α

2
+ D22β

2
− 2C1 F22β

2
− A44+ 2C2 D44−C2

2 F44+C2
1 H66α

2
+C2

1 H22β
2,

C13 =A31α, C23 =A32β, C33 =−C31α
2
−C32β

2
+

A31

R1
+

A32

R2
,

C43 =B31α−C1C31α, C53 =B32β −C1C32β,

M11 = Ī1, M12 = M21 = M15 = M51 = M24 = M42 = M45 = M54 = 0, M13 = M31 = Ī3α,

M14 = M41 = Ī2, M22 = J̄1, M23 = M32 = J̄3β, M25 = M52 = J̄2,

M33 = Ī1+C2
1 I7(α

2
+β2), M34 = M43 = Ī5α, M35 = M53 = J̄5β, M44 = Ī4, M55 = J̄4,

Table 2. Definition of the variables appearing in Equation (31). The magnetostrictive
coefficients A31, A32, B31, B32, C31, and C32 are defined in (24).

where Si j , Ci j , and Mi j (i, j = 1, 2, . . . , 5) are defined in Table 2. For vibration control, we assume
q = 0 and seek the solution of the ordinary differential equations (31) in the form

Umn(t)=U0eλt , Vmn(t)= V0eλt , Wmn(t)=W0eλt , Xmn(t)= X0eλt , Ymn(t)= Y0eλt . (32)

Substituting (32) into (31), and defining

S̄i j = Si j + λCi j + λ
2 Mi j (i, j = 1, 2, 3, 4, 5), (33)
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we obtain as the condition for a nontrivial solution∣∣∣∣∣∣∣∣∣∣

S̄11 S̄12 S̄13 S̄14 S̄15

S̄21 S̄22 S̄23 S̄24 S̄25

S̄31 S̄32 S̄33 S̄34 S̄35

S̄41 S̄42 S̄43 S̄44 S̄45

S̄51 S̄52 S̄53 S̄54 S̄55

∣∣∣∣∣∣∣∣∣∣
= 0. (34)

This equation gives five sets of eigenvalues. The lowest one corresponds to the transverse motion. The
eigenvalue can be written as λ= −α+ iωd , so that the damped motion is given by

u3(x1, x2, t)= 1
ωd

e−αt sinωd t sin nπx1
a

sin nπx2
b

. (35)

In arriving at the last solution, the following boundary conditions are used:

u1(x1, x2, 0)= 0, u̇1(x1, x2, 0)= 0, u2(x1, x2, 0)= 0, u̇2(x1, x2, 0)= 0, u3(x1, x2, 0)= 0,

u̇3(x1, x2, 0)= 1, φ1(x1, x2, 0)= 0, φ̇1(x1, x2, 0)= 0, φ2(x1, x2, 0)= 0, φ̇2(x1, x2, 0)= 0.
(36)

4. Results and discussion

In the present work a theoretical analysis of a functionally graded material (FGM) shell, consisting of
layers of magnetostrictive material, is carried out. The magnetostrictive material is assumed to impart
vibration control through a velocity dependent feedback law that controls the current to the magnetic
coils energizing the magnetostrictive material. Higher order shear deformation theory (HSDT) is used
in the derivation. Numerical simulation results are presented. The effect of various parameters on the
vibration suppression time is studied. These parameters are: the location of the magnetostrictive layer
relative to the neutral plane, the thickness of the magnetostrictive layer, the higher modes of vibration,
the material properties of the magnetostrictive material, and the material properties of the FGM material.
The influence of HSDT on the vibration response of thick shells is also investigated.

The FGM shell is considered to have dimensions 1 m × 1 m. Two types of FGM shells are considered:
FGM1, made up of stainless steel and nickel, and FGM2, made up of nickel and aluminum oxide. The
material properties of the constituent materials were listed in Table 1. Two layers of magnetostrictive
materials are placed symmetrically away from the neutral plane of the FGM shell, as shown in Figure 2.
The magnetostrictive material properties are taken as Em = 26.5 GPa, νm = 0.0, ρm = 9250 kgm−3,
c(t)rc = 104. The numerical values of various material and structural constants based on different
locations of the magnetostrictive layers and different FGM material properties are listed in Tables 3
and 4. In this study, the vibration suppression time (ts) is defined as the time required to reduce the
uncontrolled vibration amplitude to one-tenth of its initial amplitude. In the present numerical simulations
the suppression time and the thickness of the magnetostrictive layer are denoted by ts and hm , respectively.
Zm represents the distance between the location of the magnetostrictive layer and the neutral plane.

Effect of magnetostrictive layer location. The effect of the location of the magnetostrictive layers on the
vibration suppression is studied. Figure 2 shows the location of the magnetostrictive layers in the FGM
shells. Transverse deflection values are plotted as functions of time in Figure 4 for several Zm values:
3.5 mm, 5.5 mm, 7.5 mm and 9.5 mm. For Zm = 9.5 mm Figure 4d shows the shortest suppression time,
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Zm/ F11/ H11/ D11/ F12/ H12/ D12/ F22/ H22/ D22/

m 10 Nm3 10−3 Nm5 106 Nm 10 Nm3 10−3 Nm5 105 Nm 10 Nm3 10−3 Nm5 106 Nm

0.0095 0.624 0.375 0.124 0.178 0.103 0.366 0.624 0.375 0.124
0.0085 0.752 0.534 0.132 0.222 0.157 0.393 0.752 0.534 0.132
0.0075 0.843 0.622 0.139 0.253 0.187 0.417 0.843 0.622 0.139
0.0065 0.904 0.668 0.145 0.274 0.203 0.438 0.904 0.668 0.145
0.0055 0.942 0.689 0.150 0.287 0.210 0.456 0.942 0.689 0.150
0.0045 0.964 0.698 0.155 0.294 0.213 0.471 0.964 0.698 0.155
0.0035 0.976 0.701 0.158 0.298 0.214 0.483 0.976 0.701 0.158
0.0025 0.981 0.702 0.161 0.300 0.215 0.492 0.981 0.702 0.161
0.0015 0.983 0.702 0.163 0.301 0.215 0.498 0.983 0.702 0.163
0.0005 0.983 0.702 0.164 0.301 0.215 0.501 0.983 0.702 0.164

Zm/ F66/ H66/ D66/ F44/ D44/ A44/ F55/ D55/

m 10 Nm3 10−3 Nm5 105 Nm 10 Nm3 105 Nm5 1010 Nm−1 10 Nm3 105 Nm

0.0095 0.223 0.136 0.438 0.223 0.438 0.156 0.223 0.438
0.0085 0.265 0.188 0.464 0.265 0.464 0.156 0.265 0.464
0.0075 0.295 0.217 0.487 0.295 0.487 0.156 0.295 0.487
0.0065 0.315 0.232 0.507 0.315 0.507 0.156 0.315 0.507
0.0055 0.328 0.239 0.525 0.328 0.525 0.156 0.328 0.525
0.0045 0.335 0.242 0.539 0.335 0.539 0.156 0.335 0.539
0.0035 0.339 0.243 0.551 0.339 0.551 0.156 0.339 0.551
0.0025 0.340 0.244 0.559 0.340 0.559 0.156 0.340 0.559
0.0015 0.341 0.244 0.565 0.341 0.565 0.156 0.341 0.565
0.0005 0.341 0.244 0.568 0.341 0.568 0.156 0.341 0.568

Zm/ C1/ C2/ I1/ I3/ I5/ I7/ −B31/ −C31/

m 104 m−2 105 m−2 102 kgm−2 10−2 kg 10−6 kgm2 1010 kgm4 102 10−2

0.0095 0.333 0.100 0.849 0.288 0.175 0.126 0.841 0.761
0.0085 0.333 0.100 0.849 0.288 0.175 0.126 0.752 0.545
0.0075 0.333 0.100 0.849 0.285 0.171 0.126 0.664 0.375
0.0065 0.333 0.100 0.849 0.284 0.170 0.121 0.575 0.244
0.0055 0.333 0.100 0.849 0.283 0.169 0.120 0.487 0.148
0.0045 0.333 0.100 0.849 0.282 0.168 0.120 0.398 0.082
0.0035 0.333 0.100 0.849 0.281 0.168 0.120 0.310 0.039
0.0025 0.333 0.100 0.849 0.281 0.168 0.120 0.221 0.014
0.0015 0.333 0.100 0.849 0.280 0.168 0.120 0.133 0.003
0.0005 0.333 0.100 0.849 0.280 0.168 0.120 0.044 0.000

Table 3. Coefficients of the FGM1 (stainless steel-nickel) shell.
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Zm/ F11/ H11/ D11/ F12/ H12/ D12/ F22/ H22/ D22/

m 10 Nm3 10−3 Nm5 106 Nm 10 Nm3 10−3 Nm5 105 Nm 10 Nm3 10−3 Nm5 106 Nm

0.0095 0.801 0.478 0.161 0.207 0.119 0.426 0.801 0.478 0.161
0.0085 0.974 0.691 0.171 0.258 0.182 0.457 0.974 0.691 0.171
0.0075 1.095 0.809 0.181 0.294 0.218 0.485 1.095 0.809 0.181
0.0065 1.177 0.871 0.189 0.318 0.236 0.509 1.177 0.871 0.189
0.0055 1.228 0.899 0.196 0.333 0.244 0.530 1.228 0.899 0.196
0.0045 1.258 0.911 0.202 0.342 0.248 0.547 1.258 0.911 0.202
0.0035 1.274 0.915 0.207 0.347 0.249 0.561 1.274 0.915 0.207
0.0025 1.281 0.916 0.210 0.349 0.249 0.572 1.281 0.916 0.210
0.0015 1.283 0.916 0.212 0.349 0.249 0.579 1.283 0.916 0.212
0.0005 1.283 0.916 0.214 0.349 0.249 0.583 1.283 0.916 0.214

Zm/ F66/ H66/ D66/ F44/ D44/ A44/ F55/ D55/

m 10 Nm3 10−3 Nm5 105 Nm 10 Nm3 105 Nm5 1010 Nm−1 10 Nm3 105 Nm

0.0095 0.297 0.179 0.591 0.297 0.591 0.212 0.297 0.591
0.0085 0.358 0.254 0.628 0.358 0.628 0.212 0.358 0.628
0.0075 0.401 0.296 0.661 0.401 0.661 0.212 0.401 0.661
0.0065 0.429 0.317 0.690 0.429 0.690 0.212 0.429 0.690
0.0055 0.447 0.327 0.715 0.447 0.715 0.212 0.447 0.715
0.0045 0.458 0.332 0.736 0.458 0.736 0.212 0.458 0.736
0.0035 0.463 0.333 0.752 0.463 0.752 0.212 0.463 0.752
0.0025 0.466 0.333 0.765 0.466 0.765 0.212 0.466 0.765
0.0015 0.467 0.333 0.773 0.467 0.773 0.212 0.467 0.773
0.0005 0.467 0.333 0.777 0.467 0.777 0.212 0.467 0.777

Zm/ C1/ C2/ I1/ I3/ I5/ I7/ −B31/ −C31/

m 104 m−2 105 m−2 102 kgm−2 10−2 kg 10−6 kgm2 1010 kgm4 102 10−2

0.0095 0.333 0.100 0.672 0.240 0.152 0.113 0.841 0.761
0.0085 0.333 0.100 0.672 0.235 0.144 0.103 0.752 0.545
0.0075 0.333 0.100 0.672 0.230 0.138 0.097 0.664 0.375
0.0065 0.333 0.100 0.672 0.226 0.134 0.094 0.575 0.244
0.0055 0.333 0.100 0.672 0.223 0.131 0.093 0.487 0.148
0.0045 0.333 0.100 0.672 0.220 0.130 0.092 0.398 0.082
0.0035 0.333 0.100 0.672 0.218 0.129 0.092 0.310 0.039
0.0025 0.333 0.100 0.672 0.216 0.129 0.092 0.221 0.014
0.0015 0.333 0.100 0.672 0.215 0.129 0.092 0.133 0.003
0.0005 0.333 0.100 0.672 0.215 0.129 0.092 0.044 0.000

Table 4. Coefficients of the FGM2 (nickel-aluminum oxide) shell.
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Figure 4. Comparison of uncontrolled (dashed line) and controlled (solid line) motion
at the midpoint of the FGM1 shell for various locations of the magnetostrictive layers,
(a) Zm = 3.5 mm, (b) Zm = 5.5 mm, (c) Zm = 7.5 mm and (d) Zm = 9.5 mm.

ts = 0.22 s, while for Zm = 3.5 mm Figure 4a shows the longest suppression time, ts = 0.59 s. From
Figure 4, the shortest suppression time is observed when the magnetostrictive layers are placed farther
away from the neutral plane. Similarly, from Figure 4 one can observe that the longest suppression time
occurs when the magnetostrictive layer is located closest to the neutral plane of the shell.

The influence on the damping of the vibration response of the distance between the magnetostrictive
layers and the neutral plane of the shell in the thickness direction is shown in Tables 5–7. In Tables 5
and 6, the value of λ0 increases when the magnetostrictive layer is located farther away from the neutral
axis, indicating faster vibration suppression. This is due to the larger bending moment created by the
actuating force in the magnetostrictive layers. Further, it is observed that the damping parameter B31 and
the associated normalized value of Bn increase as the magnetostrictive layers are moved away from the
neutral plane. These damping parameters are listed in Tables 3 and 4. These results agree qualitatively
with those presented in [Pradhan et al. 2001; He et al. 2002; Pradhan 2005].

Effect of thickness of magnetostrictive layers. The vibration response of the FGM1 shell for various
thicknesses of the magnetostrictive layers (hm) is studied. Magnetostrictive damping coefficients and
natural frequencies for various thicknesses of the magnetostrictive layers are listed in Tables 5–6. These
damping coefficients and natural frequencies refer to the first mode of vibration. The vibration suppres-
sion time for hm values of 1 mm, 2 mm, 3 mm, and 5 mm are listed in Tables 5 and 6. These computations
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Zm(m) −λ0 ±ωd Wmax(mm) ts(s) tn

0.0095 9.760 778.57 1.259 0.244 0.055
0.0085 8.731 803.46 1.222 0.268 0.060
0.0075 7.702 828.79 1.184 0.305 0.068
0.0065 6.673 848.44 1.154 0.350 0.078
0.0055 5.645 862.38 1.113 0.410 0.092
0.0045 4.618 873.60 1.116 0.505 0.113
0.0035 3.591 886.54 1.097 0.647 0.145
0.0025 2.564 893.99 1.087 0.909 0.204
0.0015 1.612 892.53 1.091 1.501 0.336
0.0005 0.537 894.26 1.093 4.463 1.000

Zm(m) −λ0 ±ωd Wmax(mm) ts(s) tn

0.009 18.317 663.54 1.410 0.135 0.118
0.008 16.276 726.37 1.323 0.141 0.124
0.007 14.237 770.68 1.261 0.165 0.145
0.006 12.198 806.39 1.209 0.197 0.173
0.005 10.161 834.35 1.169 0.228 0.200
0.004 8.125 854.79 1.140 0.288 0.252
0.003 6.091 875.41 1.110 0.382 0.335
0.002 4.060 881.40 1.105 0.579 0.507
0.001 2.029 893.62 1.089 1.141 1.000

Zm(m) −λ0 ±ωd Wmax(mm) ts(s) tn

0.0085 25.702 562.13 1.636 0.092 0.179
0.0075 22.669 661.05 1.401 0.107 0.208
0.0065 19.637 723.98 1.318 0.124 0.241
0.0055 16.607 772.53 1.252 0.140 0.272
0.0045 13.578 812.17 1.196 0.172 0.334
0.0035 10.553 839.35 1.160 0.226 0.439
0.0025 7.533 858.58 1.135 0.309 0.600
0.0015 4.517 881.17 1.104 0.515 1.000

Table 5. Suppression time ratio for various locations of the magnetostrictive layers in
the FGM1 shells, for hm = 1 mm (top), hm = 2 mm (middle), and hm = 3 mm (bottom).
Zm is expressed in units of m, Wmax in units of mm, and ts in units of s.

are carried out for various locations (Zm) of the magnetostrictive layers. The vibration suppression time
ts versus the distance Zm of the magnetostrictive layers from the neutral plane for various hm are plotted
in Figure 5. This includes magnetostrictive layers with hm values of 1 mm, 2 mm and 3 mm at various
locations. Figure 5 shows that the curve changes more rapidly for a thinner magnetostrictive layer.
Further, thin magnetostrictive layers kept away from the neutral plane exhibit better attenuation. The
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C(t)rc = 104 C(t)rc = 103

Zm −λ0 ±ωd Wmax ts tn −λ0 ±ωd Wmax ts tn

0.0075 37.086 414.69 2.071 0.079 0.414 3.709 416.33 2.356 0.623 0.303
0.0065 32.119 565.15 1.594 0.081 0.424 3.212 566.06 1.735 0.724 0.383
0.0055 27.154 669.16 1.377 0.096 0.503 2.715 669.70 1.445 0.856 0.453
0.0045 22.188 743.32 1.282 0.104 0.545 2.219 743.65 1.334 1.024 0.542
0.0035 17.228 792.14 1.219 0.137 0.717 1.723 792.33 1.258 1.303 0.689
0.0025 12.279 831.79 1.168 0.191 1.000 1.228 831.88 1.194 1.890 1.000

Table 6. Suppression time ratio for two values of control gain and various locations of
the magnetostrictive layers in the FGM1 shells hm = 5 mm. Zm is expressed in units of
m, Wmax in units of mm, and ts in units of s.

FSDT HSDT
h/a Wmax (mm) ts (s) Wmax (mm) ts (s)

5 0.085 0.0395 0.129 0.0535
10 0.196 0.0294 0.258 0.0501

100 1.226 0.222 1.259 0.244

Table 7. Vibration suppression using FSDT and HSDT.
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Figure 5. Vibration suppression time (ts) for various thicknesses of magnetostrictive
layers (hm).

results presented here agree qualitatively with the results presented in [Pradhan et al. 2001; He et al.
2002; Pradhan 2005].
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Figure 6. Vibration suppression of higher modes at the midpoint of the FGM1 shell
(a) n = 1, (b) n = 3, (c) n = 5, and (d) n = 7.

Effect of vibration modes. The effect of higher modes of vibration on the vibration suppression time is
studied for the FGM1 shell. Transverse deflection versus time for various cases of the FGM shells are
plotted in the next three figures. The parts of Figure 6 show the transient response of modes 1, 3, 5, and
7, respectively. It is observed that attenuation favors the higher modes. This is clearly seen in Figure 7,
where modes 1 and 3 are compared for the FGM1 and FGM2 shells. These figures indicate that mode
3 attenuates at a significantly faster rate compared to mode 1. The results in Figure 6 also show that
the vibration suppression time decreases very rapidly as the vibration mode number increases. These
vibration results for various modes agree qualitatively with the results presented in [Pradhan et al. 2001;
Pradhan 2005].

Effect of intensity of control gain. The values of ts for values of the intensity of control gain C(t) rc

of 1,000 and 10,000 are computed and the results are listed in Table 6. This shows that increase in the
intensity of control gain results in a proportional increase in the vibration suppression time. From the
results listed in Table 6, it is interesting to note that ts is directly proportional to the control gain of the
applied magnetic field.

Effect of material properties of FGM shell. The effect of the material properties of the FGM shell on
the vibration suppression time is studied. Figure 8 displays the vibration suppression for the FGM1 and
FGM2 shells. For this comparison study Zm is assumed to be 9.5 mm. From Figure 8, it is observed that
the FGM1 shell has lower frequency compared with the FGM2 shell. This confirms that the FGM1 shell
has lower flexural rigidity and thus a lower frequency compared with the FGM2 shell. These results
agree qualitatively with the results presented in [Pradhan et al. 2001; Pradhan 2005].



52 SURESH CHANDRA PRADHAN

-0.0015

-0.001

-0.0005

0

0.0005

0.001

0.0015

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

Time(sec)

T
ra

n
sv

er
se

 D
ef

le
ct

io
n

(m
)

n=1

n=3

-0.0015

-0.001

-0.0005

0

0.0005

0.001

0.0015

0 0.1 0.2 0.3 0.4 0.5 0.6

Time(sec)

T
ra

n
sv

er
se

 D
ef

le
ct

io
n

(m
)

n=1

n=3

Figure 7. Comparison of controlled motion at the midpoint of the FGM1 (top) and
FGM2 (bottom) shells for vibration modes n = 1 and n = 3.
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Figure 8. Vibration suppression of the FGM1 and FGM2 shells for Zm = 9.5 mm.

Effect of higher order shear deformation theory. From Table 6, it is observed that when employing
HSDT, tn is dependent on the intensity of the control gain. Under FSDT we observe that tn is independent
of the intensity of the control gain. These results agree qualitatively with the results presented in [Pradhan
et al. 2001; Pradhan 2005]. tn is found to depend on the intensity of the control gain. This reveals that
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Figure 9. Vibration suppression using FSDT and HSDT for a/h ratios of 100 (left) and
10 (right).

HSDT analysis takes into account the effect of the control gain on the vibration response. Results are
obtained for various a/h ratios and listed in Table 7. Here h and a represent the thickness of the shell
and the arc length of the shell boundaries. From Table 7 and Figure 9 one could observe that as the
thickness of the shell decreases the maximum deflection increases for both FSDT and HSDT. Further
maximum deflections predicted by HSDT are larger than those from FSDT. For an a/h ratio of 5 the
maximum deflection predicted by HSDT is 51% larger than that from FSDT, while for an a/h ratio of
100 the maximum deflection predicted by HSDT is only 2% larger than that from FSDT. Further, the ts
predicted by HSDT is larger than the corresponding results of FSDT. This is due to the fact that HSDT
takes into account the shear forces along the thickness of the thick FGM shell. This study suggests that
HSDT should be considered for the analysis of the thick FGM shell.

5. Conclusions

A theoretical formulation for a FGM shell with embedded magnetostrictive layers has been presented.
The analytical solutions for the case of simply-supported boundary conditions has been derived, and
numerical results are presented. The formulation is based on HSDT, and the analytical solution for the
simply-supported shell is based on the Navier solution approach. The effects on the vibration suppression
time of the material properties of the FGM shell, the thicknesses of the magnetostrictive layers, and the
locations of the magnetostrictive layers have been examined in detail. It was found that attenuation effects
were better if the magnetostrictive layers were placed farther away from the neutral plane. Attenuation
effects were also better when the magnetostrictive layers were relatively thinner. The suppression time
ratio was directly proportional to the control gain of the applied magnetic field. Furthermore, the influence
of higher order shear deformation shell theory is significant for thick FGM shells.
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List of symbols

A31,A32,B31,B32,C31,C32 magnetostrictive coefficients
α, β positive real number
α1, α2 surface metrics
ε1, ε2, ε6, γ4, γ5 total strains
ε0

1, ε
0
2, ε

0
6, γ

0
4 , γ

0
5 strains from classical shell theory

ε1
1, ε

1
2, ε

1
6, γ

1
4 , γ

1
5 , ε

2
1, ε

2
2, ε

2
1 strains from HSDT

ξ1, ξ2, ζ orthogonal curvilinear coordinates
λ eigenvalue
λ0 arbitrary constant
φ1, φ2 rotational displacements
ν1, ν2 Poisson’s ratios of material 1 and material 2
νFGM Poisson’s ratio of FGM material 1 and material 2
νm Poisson’s ratio of magnetostrictive material
ρ(K ) density of k-th layer
ρm density of magnetostrictive material
σ1, σ2, σ4, σ5, σ6 stress components
ωd damping frequency
a length of the shell
b breadth of the shell
bc coil width
c(t) control gain
d A1, d A2 elementary areas across the thickness of the shell
ds square of the distance on the middle surface
d S square of the distance
e(k)31 , e(k)32 , e(k)36 magnetostrictive material properties of k-th layer
g1, g2 tangents to ξ1, ξ2

h thickness of the shell
hm thickness of magnetostrictive layer
kc magnetostrictive coil constant
m,m1,m2, n positive integers
nc number of coil turns
nm number of constituent materials in the FGM
q uniformly distributed load in the transverse direction
r position vector on the middle surface
rc coil radius
tn normalized value of ts
ts suppression time ratio
u1, u2, u3 displacements at the middle surface
ū1, ū2, ū3 displacements along ξ1, ξ2, ζ

z thickness coordinate
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[ ]
0 contribution due to classical shell theory
[ ]

M contribution due to magnetostrictive layer
Ai j , Bi j , Di j , Ei j , Fi j , Hi j stiffness coefficients of FGM material
C1,C2 constants which depend on thickness of the shell
E1, E2 Young’s moduli of material 1 and material 2
EFGM Young’s modulus of FGM material
Em Young’s modulus of magnetostrictive material
GFGM shear modulus of FGM material
H magnetic field intensity
I coil current intensity
L1, L2, L3 Lamé coefficients
M M moments due to the magnetostrictive layer
N number of layers assumed for computation
N M forces due to the magnetostrictive layer
PFGM material property of the FGM material

Q(k)
i j stiffness coefficients of k-th layer

R position vector of arbitrary point
R1, R2 principal radii of curvature of the middle surface of the shell
Rn positive real number
Si j ,Ci j ,Mi j coefficients of stiffness, damping and mass matrices
Si j coefficients of solution matrix
Vc volume fraction of ceramic material
V f i volume fraction of the constituents of FGM material
Vm volume fraction of metal material
Wmax maximum amplitude in transverse direction
Zm transverse location of magnetostrictive layer in the FGM shell
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