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FUNDAMENTAL SOLUTION IN THE THEORY OF VISCOELASTIC MIXTURES

SIMONA DE CICCO AND MERAB SVANADZE

In the first part of the paper, we derive a linear theory of thermoviscoelastic binary mixtures. Then, the
fundamental solution of the system of linear coupled partial differential equations of steady oscillations
(steady vibrations) of the theory of viscoelastic binary mixtures is constructed in terms of elementary
functions, and basic properties are established.

1. Introduction

The theory of mixtures was introduced to describe the mechanics of materials in which two or more
constituents coexist. The crucial factor that differentiates this theory from other classical approaches is
the matter of scale. The theory of mixtures is intended to study the behavior of a material at the small scale
of its inhomogeneities and the states of its individual constituents. The great abstraction that a material
can be modeled as a single homogeneous continuum is avoided. In contrast with approaches that use
averaging producers, the theory of mixtures permits to define the motion, mass density, stress tensor,
internal energy, temperature, entropy and other relevant physical quantities, for every single constituent
of the continuum. In the case of the diffusion of a fluid through a porous solid or of one solid through
another, this information is critical. The theory of mixtures overcomes the inadequacy of classical the-
ories which cannot predict the stresses in the solid in a diffusion process. Moreover, the theory allows
for the possibility of studying another two distinct physical phenomena: chemical reactions and multiple
temperatures. These issues are important in the mechanics of geological and biological materials. For
the history of the problem and the analysis of the results we refer to [Bowen 1976; Atkin and Craine
1976b; 1976a; Bedford and Drumheller 1983; Samohyl 1987; Rajagopal and Tao 1995]. Starting from
the origin of the modern formulation of the theory a variety of mathematical models have been developed
in order to study mixtures exhibiting complex mechanical behaviors.

In the last three decades there has been interest in the formulation of thermomechanical theories of
viscoelastic mixtures. There exist various continuum theories of viscoelastic composites [Marinov 1978;
McCarthy and Tiersten 1983; Hills and Roberts 1987; 1988; Aboudi 2000; Iesan and Quintanilla 2002].
A nonlinear theory of heat-conducting viscoelastic mixtures in a Lagrangian description was presented
by Iesan [2004]. In this theory the mixture consists of two constituents: a porous elastic solid and a
viscous fluid. A linear variant of this theory was developed by Quintanilla [2005], and the existence and
exponential decay of solutions are proved.

Iesan and Nappa [2008] introduced a nonlinear theory of heat-conducting mixtures where the individ-
ual components are modelled as Kelvin–Voigt viscoelastic materials. The basic equations are obtained
using a Lagrangian description (in contrast with mixtures of fluids), which naturally yields an Eulerian
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description. We remark that material and spatial descriptions lead to different theories with different
meaning of displacement vector field. Moreover the latter does not allow us to consider boundary condi-
tions in the reference configuration.

For investigating boundary value problems of the theory of elasticity and thermoelasticity with the
potential method (boundary integral method) it is necessary to construct fundamental solutions of systems
of partial differential equations and establish their basic properties [Kupradze 1965; Kupradze et al.
1979].

Several methods are known for constructing fundamental solutions of differential equations of the
classical theory of elasticity and thermoelasticity [Gurtin 1972, Chapter 9; Hetnarski and Ignaczak 2004,
Chapter 7; Kupradze et al. 1979, Chapter 2]. The fundamental solutions of equations of the linear theory
of binary mixtures for elastic solids have been constructed by Svanadze [1988; 1990]. Useful information
on fundamental solutions of differential equations is contained in [Hörmander 1983, Chapters 10 and 12;
Lopatinsky 1951].

In the first part of this paper (Sections 2 and 3), we derive a linear theory of thermoviscoelastic
mixtures, assuming that the constituents have a common temperature and that the mixture is subjected to
a thermodynamical process that satisfies the Clausius–Duhem inequality. The intended applications of
the theory are to viscoelastic composite materials, to viscoelastic mixtures of two compatible polymers,
or to cortical bone. For a review of the literature on viscoelastic properties of cortical bone the reader is
referred to [Lakes 2001]. As in [Iesan and Nappa 2008], with the aim to specify the boundary conditions
in the reference configuration, a Lagrangian description is adopted. The constitutive equations are derived
independently from nonlinear theory. In contrast with the theory of mixtures of fluids we find that the
diffusive force depends on both relative displacement and relative velocity. This constitutive relation
generalizes Darcy’s law and is frame-independent. We recall that, as observed by Wilmanski [2003],
Darcy’s law is frame-dependent.

In the second part of this paper (Sections 4 and 5), the fundamental solution of the system of linear
coupled partial differential equations of steady vibrations of the theory of viscoelastic binary mixtures is
constructed in terms of elementary functions, and basic properties are established.

2. Basic equations

The mixtures under consideration consist of two interacting continua s1 and s2. We assume that at time
t0 the body occupies the region B of Euclidean three-dimensional space E3 and is bounded by piecewise
smooth surface ∂B. In describing the motion of the body, we refer to the configuration at time t0 and
to a fixed system of rectangular Cartesian axes. We use vector and Cartesian tensor notation with Latin
indices having the values 1, 2, 3. Greek indices are understood to range over the integers 1, 2 and a
summation convention is not used for these indices. Bold letters denote vectors and tensors.

In the following X and Y are the positions of typical particles of s1 and s2 in the reference positions.
Following Bedford and Stern [1972], we assume that X = Y , so that the particles occupy the same
position in the reference configuration. The motion of the mixture is given by

x = x(X, t), y = y(X, t), (X, t) ∈ B× I, (2-1)

where I = [t0,∞).
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We consider arbitrary material regions Pα of each constituent which coincide at time t0 with a region
P . We postulate an energy balance in the form [Green and Naghdi 1965; 1969; 1972]

d
dt

2∑
α=1

∫
P
ρα(e+ 1

2v
(α)
· v(α)) dv =

2∑
α=1

(∫
P
ρα( f (α) · v(α)+ r) dv−

∫
∂P
( t̃(α) · v(α)+ q(α)) da

)
, (2-2)

where e is the internal energy of the mixture per unit mass, v(α) is the velocity vector field associated
with the constituent sα , f (α) is the body force per unit mass acting on the constituent sα , t̃(α) is the partial
stress vector, r is the external volume supply per unit mass per unit time, q(α) is the heat flux per unit
area per unit time associated with the constituent sα, and ρα is the mass density of the constituent sα.

Let u(α) be the displacement vector field associated with the constituent sα. In the linear theory we
assume that u(α) = εu′(α), with ε being a constant small enough for squares and higher powers to be
neglected, and with u′(α) independent of ε. The functions (2-1) can be expressed in the form

x = X + u(1), y = X + u(2). (2-3)

By (2-2) and (2-3) we get

2∑
α=1

∫
P
(ρα ė+ ρα u̇(α) · ü(α)) dv =

2∑
α=1

(∫
P
(ρα f (α) · u̇(α)+ ρr) dv−

∫
∂P
( t̃(α) · u̇(α)+ q(α)) da

)
. (2-4)

Following Green and Naghdi [1965], (2-4) is also true when u̇(α) is replaced by u(α)+ c, with c an
arbitrary constant vector, so that by subtraction we have

2∑
α=1

(∫
P
ρα(ü(α)− f (α))dv−

∫
∂P

t̃(α)da
)
= 0. (2-5)

From (2-5) we obtain

t̃(1)+ t̃(2) = (t(1)+ t(2))T n, (2-6)

where t(α)T is the transpose of the stress tensor t(α) associated with the constituent sα, and n is the unit
outward normal vector to the surface ∂P . It follows from (2-5) and (2-6) that

2∑
α=1

(div t(α)
T
+ ρα f (α)− ρα ü(α))= 0. (2-7)

On taking into account (2-6) and (2-7), (2-4) can be written in the form∫
P

(
ρė+ 1

2(ρ1ü(1)− ρ2ü(2)) · (u̇(1)− u̇(2))− 1
2(ρ1 f (1)− ρ2 f (2)) · (u̇(1)− u̇(2))

−
1
2(t

(1)
+ t(2))T · (Ḣ (1)

+ Ḣ (2)
)− ρr

)
dv =

∫
∂P

( 1
2( t̃

(1)
− t̃(2)) · (u̇(1)− u̇(2))+ q

)
da, (2-8)

where
H (α)
=∇u(α), q = q(1)+ q(2), ρ = ρ1+ ρ2.
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With an argument similar to that used in obtaining (2-6) from (2-5), we obtain

1
2

(
t̃(1)− t̃(2)− (t(1)− t(2))T n

)
· (u̇(1)− u̇(2))+ q − q · n= 0, (2-9)

where q is the heat flux vector. We introduce the notation

p= 1
2

(
div(t(1)− t(2))T + ρ1 f (1)− ρ2 f (2)− (ρ1ü(1)− ρ2ü(2))

)
. (2-10)

Introducing (2-9) and (2-10) into Equation (2-8) and applying the resulting equation to an arbitrary region
P , we obtain

ρė = t(1)
T
· Ḣ (1)

+ t(2)
T
· Ḣ (2)

+ p · ḋ+ ρr + div q, (2-11)

where

d = u(1)− u(2). (2-12)

From (2-10) and (2-11) we get the motion equations of the mixture:

div t(1)
T
− p+ ρ1 f (1) = ρ1ü(1), div t(2)

T
+ p+ ρ2 f (2) = ρ2ü(2). (2-13)

As in [Green and Naghdi 1965], we now consider motions of the mixture which are such that the velocities
differ from those of the given motion only by a superposed uniform rigid body angular velocity, the
continua occupying the same position at time t . In this case Ḣ (1) and Ḣ (2) are replaced by Ḣ (1)

+�

and Ḣ (2)
+�, respectively, and ḋ is replaced by ḋ+�d, where � is an arbitrary skew symmetric tensor.

Equation (2-13) implies that

t(1)+ t(2) = (t(1)+ t(2))T . (2-14)

Now we assume that the constituents have a common temperature and adopt the following entropy pro-
duction inequality [Green and Naghdi 1965; 1972]:

d
dt

∫
P
ρη dv−

∫
P

1
θ
ρr dv−

∫
∂P

1
θ

q da ≥ 0, (2-15)

where η is the entropy per unit mass of the mixture, and θ(> 0) is the absolute temperature. If we get
q = q · n the inequality (2-15) reduces to

ρθη̇− ρr − div q+
1
θ

q ·2≥ 0, (2-16)

where 2=∇θ . Introducing the Helmotz free energy ψ = e− ηθ , the energy Equation (2-11) takes the
form

ρ(ψ̇ + θ̇η+ θη̇)= t(1)
T
· Ḣ (1)

+ t(2)
T
· Ḣ (2)

+ p · ḋ+ ρr + div q. (2-17)

Taking (2-17) into account, the inequality (2-16) becomes

t(1)
T
· Ḣ (1)

+ t(2)
T
· Ḣ (2)

+ p · ḋ− σ̇ − ρηθ̇ +
1
θ

q ·2≥ 0, (2-18)

where σ = ρψ .



FUNDAMENTAL SOLUTION IN THE THEORY OF VISCOELASTIC MIXTURES 143

3. Constitutive equations

In what follows we assume that the constituents sα are viscoelastic materials of Kelvin–Voigt type. We
consider materials characterized by the following set of independent constitutive variables

S = (H (1), H (2), d, Ḣ (1)
, Ḣ (2)

, ḋ, θ,2; X).

The constitutive equations take the form

σ = σ(S), t(α) = t(α)(S), p= p(S), η = η(S), q = q(S), (3-1)

where the response functionals are assumed to be sufficiently smooth. We assume that there are not
internal constraints. In order to satisfy the axiom of material-frame indifference, the functionals (3-1)
must be expressible in the form

σ = σ̃ (S0), t(α) = t̃(α)(S0), p= p̃(S0), η = η̃(S0), q = q̃(S0), (3-2)

where
S0
= (E, G, d, Ė, Ġ, ḋ, θ,2; X), (3-3)

and

E =
1
2
(H (1)

+ H (1)T ), G = H (1)T
+ H (2). (3-4)

In view of (3-2), (3-3), and (3-4), the inequality (2-18) implies that σ is independent by Ė, Ġ, ḋ and 2,
that is

σ =U (E, G, d, θ; X). (3-5)

Moreover we have

ρη =−
∂U
∂θ
. (3-6)

Using (3-5) and (3-6) the inequality (2-18) reduces to(
t(1)

T
−
∂U
∂E
−

(∂U
∂G

)T
)
· Ḣ (1)

+

(
t(2)

T
−
∂U
∂G

)
· Ḣ (2)

+

(
p−

∂U
∂d

)
· ḋ+

1
θ

q ·2≥ 0. (3-7)

We introduce the notations

τ (1) = t(1)−
∂U
∂E
−
∂U
∂G

, τ (2) = t(2)− (
∂U
∂G

)T , π = p−
∂U
∂d
. (3-8)

The functions τ (α) and π are the dissipative parts of t(α) and p. The inequality (3-7) may be written in
the form

τ (1)
T
· Ḣ (1)

+ τ (2)
T
· Ḣ (2)

+π · ḋ+
1
θ

q ·2≥ 0. (3-9)

Let us introduce the functions 0 and 3 by

τ (1) = 0(S0)+3(S0), τ (2) =3T (S0). (3-10)

From (2-14) we deduce that

τ (1)+ τ (2) = (τ (1)+ τ (2))T , 0 = 0T . (3-11)
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In view of (3-10) and (3-11) the dissipation inequality (3-9) becomes

0 · Ė+3 · Ġ+π · ḋ+
1
θ

q ·2≥ 0. (3-12)

The inequality (3-12) implies that

0(S∗)= 0, 3(S∗)= 0, π(S∗)= 0, q(S∗)= 0, (3-13)

where
S∗ = (E, G, d, 0, 0, 0, θ, 0; X).

With the help of (3-6), (3-8), and (3-10), the energy balance reduces to

ρθη̇ = 0 · Ė+3 · Ġ+π · ḋ+ ρr + div q. (3-14)

Let us denote
θ = T + T0, T = εT

′

, εn ∼= 0 for n ≥ 2, (3-15)

where T0 is the constant absolute temperature of the body in the reference configuration and T
′

is inde-
pendent of ε. In what follows we consider the case of centrosymmetric materials. We assume that U has
the form

U = 1
2 E · AE+ E · BG+ 1

2 G ·C G+ 1
2 d · a d− (β(1) · E+β(2) · G)T − 1

2a0T 2, (3-16)

where A, B and C are fourth order tensors, a, β(1) and β(2) are second order tensors, and a0 is a constant.
The constitutive coefficients have the symmetries

Ai jrs = A j irs = Arsi j , Bi jrs = B j irs, Ci jrs = Crsi j , ai j = a j i , β
(1)
i j = β

(1)
j i . (3-17)

Letting be M a fourth order tensor, the transpose of M is the unique tensor MT with the property

M p · q = p ·MT q,

where p and q are second order tensors. Consequently by (3-17) we have A= AT and C = CT . From
(3-6), (3-8) and (3-16) we obtain

t(1) = (A+ BT )E+ (B+C)G− (β(1)+β(2))T + τ (1),

t(2)
T
= BT E+C G−β(2)T + τ (2)

T
,

p= ad+π , ρη = β(1) · E+β(2) · G+ a0T . (3-18)

The relations (3-13) leads to

0 = A∗ Ė+C∗Ġ, 3= B∗ Ė+ D∗Ġ, π = a∗ ḋ+ b∗∇T, q = k∇T + f ḋ, (3-19)

where A∗, B∗, C∗, and D∗ are fourth order tensors and a∗, b∗, k, and f are second order tensors. Using
(3-19) the relations (3-10) can be put in the form

τ (1) = (A∗+ B∗)Ė+ (C∗+ D∗)Ġ, τ (2)
T
= B∗ Ė+ D∗Ġ. (3-20)
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Taking into account (3-15) the energy Equation (3-14) reduces to

ρT0η̇ = ρr + div q. (3-21)

The basic equations of linear viscoelastic mixtures are: the equations of motion (2-13), the equation
of energy (3-21), the constitutive equations (3-18) and (3-20), and the geometric equations (2-12) and
(3-4). We remark that the relation (3-18)3 generalizes Darcy’s law. This relation has been obtained from
constitutive assumptions and is frame-independent. In the case of isotropy, the constitutive equations
(3-18) and (3-20) take the form

t(1) = 2(µ+ ζ )E+ (λ+ ν)(tr E)I + (2κ + ζ )G+ (2γ + ζ )GT

+ (α+ ν)(tr G)I − (β(1)+β(2))T I + 2(µ∗+ ζ ∗1 )Ė

+ (λ∗+ ν∗1 )(tr Ė)I + (2κ∗+ ζ ∗)Ġ+ (2γ ∗+ ζ ∗)ĠT
+ (α∗+ ν∗)(tr Ġ)I,

t(2) = 2ζ E+ ν(tr E)I + 2κGT
+ 2γG+α(tr G)I −β(2)T I

+2ζ ∗1 Ė+ ν∗1 (tr Ė)I + 2γ ∗Ġ+ 2κ∗ĠT
+α∗(tr Ġ)I,

p= ad+ a∗ ḋ+ b∗∇T, ρη = β(1)tr E+β(2)tr G+ a0T, q = k∇T + f ḋ, (3-22)

where λ, µ, γ, . . . , f are constitutive coefficients, I = (δ jl)3×3 is the unit matrix, δl j is the Kronecker
delta, u(1) = (u(1)1 , u(1)2 , u(1)3 ), u(2) = (u(2)1 , u(2)2 , u(2)3 ).

We introduce the notations

α1 = µ+ 2κ + 2ζ, α2 = λ+µ+α+ 2ν+ 2γ + 2ζ,

α3 = 2γ + ζ, α4 = α+ ν+ 2κ + ζ,

α5 = 2κ, α6 = α+ 2γ,

α∗1 = µ
∗
+ 2κ∗+ ζ ∗+ ζ ∗1 , α∗2 = λ

∗
+µ∗+α∗+ ν∗+ ν∗1 + 2γ ∗+ ζ ∗+ ζ ∗1 ,

α∗3 = 2γ ∗+ ζ ∗, α∗4 = α
∗
+ ν∗+ 2κ∗+ ζ ∗,

α∗5 = 2γ ∗+ ζ ∗1 , α∗6 = α
∗
+ ν∗1 + 2κ∗+ ζ ∗1 ,

α∗7 = 2κ∗, α∗8 = α
∗
+ 2γ ∗,

β1 = β
(1)
+β(2)+ b∗, β2 = β

(2)
− b∗,

β3 = T0(β
(1)
+β(2)), β4 = T0 β

(2).

(3-23)

From (2-12), (2-13), (3-4), and (3-21)–(3-23) we have

α11u(1)+α2∇ div u(1)+α31u(2)+α4∇ div u(2)− a(u(1)− u(2))
+α∗11u̇(1)+α∗2∇ div u̇(1)+α∗31u̇(2)+α∗4∇ div u̇(2)−a∗(u̇(1)− u̇(2))−β1∇T +ρ1 f (1)= ρ1ü(1),

α31u(1)+α4∇ div u(1)+α51u(2)+α6∇ div u(2)+ a(u(1)− u(2))
+α∗51u̇(1)+ α∗6∇ div u̇(1)+α∗71u̇(2)+α∗8∇ div u̇(2)+a∗(u̇(1)− u̇(2))−β2∇T+ρ2 f (2)=ρ2ü(2),

k1T − a0T0 Ṫ − div(β3u̇(1)+β4u̇(2))+ f div(u̇(1)− u̇(2))+ ρr = 0. (3-24)
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The system (3-24) can be written as

â11u(1)+ â2∇ div u(1)+ â31u(2)+ â4∇ div u(2)− ξ̂ (u(1)−u(2))+β1∇T +ρ1 f (1) = ρ1ü(1),

â51u(1)+ â6∇ div u(1)+ â71u(2)+ â8∇ div u(2)+ ξ̂ (u(1)−u(2))+β2∇T +ρ2 f (2) = ρ2ü(2),

k1T −a0T0 Ṫ −(T0β1−T0 b∗− f ) div u̇(1)−(T0β2+T0 b∗+ f ) div u̇(2)+ρr = 0,

(3-25)

where

â j = α j +α
∗

j
∂

∂t
, âl = αl−2+α

∗

l
∂

∂t
, ξ̂ = a+ a∗

∂

∂t
, j = 1, 2, 3, 4, l = 5, 6, 7, 8.

In the isothermal case from (3-25) we obtain the following system of equations of motion in the linear
theory of viscoelastic mixtures:

â11u(1)+ â2∇ div u(1)+ â31u(2)+ â4∇ div u(2)− ξ̂ (u(1)− u(2))+ ρ1 f (1) = ρ1ü(1),

â51u(1)+ â6∇ div u(1)+ â71u(2)+ â8∇ div u(2)+ ξ̂ (u(1)− u(2))+ ρ2 f (2) = ρ2ü(2).
(3-26)

If the body forces f (1) and f (2) are assumed to be absent, and the partial displacement vectors u(1)

and u(1) are postulated to have a harmonic time variation, that is,

u( j)(x, t)= Re [w( j)(x)e−iωt
], j = 1, 2,

then from system of equations of motion (3-26) we obtain the following system of equations of steady
vibration in the linear theory of viscoelastic mixtures:

a11w
(1)
+ a2∇ divw(1)+ a31w

(2)
+ a4∇ divw(2)+ ξ1w

(1)
+ ξw(2) = 0,

a51w
(1)
+ a6∇ divw(1)+ a71w

(2)
+ a8∇ divw(2)+ ξw(1)+ ξ2w

(2)
= 0,

(3-27)

where ω is the oscillation frequency (ω > 0), and

a j = α j − iωα∗j , al = αl−2− iωα∗l , j = 1, 2, 3, 4, l = 5, 6, 7, 8,

ξ = a− iωa∗, ξs = ρsω
2
− ξ, s = 1, 2.

In the second part of this paper (Sections 4 and 5) the fundamental solution of the system (3-27) is
constructed in terms of elementary functions, and basic properties are established.

4. Fundamental solution of the system of equations of steady vibration

We introduce the matrix differential operator

R(Dx)= (Rmn(Dx))6×6,

where

Rl j (Dx)= (a11+ ξ1)δl j + a2
∂2

∂xl∂x j
, Rl; j+3(Dx) = (a31+ ξ)δl j + a4

∂2

∂xl∂x j
,

Rl+3; j (Dx)= (a51+ ξ)δl j + a6
∂2

∂xl∂x j
, Rl+3; j+3(Dx)= (a71+ ξ2)δl j + a8

∂2

∂xl∂x j
,
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x = (x1, x2, x3), Dx =
( ∂

∂x1
,
∂

∂x2
,
∂

∂x3

)
, ξs = ρsω

2
− ξ, s = 1, 2, l, j = 1, 2, 3.

The system (3-27) can be written as
R(Dx)W(x)= 0,

where W = (w(1),w(2)) is a six-component vector function on E3.
We assume that the constitutive coefficients satisfy the condition

(a1a7− a3a5)[(a1+ a2)(a7+ a8)− (a3+ a4)(a5+ a6)] 6= 0. (4-1)

Definition. The fundamental solution of the system (3-27) (the fundamental matrix of operator R(Dx))
is the matrix 9(x) = (9l j (x))6×6 satisfying the condition [Hörmander 1983, Chapter 10; Lopatinsky
1951]

R(Dx)9(x)= δ(x)J, (4-2)

where δ is the Dirac delta, J = (δl j )6×6 is the unit matrix, and x ∈ E3.

We consider the system of equations

a11w
(1)
+ a2∇ divw(1)+ a51w

(2)
+ a6∇ divw(2)+ ξ1w

(1)
+ ξw(2) = F′,

a31w
(1)
+ a4∇ divw(1)+ a71w

(2)
+ a8∇ divw(2)+ ξw(1)+ ξ2w

(2)
= F′′,

(4-3)

where F′ and F′′ are three-component vector functions on E3.
As one may easily verify, the system (4-3) can be written in the form

RT (Dx)W(x)= F(x), (4-4)

where RT is the transpose of matrix R, F = (F′, F′′), and x ∈ E3.
Applying the operator div to (4-3)1 and (4-3)2 we have

[(a1+ a2)1+ ξ1] div w(1)+ [(a5+ a6)1+ ξ ] div w(2) = div F′,

[(a3+ a4)1+ ξ ] div w(1)+ [(a7+ a8)1+ ξ2] div w(2) = div F′′.
(4-5)

The system (4-5) may be written in matrix form:

Q(1)V = f , (4-6)

where V = (div w(1), div w(2)), f = ( f1, f2)= (div F′, div F′′), and

Q(1)= (Ql j (1))2×2 =

(
(a1+ a2)1+ ξ1 (a5+ a6)1+ ξ

(a3+ a4)1+ ξ (a7+ a8)1+ ξ2

)
3×3

.

System (4-6) implies
31(1)V =8, (4-7)
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where

8= (81,82), 8 j =
1
d1

2∑
l=1

Q′l j fl, 31(1)=
1
d1

det Q(1),

d1 = (a1+ a2)(a7+ a8)− (a3+ a4)(a5+ a6), j = 1, 2, (4-8)

and Q′l j is the cofactor of the element Ql j of the matrix Q,

Q∗11 = (a7+ a8)1+ ξ2, Q∗12 =−((a3+ a4)1+ ξ),

Q∗21 =−((a5+ a6)1+ ξ), Q∗22 = (a1+ a2)1+ ξ1.

It is easily seen that
31(1)= (1+ k2

1)(1+ k2
2),

where k2
1 and k2

2 are the roots of the equation 31(−χ)= 0 (with respect to χ ).
Applying the operator 31(1) to (4-3)1 and (4-3)2, and taking (4-7) into account, we obtain

31(1)((a11+ ξ1)w
(1)
+ (a51+ ξ)w

(2))= F1,

31(1)((a31+ ξ)w
(1)
+ (a71+ ξ2)w

(2))= F2,
(4-9)

where
F1 =31(1)F′−∇ (a281+ a682), F2 =31(1)F′′−∇ (a481+ a882). (4-10)

From system (4-9) we have

31(1)32(1)w
(1)
= H1, 31(1)32(1)w

(2)
= H2, (4-11)

where

32(1)=
1
d2

det Z(1), d2 = a1a7− a3a5, Z(1)=
(

a11+ ξ1 a51+ ξ

a31+ ξ a71+ ξ2

)
2×2

,

and
H j =

1
d2

2∑
l=1

Z ′l j (1)Fl, j = 1, 2. (4-12)

Z ′l j is the cofactor of the element Zl j of the matrix Z.

Z ′11 = a71+ ξ2, Z ′12 =−a31− ξ,

Z ′21 =−a51− ξ, Z ′22 = a11+ ξ1.

Obviously, 32(1)= (1+ k2
4)(1+ k2

5), where k2
4 and k2

5 are the roots of the equation 32(−χ)= 0
(with respect to χ ).

On the basis of (4-11) we get
3̃(1)W(x)= H(x), (4-13)

where H = (H1, H2) and 3̃(1) is the diagonal matrix

3̃(1)= (3̃l j (1))6×6, 3̃11(1)= 3̃22(1)= · · · = 3̃66(1)=31(1)32(1),

3̃mn(1)= 0, m, n = 1, 2, . . . , 6, m 6= n.
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In what follows we use the notations

ml1(1)=
1
d1

(
a2 Q′l1(1)+ a6 Q′l2(1)

)
, ml2(1)=

1
d1

(
a4 Q′l1(1)+ a8 Q′l2(1)

)
,

nl j (1)=−
1
d2

2∑
p=1

mlp Z ′pj , l, j = 1, 2. (4-14)

In view of (4-8), (4-10), and (4-14), from (4-12) we have

H j =

( 1
d2

Z ′1 j (1)31(1)I + n1 j (1)∇div
)

F′+
( 1

d2
Z ′2 j (1)31(1)I + n2 j (1)∇ div

)
F′′, j = 1, 2,

(4-15)
where I = (δl j )3×3 is the unit matrix.

Thus, from (4-15) we obtain
H(x)= LT (Dx)F(x), (4-16)

where

L = (L l j )6×6 =

(
L(1) L(2)

L(3) L(4)

)
6×6

, L(m) = (L(m)l j )3×3,

L(q)(Dx)=
1
d2

Z ′1q(1)31(1)I + n1q(1)∇ div,

L(q+2)(Dx)=
1
d2

Z ′2q(1)31(1)I + n2q(1)∇ div,

q = 1, 2, m = 1, 2, 3, 4. (4-17)

By virtue of (4-4) and (4-16), from (4-13) it follows that 3̃W = LT RT W . It is obvious that LT RT
= 3̃

and, hence,
R(Dx)L(Dx)= 3̃(1). (4-18)

We assume that k2
l 6= k2

j 6= 0, that l, j = 1, 2, 3, 4, and that l 6= j .
Let

Y(x)= (Ymn(x))6×6, Y11(x)= Y22(x)= · · · = Y66(x)=
4∑

j=1

η j h j (x), Ymn(x)= 0,

m, n = 1, 2, . . . , 6, m 6= n, (4-19)

where

h j (x)=−
1

4π |x|
eik j |x|, η j =

4∏
l 6= j, l=1

(k2
l − k2

j )
−1, j = 1, 2, 3, 4. (4-20)

Lemma 4.1. The matrix Y is the fundamental matrix of operator 3̃(1), that is

3̃(1)Y(x)= δ(x)J . (4-21)

Proof. It is sufficient to show that

31(1)32(1)Y11(x)= δ(x).
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Taking into account the equalities

4∑
j=1

η j = 0,
4∑

j=2

η j (k2
1 − k2

j )= 0,
4∑

j=3

η j (k2
1 − k2

j )(k
2
2 − k2

j )= 0,

η4(k2
1 − k2

4)(k
2
2 − k2

4)(k
2
3 − k2

4)= 1,

(1+ k2
l )h j (x)= δ(x)+ (k2

l − k2
j )h j (x), l, j = 1, 2, 3, 4, x ∈ E3,

from (4-19) we have

31(1)32(1)Y11(x)= (1+ k2
2)32(1)

4∑
j=1
η j
(
δ(x)+ (k2

1 − k2
j )h j (x)

)
=32(1)

4∑
j=2
η j (k2

1 − k2
j )
(
δ(x)+ (k2

2 − k2
j )h j (x)

)
= (1+ k2

4)
4∑

j=3
η j (k2

1 − k2
j )(k

2
2 − k2

j )
(
δ(x)+ (k2

3 − k2
j )h j (x)

)
= (1+ k2

4)h4(x)= δ(x). �

We introduce the matrix

9(x)= L(Dx)Y(x). (4-22)

Using identity (4-18) from (4-21) and (4-22) we obtain

R(Dx)9(x)= R(Dx)L(Dx)Y(x)= 3̃(1)Y(x)= δ(x)J .

Hence, 9(x) is a solution to (4-2). We have thereby proved:

Theorem 4.2. The matrix 9(x) defined by (4-22) is the fundamental solution of system (3-27).

Obviously, the matrix 9(x) can be written in the form

9 = (9mn)6×6 =

(
9(1) 9(2)

9(3) 9(4)

)
6×6

,

where

9( j)(x)= L( j)(Dx)Y11(x), j = 1, 2, 3, 4. (4-23)

5. Basic properties of the matrix 9(x)

Theorem 4.2 leads to the following results.

Corollary 5.1. Each column of the matrix 9(x) is the solution of system (3-27) at every point x ∈ E3

except the origin.
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Corollary 5.2. The fundamental solution of the system

a11w
(1)
+ a2∇ divw(1)+ a31w

(2)
+ a4∇ divw(2) = 0,

a51w
(1)
+ a6∇ divw(1)+ a71w

(2)
+ a8∇ divw(2) = 0,

(5-1)

is the matrix

9̃ = (9̃mn)6×6 =

(
9̃(1) 9̃(2)

9̃(3) 9̃(4)

)
6×6
,

where

9̃
(p)
= (9̃

(p)
l j )3×3,

9̃
(1)
l j =

(
a7+ a8

d1

∂2

∂xl∂x j
−

a7

d2

( ∂2

∂xl∂x j
−1δl j

))
h0(x),

9̃
(2)
l j =

(
−

a3+ a4

d1

∂2

∂xl∂x j
+

a3

d2

( ∂2

∂xl∂x j
−1δl j

))
h0(x),

9̃
(3)
l j =

(
−

a5+ a6

d1

∂2

∂xl∂x j
+

a5

d2

( ∂2

∂xl∂x j
−1δl j

))
h0(x),

9̃
(4)
l j =

(
a1+ a2

d1

∂2

∂xl∂x j
−

a1

d2

( ∂2

∂xl∂x j
−1δl j

))
h0(x),

h0(x)=−
|x|
8π
, l, j = 1, 2, 3, p = 1, 2, 3, 4. (5-2)

Obviously, the relations

9̃mn(x)= O(|x|−1), (5-3)

and
∂q

∂xq1
1 ∂xq2

2 ∂xq3
3
9̃mn(x)= O(|x|−1−q),

hold in a neighborhood of the origin, where m, n = 1, 2, . . . , 6, q = q1+ q2+ q3, q ≥ 1.
In what follows we shall use the following lemma.

Lemma 5.3. If condition (4-1) is satisfied, then

1nl j (1)=
1
d1

Q′l j (1)32(1)−
1
d2

Z ′l j (1)31(1), l, j = 1, 2. (5-4)

Proof. In view of (4-14), we have

d1d21 nl j (1)=−1
(
Z ′1 j (1)(a2 Q′l1(1)+ a6 Q′l2(1))+ Z ′2 j (1)(a4 Q′l1(1)+ a8 Q′l2(1))

)
. (5-5)
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Taking into account the equalities

a21Q′l1+ a61Q′l2 = δ1l d131(1)− ((a11+ ξ1)Q′l1+ (a51+ ξ)Q′l2),

a41Q′l1+ a81Q′l2 = δ2l d131(1)− ((a31+ ξbot)Q′l1+ (a71+ ξ2)Q′l2),

(a11+ ξ1)Z ′1 j + (a31+ ξ)Z ′2 j = d2 δ1 j 32(1),

(a51+ ξ)Z ′1 j + (a71+ ξ2)Z ′2 j = d2 δ2 j 32(1),

from (5-5) we obtain

d1d21nl j (1)=

−d1(δ1l Z ′1 j+δ2l Z ′2 j )31(1)+
(
(a11+ξ1)Z ′1 j+(a31+ξ)Z ′2 j

)
Q′l1+

(
(a51+ξ)Z ′1 j+(a71+ξ2)Z ′2 j

)
Q′l2

=−d1 Z ′l j31(1)+ d2(δ1 j Q′l1+ δ2 j Q′l2)32(1)= d2 Q′l j32(1)− d1 Z ′l j31(1). �

In what follows we use the notations

dpj =η1 j Q′1p(−k2
j ), dp+2; j =η1 j Q′2p(−k2

j ), dpl=η1l Z ′1p(−k2
l ), dp+2;l=η1l Z ′2p(−k2

l ),

η1 j =
(−1) j

d1 k2
j (k

2
2 − k2

1)
, η1l =

(−1)l

d1 k2
l (k

2
4 − k2

3)
, p, j = 1, 2, l = 3, 4. (5-6)

Theorem 5.4. If x ∈ E3
\ {0}, then

9(p)
mq (x)=

∂2

∂xm∂xq

2∑
j=1

dpj h j (x)−
( ∂2

∂xm∂xq
−1δmq

) 4∑
l=3

dpl hl(x), (5-7)

m, q = 1, 2, 3, p = 1, 2, 3, 4.

Proof. On the basis of (4-17), (4-19), (5-4) and equality

h j (x)=−
1
k2

j
1h j (x), x ∈ E3

\ {0}, j = 1, 2, 3, 4,

from (4-23) we obtain

9(1)
mq(x)=

( 1
d2

Z ′11(1)31(1)δmq + n11(1)
∂2

∂xm∂xq

)
Y11(x)

=−

4∑
j=1

η j

k2
j

( 1
d2

Z ′11(1)31(1)+1n11(1)
) ∂2

∂xm∂xq
h j (x)

+

4∑
j=1

η j

d2 k2
j

Z ′11(1)31(1)
( ∂2

∂xm∂xq
−1δmq

)
h j (x)

=−
∂2

∂xm∂xq

4∑
j=1

η j

d1 k2
j

Q′11(−k2
j )32(−k2

j ) h j (x)

+

( ∂2

∂xm∂xq
−1δmq

) 4∑
j=1

η j

d2 k2
j

Z ′11(−k2
j )31(−k2

j ) h j (x). (5-8)
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Using the identities (5-6) and the relations

η j31(−k2
j )=

{ 0, j = 1, 2,
(−1) j

k2
3−k2

4
, j = 3, 4, η j 32(−k2

j )=

{ (−1) j

k2
1−k2

2
, j = 1, 2,

0, j = 3, 4,

from (5-8) we have

9(1)
mq(x)=

∂2

∂xm∂xq

2∑
j=1

η1 j Q′11(−k2
j ) h j (x)−

( ∂2

∂xm∂xq
−1δmq

) 4∑
l=3

η1l Z ′11(−k2
l ) hl(x)

=
∂2

∂xm∂xq

2∑
j=1

d1 j h j (x)−
( ∂2

∂xm∂xq
−1δmq

) 4∑
l=3

d1l hl(x).

The other formulae of (5-7) can be proven quite similarly. �

Theorem 5.4 leads to the following result.

Corollary 5.5. If x ∈ E3
\{0}, then each element 9mn of the matrix 9(x) has the form

9mn(x)=
4∑

j=1

9mnj (x),

where 9mnj satisfies the condition

(1+ k2
j )9mnj (x)= 0, m, n = 1, 2, . . . , 6, j = 1, 2, 3, 4.

Theorem 5.6. The relations

9mn(x)− 9̃mn(x)= const+ O(|x|),
∂q

∂xq1
1 ∂xq2

2 ∂xq3
3
(9mn(x)− 9̃mn(x))= O(|x|1−q), (5-9)

and
9mn(x)= O(|x|−1), (5-10)

hold in a neighborhood of the origin, where m, n = 1, 2, . . . , 6, q = q1+ q2+ q3, q ≥ 1.

Proof. In view of (5-2) and (5-7) we obtain

9(1)
mq(x)− 9̃

(1)
mq(x)=

∂2

∂xm∂xq

( 2∑
j=1

d1 j h j (x)−
a7+ a8

d1
h0(x)

)
−

( ∂2

∂xm∂xq
−1δmq

)( 4∑
l=3

d1lhl(x)−
a7

d2
h0(x)

)
. (5-11)

In a neighborhood of the origin, from (4-20) we have

h p(x)=−
1

4π |x|

∞∑
n=0

(ikp|x|)n

n!
= h′(x)−

ikp

4π
− k2

ph0(x)+ h̃ p(x), (5-12)

where

h′(x)=−
1

4π |x|
, h̃ p(x)=−

1
4π |x|

∞∑
n=3

(ikp|x|)n

n!
, p = 1, 2, 3, 4.
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Obviously,

h̃ p(x)= O(|x|2),
∂

∂xl
h̃ p(x)= O(|x|),

∂2

∂xl∂x j
h̃ p(x)= const+ O(|x|),

l, j = 1, 2, 3, p = 1, 2, 3, 4. (5-13)

On the basis of (5-12) we obtain

2∑
j=1

d1 j h j (x)−
a7+ a8

d1
h0(x)

=

2∑
j=1

d1 j h′(x)−
( 2∑

j=1

d1 j k2
j +

a7+ a8

d1

)
h0(x)+

2∑
j=1

d1 j

(
−

ik j

4π
+ h̃ j (x)

)
,

4∑
l=3

d1l hl(x)−
a7

d2
h0(x)=

4∑
l=3

d1lh′(x)−
( 4∑

l=3

d1lk2
l +

a7

d2

)
h0(x)+

4∑
l=3

d1l

(
−

ikl

4π
+ h̃l(x)

)
. (5-14)

Taking into account the equalities (5-14) and

1h′(x)= 0 for x 6= 0,
2∑

j=1

d1 j =

4∑
l=3

d1l,

2∑
j=1

d1 j k2
j +

a7+ a8

d1
= 0,

4∑
l=3

d1lk2
l +

a7

d2
= 0,

from (5-11) we have

9(1)
mq(x)− 9̃

(1)
mq(x)=

∂2

∂xm∂xq

2∑
j=1

d1 j
(
h′(x)+ h̃ j (x)

)
−

( ∂2

∂xm∂xq
−1δmq

) 4∑
l=3

d1l
(
h′(x)+ h̃l(x)

)
=

∂2

∂xm∂xq

2∑
j=1

d1 j h̃ j (x)−
( ∂2

∂xm∂xq
−1δmq

) 4∑
l=3

d1l h̃l(x).

In view of (5-13), we obtain from this the relation (5-9)1, for m, n = 1, 2, 3. The other formulae of (5-9)
can be proven in a similar manner.

The relation (5-10) can be obtained easily from (5-9)1 and (5-3). �

Thus, the fundamental solution 9̃(x) of the system (5-1) is the singular part of the matrix 9(x) in a
neighborhood of the origin.

6. Concluding remark

The fundamental solution 9(x) of the system (3-27) makes it possible to investigate three-dimensional
boundary value problems of the linear theory of viscoelastic binary mixtures with the boundary integral
method (potential method). The main results obtained in the classical theory of elasticity, thermoelasticity
and micropolar theory of elasticity with the potential method are given in [Kupradze et al. 1979]. A wide
class of boundary value problems of steady vibration of the linear theory of thermoelasticity of binary
mixtures is investigated using the potential method by Burchuladze and Svanadze [2000].
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