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MOMENT LYAPUNOV EXPONENTS AND STOCHASTIC STABILITY
FOR TWO COUPLED OSCILLATORS

PREDRAG KOZIĆ, GORAN JANEVSKI AND RATKO PAVLOVIĆ

The Lyapunov exponent and moment Lyapunov exponent of two degree-of-freedom linear systems sub-
jected to white noise parametric excitation are investigated. Through a perturbation method we obtain the
explicit asymptotic expressions for these exponents in the presence of low intensity noise. The Lyapunov
exponent and moment Lyapunov exponents are important characteristics for determining the almost-
sure and moment stability of a stochastic dynamical system. As an example, we study the almost-sure
and moment stability of the flexural-torsion stability of a thin elastic beam subjected to a stochastically
fluctuating follower force. The validity of the approximate results for moment Lyapunov exponents is
checked by a numerical Monte Carlo simulation for these stochastic systems.

1. Introduction

In recent years there has been considerable interest in the study of the dynamic stability of nongyroscopic
conservative elastic systems whose parameters fluctuate in a stochastic manner. To have a complete
picture of the dynamic stability of a dynamic system, it is important to study both the almost-sure and the
moment stability and to determine both the maximal Lyapunov exponent and the p-th moment Lyapunov
exponent. The maximal Lyapunov exponent, defined by

λq = lim
t→∞

1
t

log‖q(t; q0)‖, (1)

where q(t; q0) is the solution process of a linear dynamical system. The almost-sure stability depends
upon the sign of the maximal Lyapunov exponent, which is the exponential growth rate of the solution of
the randomly perturbed dynamical system. A negative sign of the maximal Lyapunov exponent implies
almost-sure stability, whereas a nonnegative value indicates instability. The exponential growth rate
E[‖q(t; q0, q̇0)‖

p
] is provided by the moment Lyapunov exponent, defined as

3q(p)= lim
t→∞

1
t

log E
[
‖q(t; q0)‖

p], (2)

where E[ ] denotes an expectation. If 3q(p) < 0, then, by definition E[‖q(t; q0, q̇0)‖
p
] → 0 as t→∞.

This is referred to as p-th moment stability. Although moment Lyapunov exponents are important in
the study of the dynamic stability of stochastic systems, the actual evaluation of moment Lyapunov
exponents is very difficult.

Arnold et al. [1997] constructed an approximation for the moment Lyapunov exponents of 2D linear
systems driven by real or white noise. A perturbation approach was used to obtain explicit expressions for
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these exponents in the presence of low intensity noise. Khasminskii and Moshchuk [1998] obtained an
asymptotic expansion of the moment Lyapunov exponents of a 2D system under white noise parametric
excitation in terms of the small fluctuation parameter ε, from which the stability index was obtained.
Kozić et al. [2008] investigated the Lyapunov exponent and moment Lyapunov exponent of Hill’s equa-
tion with frequency and damping coefficient fluctuated by white noise. A perturbation approach was
used to obtain explicit expressions for these exponents in the presence of low intensity noise. Xie [2001]
obtained weak noise expansions of the moment Lyapunov exponents of a 2D system under real noise
excitation, an Ornstein–Uhlenbeck process. Xie [2002] determined small noise expansions of the moment
Lyapunov exponents of a 2D viscoelastic system under bounded noise excitation. Sri Namachchivaya
et al. [1994] used a perturbation approach to calculate the asymptotic growth rate of stochastically coupled
4D systems. The noise was assumed to be white and of low intensity in order to calculate the explicit
asymptotic formulas for the maximum Lyapunov exponent. Sri Namachchivaya and Vedula [2000]
obtained a general asymptotic approximation for the moment Lyapunov exponents and the Lyapunov
exponent for 4D systems with one critical mode and another asymptotically stable mode driven by a small
intensity process. Sri Namachchivaya and Van Roessel [2004] used a perturbation approach to obtain
an approximation for the moment Lyapunov exponents of two coupled oscillators with commensurable
frequencies driven by low intensity real noise with dissipation. The generator for the eigenvalue problem
associated with the moment Lyapunov exponents was derived without any restrictions on the size of the
p-th moment.

The aim of this paper is to determine a weak noise expansion for the moment Lyapunov exponents for
stochastically coupled two-degree-of-freedom systems. The noise is assumed to be white noise of low
intensity such that one can obtain an asymptotic growth rate. Here we apply the perturbation theoretic ap-
proach of [Khasminskii and Moshchuk 1998] to obtain weak noise expansions of the moment Lyapunov
exponents and Lyapunov exponent. These results are applied to study the flexural-torsional stability of a
narrow simply supported beam under a fluctuating stochastic follower force. The approximate analytical
results of the moment Lyapunov exponents are compared with the numerical values obtained by Monte
Carlo simulation for these exponents of two-degree-of freedom stochastic systems.

2. Theoretical formulation

Consider the linear oscillatory systems described by equations of motion of the form

q̈i +ω
2
i qi + 2εζiωi q̇i + ε

1/2
2∑

j=1

ki j q jξ(t)= 0, i, j = 1, 2, (3)

where qi is a generalized coordinate, ωi is the i-th natural frequency, and εζi represents the i-th small
viscous damping coefficient. It is assumed that the natural frequency is not commensurable. The sto-
chastic term, ε1/2ξ(t), is a white-noise process with low intensity. The almost-sure and moment stability
of the equilibrium state q = q̇ = 0 of (3) is to be investigated. Using the transformation

q1 = x1, q̇1 = ω1x2, q2 = x3, q̇2 = ω2x4,

we can represent (3) in first-order form by the Stratonovich differential equations (4) on the next page —
which is also the form of the Itô equations:
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d
dt


x1

x2

x3

x4

=


0 ω1 0 0
−ω1 −2εζ1ω1 0 0

0 0 0 ω2

0 0 −ω2 −2εζ2ω2




x1

x2

x3

x4

+
√
ε


0 0 0 0

−k11/ω1 0 −k12/ω1 0
0 0 0 0

−k21/ω2 0 −k22/ω2 0




x1

x2

x3

x4

◦ ξ(t),
(4)

where ξ(t) is the white noise process with zero mean and autocorrelation function

Rξξ (t1, t2)= E[ξ(t1)ξ(t2)] = σ 2 min(t2, t1). (5)

Here σ is the intensity of the random process ξ(t) and δ is the Dirac delta function.
We next apply the transformation

x1 = a cosφ1 cos θ, x2 =−a sinφ1 cos θ, x3 = a cosφ2 sin θ, x4 =−a sinφ2 sin θ, (6)

where φ1 and φ2 the angles of the first and second oscillators, and θ the coupling or energy exchange
between the two oscillators. Introducing also

P = a p
= (x2

1 + x2
2 + x2

3 + x2
4)

p/2, −∞< p <∞,

the p-th power of the norm of the response, we obtain a set of Itô equations for P the and phase variables
φ1, φ2, θ (where we omit from the notation the dependence of the mi and σi1 on φ1, φ2, θ):

dφ1 = m1 dt + σ11 dW (t), dθ = m3 dt + σ31 dW (t),

dφ2 = m2 dt + σ21 dW (t), dP = Pm4 dt + Pσ41 dW (t).
(7)

Here

σ11 =
σ

ω1

√
ε
2
(k11 cosφ1+ k12 cosφ2 tan θ) cosφ1, σ21 =

σ

ω2

√
ε
2
(k21 cosφ1 cot θ + k22 cosφ2) cosφ2,

σ31 =
σ

4

√
ε
2

[(k22
ω2

sin 2φ2−
k11
ω1

sin 2φ1

)
sin 2θ + 4k21

ω2
sin φ2 cos φ1 cos2 θ − 4k12

ω1
sin φ1 cos φ2 sin2 θ

]
,

σ41 =
pσ
2

√
ε
2

[(k12
ω1

sin φ1 cos φ2+
k21
ω2

sin φ2 cos φ1

)
sin 2θ + k11

ω1
sin 2φ1 cos2 θ +

k22
ω2

sin 2φ2 sin2 θ

]
,

m1 = ω1− ε
(
ζ1ω1+

σ 2

4ω2
1
(k11 cosφ1+ k12 cosφ2 tan θ)2

)
sin 2φ1,

m2 = ω2− ε
(
ζ1ω2+

σ 2

4ω2
2
(k21 cosφ1 cot θ + k22 cosφ2)

2
)

sin 2φ2,

m3 =
ε
2
(
ζ1ω1(1− cos 2φ1)− ζ2ω2(1− cos 2φ2)

)
sin 2θ

+
εσ 2

4

[
−cos2 φ1 tan θ + sin2 φ1 sin 2θ

ω2
1

(k11 cosφ1 cos θ + k12 cosφ2 sin θ)2

−
2sinφ1 sinφ2 cos2θ

ω1ω2
(k11 cosφ1 cosθ + k12 cosφ2 sinθ)(k21 cosφ1 cosθ + k22 cosφ2 sinθ)

+
cos2 φ2 cot θ − sin2 φ2 sin 2θ

ω2
2

(k21 cosφ1 cos θ + k22 cosφ2 sin θ)2
]
,
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m4 =−εp
(
ζ1ω1(1− cos 2φ1) cos2 θ + ζ2ω2(1− cos 2φ2) sin2 θ

)
+
εpσ 2

4

[
1+ (p−2) sin2 φ1 cos2 θ

ω2
1

(k11 cosφ1 cos θ + k12 cosφ2 sin θ)2

+
(p−2)sinφ1sinφ2sin 2θ

ω1ω2
(k11 cosφ1 cosθ+k12 cosφ2 sin θ)(k21 cosφ1 cosθ+k22 cosφ2 sin θ)

+
1+ (p− 2) sin2 φ2 sin2 θ

ω2
2

(k21 cosφ1 cos θ + k22 cosφ2 sin θ)2
]
,

Following [Wedig 1988], we perform the stochastic linear transformation

S = T (φ1, φ2, θ)P, P = T−1(φ1, φ2, θ)S. (8)

We introduce the new norm process S by means of the scalar function T (φ1, φ2, θ) which is defined on
the stationary phase processes φ1, φ2, and θ in the range 0≤ φ1 ≤ 2π , 0≤ φ2 ≤ 2π , 0≤ θ ≤ π/2, as

d S = P
[1

2 Tφ1φ1σ
2
11+ Tφ1φ2σ11σ21+ Tφ1θσ11σ31+

1
2 Tφ2φ2σ

2
21+ Tφ2θσ21σ31

+
1
2 Tθθσ 2

31+ (m1+ σ11σ41)Tφ1 + (m2+ σ21σ41)Tφ2 + (m3+ σ31σ41)Tθ +m4T
]

dt

+ P(Tφ1σ11+ Tφ2σ21+ Tθσ31+ Tσ41) dW (t). (9)

If the transformation function T (φ1, φ2, θ) is bounded and nonsingular, both processes P and S possess
the same stability behavior. Therefore, T (φ1, φ2, θ) is chosen so that the drift term, of the Itô differential
(9), does not depend on the phase processes φ1, φ2, and θ , so that

d S =3(p)S dt + ST−1(Tφ1σ11+ Tφ2σ21+ Tθσ31+ Tσ41) dW (t). (10)

By comparing (9) and (10), we see that such a T (φ1, φ2, θ) is given by the following equation:

1
2 Tφ1φ1σ

2
11+ Tφ1φ2σ11σ21+ Tφ1θσ11σ31+

1
2 Tφ2φ2σ

2
21+ Tφ2θσ21σ31+

1
2 Tθθσ 2

31

+ (m1+ σ11σ41)Tφ1 + (m2+ σ21σ41)Tφ2 + (m3+ σ31σ41)Tθ +m4T =3(p)T . (11)

To avoid lengthy calculations, the analysis presented in this section considers the special case where
k11 = k22 = 0, so that

[L1+ εL2] T (φ1, φ2, θ)=3(p)T (φ1, φ2, θ). (12)

Here L1 and L2 are the following first- and second-order differential operators (again we suppress the
dependence of the coefficients on φ1, φ2, θ):

L1 = ω1
∂

∂φ1
+ω2

∂

∂φ2
,

L2 = a1
∂2

∂φ2
1
+ a2

∂2

∂φ1∂φ2
+ a3

∂2

∂φ1∂θ
+ a4

∂2

∂φ2
2
+ a5

∂2

∂φ2∂θ
+ a6

∂2

∂θ2 + b1
∂

∂φ1
+ b2

∂

∂φ2
+ b3

∂

∂θ
+ c,
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where

a1 =
k2

12σ
2

4ω2
1

cos2 φ1 cos2 φ2 tan2 θ, a2 =
k12k21σ

2

2ω1ω2
cos2 φ1 cos2 φ2,

a3 =
σ 2

4

(
−

k2
12

ω2
1

sin 2φ1 cos2 φ2 sin2 θ +
k12k21

ω1ω2
sin 2φ2 cos2 φ1 cos2 θ

)
tan θ,

a4 =
k2

21σ
2

4ω2
2

cos2 φ1 cos2 φ2 cot2 θ, a6 =
σ 2

4

(
−

k12

ω1
sinφ1 cosφ2 sin2 θ +

k21

ω2
sinφ2 cosφ1 cos2 θ

)2

,

a5 =
σ 2

4

(
−

k12k21

ω1ω2
sin 2φ1 cos2 φ2 sin2 θ +

k2
21

ω2
2

sin 2φ2 cos2 φ1 cos2 θ

)
cot θ,

b1 =−

(
ζ1ω1+

k2
12σ

2

4ω2
1
(tan2 θ − p sin2 θ) cos2 φ2

)
sin 2φ1+

k12k21σ
2

4ω1ω2
p cos2 φ1 sin2 θ sin 2φ2,

b2 =−

(
ζ2ω2+

k2
21σ

2

4ω2
2
(cot2 θ− p cos2 θ) cos2 φ1

)
sin 2φ2+

k12k21σ
2

4ω1ω2
p cos2 φ2 cos2 θ sin 2φ1,

b3 = (ζ1ω1 sin2 φ1− ζ2ω2 sin2 φ2) sin 2θ+
σ 2

4

(
k2

12

ω2
1

(
−cos2 φ1 tan θ− (p−1) sin2 φ1 sin 2θ

)
cos2 φ2 sin2 θ

+
k2

21

ω2
2

(
cos2 φ2 cot θ+ (p−1) sin2 φ2 sin 2θ

)
cos2 φ1 cos2 θ+

k12k21

4ω1ω2
(p−1) sin 2φ1 sin 2φ2 cos 2θ sin 2θ

)
,

c =−2p(ζ1ω1 sin2 φ1 cos2 θ + ζ2ω2 sin2 φ2 sin2 θ)+
pσ 2

4

(
k2

12

ω2
1

(
1+ (p−2) sin2 φ1 cos2 θ

)
cos2 φ2 sin2 θ

+
k2

21

ω2
2

(
1+ (p−2) sin2 φ2 sin2 θ

)
cos2 φ1 cos2 θ + (p− 2)

k12k21

2ω1ω2
sin 2φ1 sin 2φ2 sin2 θ cos2 θ

)
.

Either (11) or (12) defines a second-order eigenvalue problem for the determination of the unknown
transformation function T (φ1, φ2, θ) and the associated eigenvalue 3(p) or Lyapunov exponent of the
p-th mean. From (10) the eigenvalue 3(p) is seen to be the p-th moment Lyapunov exponent of the
system (4). This approach was first applied by Wedig [1988] to derive the eigenvalue problem for the
moment Lyapunov exponent of a 2D linear Itô stochastic system. In the following section, the method
of regular perturbation is applied to the eigenvalue problem (11) to obtain a weak noise expansion of the
moment Lyapunov exponent for the system (4).

3. Weak noise expansion of the moment Lyapunov exponent

Applying the method of regular perturbation, both the moment Lyapunov exponent 3(p) and the eigen-
function T (φ1, φ2, θ) are expanded in power series of ε as

3(p)=30(p)+ ε31(p)+ ε232(p)+ . . .+ εn3n(p)+ . . . ,

T (φ1, φ2, θ)= T0(φ1, φ2, θ)+ εT1(φ1, φ2, θ)+ ε
2T2(φ1, φ2, θ)+ . . .+ ε

nTn(φ1, φ2, θ)+ . . . .
(13)
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Substituting the perturbation series (13) into the eigenvalue problem (12) and equating terms with equal
powers of ε leads to the following equations:

ε0
: L1T0(φ1, φ2, θ)=30(p)T0(φ1, φ2, θ),

ε1
: L1T1(φ1, φ2, θ)+ L2T0(φ1, φ2, θ)=30(p)T1(φ1, φ2, θ)+31(p)T0(φ1, φ2, θ),

ε2
: L1T2(φ1, φ2, θ)+ L2T1(φ1, φ2, θ)=30(p)T2(φ1, φ2, θ)

+31(p)T1(φ1, φ2, θ)+32(p)T0(φ1, φ2, θ),

ε3
: L1T3(φ1, φ2, θ)+ L2T2(φ1, φ2, θ)=30(p)T3(φ1, φ2, θ)+31(p)T2(φ1, φ2, θ)

+32(p)T1(φ1, φ2, θ)+33(p)T0(φ1, φ2, θ),
...

εn
: L1Tn(φ1, φ2, θ)+ L2Tn−1(φ1, φ2, θ)=30(p)Tn(φ1, φ2, θ)+31(p)Tn−1(φ1, φ2, θ)

+ . . .+3n(p)T0(φ1, φ2, θ),

(14)

where each function Ti (φ1, φ2, θ), i = 0, 1, 2, . . . , must be positive and periodic in the range 0≤ φ1≤ 2π ,
0≤ φ2 ≤ 2π , 0≤ θ ≤ π/2.

3.1. Zeroth-order perturbation. The zeroth-order perturbation equation is L1T0 =30(p)T0 or

ω1
∂T0(φ1, φ2, θ)

dφ1
+ω2

∂T0(φ1, φ2, θ)

dφ2
=30(p)T0(φ1, φ2, θ). (15)

From the properties of the moment Lyapunov exponent, it is known that

3(0)=30(0)+ ε31(0)+ ε232(0)+ · · ·+ εn3n(0)= 0, (16)

which results in 3n(0)= 0 for n = 0, 1, 2, 3, . . . . Since the eigenvalue problem (15) does not contain
p, the eigenvalue 30(p) is independent of p. Hence, 30(0) = 0 leads to 30(p) = 0. Then (15) has a
periodic solution if and only if

30(p)= 0, T0(φ1, φ2, θ)= 1. (17)

3.2. First-order perturbation. The first-order perturbation equation is

L1T1(φ1, φ2, θ)+ L2T0(φ1, φ2, θ)=30(p)T1(φ1, φ2, θ)+31(p)T0(φ1, φ2, θ). (18)

This has a periodic solution if and only if∫ 2π

0

∫ 2π

0

∫ π/2

0
[L2 · 1−31(p)] dφ1dφ2dθ = 0, (19)

so we have

31(p)=
1

2π3

∫ 2π

0

∫ 2π

0

∫ π/2

0
c(φ1, φ2, θ) dφ1 dφ2 dθ

= p
[

3σ 2

64

(
k2

12

ω2
1
+

k2
21

ω2
2

)
−

1
2
(ζ1ω1+ ζ2ω2)

]
+ p2 σ

2

128

(
k2

12

ω2
1
+

k2
21

ω2
2

)
. (20)
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Now the first-order perturbation equation reduces to

ω1
∂T1(φ1, φ2, θ)

dφ1
+ω2

∂T1(φ1, φ2, θ)

dφ2
+ c(φ1, φ2, θ)=31(p). (21)

Since it is assumed that the frequencies ω1 and ω2 are not commensurable, the general periodic solution
(21) cannot be obtained explicitly for the eigenfunction T1(φ1, φ2, θ). Therefore it is possible to obtain
the moment Lyapunov exponent only in the first-order perturbation.

3.3. Moment Lyapunov exponent, Lyapunov exponent, and stability conditions. We next obtain the
weak noise expansion of the moment Lyapunov exponent in the first-order perturbation for the system (4):

3(p)= ε31(p)+ O(ε2)

= εp
[

3σ 2

64

(
k2

12

ω2
1
+

k2
21

ω2
2

)
−

1
2
(ζ1ω1+ζ2ω2)

]
+ εp2 σ

2

128

(
k2

12

ω2
1
+

k2
21

ω2
2

)
+ O(ε2).

(22)

The Lyapunov exponent for system (4) can be obtained from (22) by using a property of the moment
Lyapunov exponent

λ=
d3(p)

dp

∣∣∣∣
p=0
= ελ1+ O(ε2)= ε

[
3σ 2

64

(
k2

12

ω2
1
+

k2
21

ω2
2

)
−

1
2
(ζ1ω1+ ζ2ω2)

]
+ O(ε2). (23)

Using the result above for the moment Lyapunov exponent, with the definition of the moment stability
3q(t) < 0, we determine analytically the p-th moment stability boundary in the first-order perturbation
for various values of p = 1, 2, 4, respectively, as

ζ1ω1+ζ2ω2 >
7σ 2

64

(
k2

12

ω2
1
+

k2
21

ω2
2

)
, ζ1ω1+ζ2ω2 >

σ 2

8

(
k2

12

ω2
1
+

k2
21

ω2
2

)
, ζ1ω1+ζ2ω2 >

5σ 2

32

(
k2

12

ω2
1
+

k2
21

ω2
2

)
.

It is known that the system is asymptotically stable only if the Lyapunov exponent λq(t) is negative. Then,
(32) is employed to determine the almost-sure stability boundary of the system (4)

ζ1ω1+ ζ2ω2 >
3σ 2

32

(
k2

12

ω2
1
+

k2
21

ω2
2

)
. (24)

4. Application to a beam under stochastic load

The results obtained in the previous section in the context of real engineering applications show how these
results can be applied to physical problems. To this end, we consider the flexural torsional instability of
a thin rectangular beam of length L subjected to a stochastically fluctuating follower force (Figure 1).
It is assumed that the simply supported beam is bent by a stochastically varying central load P(t). The
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Figure 1. Thin rectangular beam subjected to stochastic excitation.

motion of the beam is governed by the partial differential equations [Bolotin 1964]

m
∂2w

∂t2 + dw
∂w

∂t
+ E Ix

∂4w

∂z4 = 0, (25)

m
∂2u
∂t2 + du

∂u
∂t
+ E Iy

∂4u
∂z4 +

∂2(M(z, t)φ)
∂z2 + P(t)δ

(L
2
− z

)
φ = 0, (26)

mρ2 ∂
2φ

∂t2 + dφ
∂φ

∂t
−G J

∂4φ

∂z4 +M(z, t)
∂2u
∂z2 = 0, (27)

where u(z, t) and w(z, t) denote the x and y components of the deflection of the beam center line and φ
is the angle of twist of the cross-section. The quantities E Ix , E Iy , and G J are the flexural and torsional
rigidities of the cross-section and dw, du , and dφ are the viscous damping coefficients. In addition, m
denotes the mass per unit length, and ρ is the polar radius of gyration of the cross-section. The function
M(z, t) can be expressed in terms of the applied stochastic load as

M(z, t)=

{
1
2 P(t) · z, 0≤ z ≤ 1

2 L ,
1
2 P(t) · (L − z), 1

2 L ≤ z ≤ L .
(28)

It is obvious that (25) is uncoupled from the other two equations and describes the ordinary random
vibration of the beam in the plane of its largest rigidity with the inhomogeneous boundary conditions
given by

E Ix
∂2w

∂z2 (0, t)=−M(0, t)= E Ix
∂2w

∂z2 (L , t)=−M(L , t). (29)

The other two equations form a pair of coupled partial differential equations with stochastic coefficients
subjected to homogeneous boundary conditions given by

u(0, t)= u(L , t)=
∂2u
∂z2 (0, t)=

∂2u
∂z2 (L , t), φ(0, t)= φ(L , t)= 0. (30)

Consider the shape function sin(π z/L), which satisfies the boundary conditions for the first mode vibra-
tion. The displacement u(z, t) and twist φ(z, t) can be described by

u(z, t)= ρq1(t) sin
(
π z
L

)
, φ(z, t)= q2(t) sin

(
π z
L

)
. (31)
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Substituting these into the partial differential equations (26) and (27) yields

q̈1+ω
2
1q1+ 2εζ1ω1q̇1+

√
εk12q2ξ(t)= 0,

q̈2+ω
2
2q2+ 2εζ2ω2q̇2+

√
εk21q1ξ(t)= 0,

(32)

where

ω2
1 =

π4

mL4 E Iy, ω2
2 =

π2

mρ2L2 G J, 2εζ1ω1 =
du
m
, 2εζ2ω2 =

dφ
ρ2m

,

k12 =
1

2mLρ

(
7− π

2

4

)
, k12 =−

1
2mLρ

(
1+ π

2

4

)
, ξ(t)=

P(t)
Pcr

, Pcr =
4|ω2

1−ω
2
2|mLρ√

(28−π2)(4+π2)
.

Here, ξ(t) is assumed to be a stationary stochastic process.

5. Numerical determination of the p-th moment Lyapunov exponent and conclusions

The numerical determination of the p-th moment Lyapunov exponents is important in assessing the valid-
ity and the ranges of applicability of the approximate analytical results. For systems of large dimensions,
it is very difficult, if is not impossible, to obtain analytical results. In many engineering applications, the
amplitude of noise excitation is not small and approximate analytical methods, such as the method of
perturbation or the method of stochastic averaging, cannot be applied. Therefore, numerical approaches
have to be employed to evaluate the moment Lyapunov exponents. The numerical approach is based on
expanding the exact solution of the system of Itô stochastic differential equations, (33), in powers of the
time increment h and the small parameter ε, as proposed in [Milstein and Tret’yakov 1997]. The state
vector of the system (4) is to be rewritten as a system of Itô stochastic differential equations with low
noise in the form

dx1 = ω1x2 dt = [ã1(t, X)+ εb̃1(t, X)] dt +
√
εσ11(t, X) dw(t),

dx2 =−ω1(x1+ 2εζ1x2) dt −
√
εσ
(k11
ω1

x1+
k12
ω1

x3

)
dw(t)

= [ã2(t, X)+ εb̃2(t, X)] dt +
√
εσ21(t, X) dw(t),

dx3 = ω2x4 dt = [ã3(t, X)+ εb̃3(t, X)] dt +
√
εσ31(t, X) dw(t),

dx4 =−ω2(x3+ 2εζ2x4) dt −
√
εσ
(k21
ω2

x1+
k22
ω2

x3

)
dw(t)

= [ã4(t, X)+ εb̃4(t, X)] dt +
√
εσ41(t, X) dw(t).

(33)

For numerical solutions of the stochastic differential (33) the weak Runge–Kutta method with error
R = O(h4

+ ε4h) may be applied to evaluate numerically the p-th moment E[‖X‖p
]. A total of N

samples of the solutions of (33) are generated. The weak Runge–Kutta scheme of the s-th realization of
(33) at the (k+ 1)-th iteration with t (k+1)

− t (k) = h, where h is the time step of integration, is given by
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[Milstein and Tret’yakov 1997]:

X (k+1)
j = X (k)

j +
ε1/2h1/2

6

[
σ j1
(
t (k), X (k))(ξ (k)+ 6η(k)

)
+ 4σ j1

(
t (k+1/2), X (k)

+
K2
2

)
· ξ (k)

+ σ j1
(
t (k+1), X (k)

+ K1
)
·
(
ξ (k)− 6η(k)

)]
+

h
2

[
ã j

(
t (k), X (k)

+ ε1/2h1/2σ j1
(
t (k), X (k))η(k))− ã j

(
t (k), X (k)

− ε1/2h1/2σ j1
(
t (k), X (k))η(k))]

+
1
6
(K1+ 2K2+ 2K3+ K4)+

ε
4
(l1+ 3l2), j = 1, 2, 3, 4, (34)

where

σ 1 =
(
σ11(t, X), σ21(t, X), σ31(t, X), σ41(t, X)

)
,

X = (x1, x2, x3, x4),

a =
(
ã1(t, X), ã2(t, X), ã3(t, X), ã4(t, X)

)
,

b=
(
b̃1(t, X), b̃2(t, X), b̃3(t, X), b̃4(t, X)

)
,

K1 = (K11, K12, K13, K14)= h · ã
(
t (k), X (k)),

K2 = (K21, K22, K23, K24)= h · ã
(

t (k+1/2), X (k)
+

K1
2

)
,

K3 = (K31, K32, K33, K34)= h · ã
(

t (k+1/2), X (k)
+ ε1/2h1/2σ 1

(
t (k), X (k))ξ (k)+ K2

2
+ ε

l1
4
+ ε

3
4

l2

)
,

K4 = (K41, K42, K43, K44)= h · ã
(

t (k+1), X (k)
+ ε1/2h1/2σ 1

(
t (k+1), X (k)

+ K1
)
ξ (k)+ K3+ εl1

)
,

l1 = (l11, l12, l13, l14)= h · b̃
(
t (k), X (k)),

l2 = (l21, l22, l23, l24)= h · b̃
(

t (k+2/3), X (k)
+

2
9

K1+
4
9

K2

)
,

and ξ and η are random variables simulated using the two-point distribution

P(ξ =−1)= P(ξ = 1)= 1
2
, P

(
η =−

1
√

12

)
= P

(
η =

1
√

12

)
=

1
2
.

Having obtained N samples of the solutions of the stochastic differential equations (33) the p-th moment
can be determined as follows:

E
[∥∥X (k+1)∥∥p ]

=
1
N

N∑
s=1

∥∥X (k+1)
s

∥∥p
,

∥∥X (k+1)
s

∥∥=√(X (k+1)
s

)T (X (k+1)
s

)
. (35)

By the Monte Carlo technique we numerically calculate the p-th moment Lyapunov exponent for all
the values of p of interest, defined as

3(p)= 1
T

ln E
[
‖X(T )‖

p]. (36)

The function 3(p) in the limit of large time (T →∞) tends to the moment Lyapunov exponent 3(p).
In this paper, a singular perturbation method is applied to obtain first-order low noise expansions of
the moment Lyapunov exponent of a coupled white noise driven, two-degree-of-freedom system. The
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Figure 2. Stability regions for almost-sure (a-s) and p-th moment stability for k12 = 5,
k21 =−3.82.

Lyapunov exponent is determined by using the relationship between the moment Lyapunov exponent
and the Lyapunov exponent. The slope of the moment Lyapunov exponent curve at p = 0 is the Lya-
punov exponent. When the Lyapunov exponent is negative, the system (3) is almost-sure stable with
probability 1; otherwise it is unstable. The results obtained above can be directly applied to analyze the
flexural-torsional stability of a thin rectangular elastic beam of length L subjected to a stochastic follower
force. For the purpose of illustration, in the numerical study we consider set system parameters k12 = 5,
k21 = −3.82, ω1 = 1, ω2 = 2, and σ = 1. Figure 2 shows the almost-sure and p-th moment stability
boundaries with respect to the damping coefficients ζ1 and ζ2. Note that the moment stability boundaries
are more conservative than the almost-sure boundary. These boundaries become increasingly conserva-
tive as p increases. Numerical determination of the p-th moment Lyapunov exponent is important in
assessing the validity and the range of applicability of the approximate analytical results obtained for
stochastic systems. The Monte Carlo simulation methods are usually more versatile, especially when the
noise excitations cannot be described in a form that can be treated easily using analytical tools. From the
central limit theorem, it is well known that the estimated p-th moment Lyapunov exponent is a random
number, with the mean being the true value of the p-th moment Lyapunov exponent and the standard
deviation n p/

√
N , where n p is the sample standard deviation determined from the N samples. The

standard deviation of the estimated p-th moment Lyapunov exponent can be reduced by increasing the
number of samples, N = 2000, 4000, 8000. The total time of simulation is 5 and h = 0.0005 is the time
step of integration. Numerical results of the p-th moment Lyapunov exponent 3(p) from the Monte
Carlo simulation, along with Equation (22) (the solid line), are plotted in Figure 3 for ω1 = 1.0, ω2 = 2.0,
σ = 1, ζ1 = 4.5, ζ2 = 0.2 and ε = 0.025, 0.05, 0.1. It is observed that the discrepancies between the
approximate analytical results (the solid line) and the numerical results (the dotted line) increase for large
values of ε.
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Figure 3. Variation of the moment Lyapunov exponent 3(p) with p for k12 = 5, k21 =

−3.82 and different value ε.
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