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BENDING OF LAMINATED PLATES WITH MIXED BOUNDARY CONDITIONS
BASED ON HIGHER-ORDER SHEAR DEFORMATION THEORY

MOJGAN YAGHOUBSHAHI AND HOSSEIN RAJAIE

The bending of laminated plates is considered using higher-order transverse shear deformation theory.
The principle of virtual work is used to derive a new set of seven governing equations and corresponding
boundary conditions. These equations, combined with eighteen relationships between the resultant stress
and displacement components, compose a system of first-order partial differential equations that is solved
by the generalized differential quadrature method. Numerical results for laminated plates with a variety
of mixed boundary conditions are calculated using the proposed method, and good agreement is found
with the corresponding solutions obtained using ANSYS.

1. Introduction

Fiber-reinforced laminated composite materials are widely used in a variety of engineering fields, such
as aerospace, civil, marine, mechanical, nuclear, and petrochemical engineering. Such materials are
popular for industrial applications due to high strength-to-weight ratios, long fatigue life, good stealth
characteristics, and enhanced corrosion resistance. A number of theories describing laminated composite
plates exist in the literature.

Classical plate theory is based on the Kirchhoff kinematic hypothesis that straight lines normal to
the undeformed midsurface remain straight and normal to the middle surface after deformation and
undergo no thickness stretching. Neglecting transverse shear effects, this theory produces unacceptable
approximations in the analysis of even thin laminated plates and shells. Surveys of various classic shell
theories can be found in [Naghdi 1956; Bert and Francis 1974; Bert and Chen 1978].

The development of plate theories with transverse shear effects has improved the accuracy of results
considerably. The refined theories are of different orders, based on discretization of the transverse shear
effects and the number of terms included in the assumed displacement field. Reissner [1945] was the
first to develop a plate theory that included transverse shear deformation for static analysis. Mindlin
[1951] then expanded Reissner’s theory for dynamic analysis. Both approaches rely on first-order shear
deformation theory (FSDT). Reissner’s theory is stress-based, whereas Mindlin’s is displacement-based.
These theories do not satisfy the condition of zero transverse shear stress at the top and bottom surfaces
of the plate, and consider a uniform transverse shear stress distribution across the thickness of the plate.
Therefore they require the use of a shear correction factor to increase the precision of the results.

Later a set of theories, generally known as higher-order shear deformation theories (HSDT), has been
developed by a number of researchers. Basset [1890] appears to have been the first researcher to suggest
that displacement fields can be expanded in a power series of the thickness coordinate. The higher-order
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theory presented by Reddy and Liu [1985] is based on a displacement field in which the displacements
in the surface of the shell are expanded as a quadratic function of the thickness coordinate. Actually, the
higher-order theories require additional computation with respect to the first-order theories.

Employing such theories results in systems of highly coupled partial differential equations. Several
methods exist for obtaining solutions for such systems. Among those numerical studies, the differential
quadrature (DQ) method, introduced by Bellman et al. [1972], is an efficient method for obtaining accu-
rate numerical results using a few grid points. DQ approximates the spatial derivative of a function with
respect to a given coordinate at a discrete point as the weighted linear sum of all functional values in
the domain of that coordinate direction. Two methods were proposed by those authors for obtaining the
weighting coefficients of the first-order derivative: the first method solves a system of algebraic equations
to determine the weighting coefficients, and the second utilizes a simple algebraic formulation, provided
that the coordinates of grid points are chosen to be the roots of the shifted Legendre polynomial. The
first method is simpler to apply, but the second is more efficient. For the first method, in which the
coordinates of grid points are arbitrarily chosen, Quan and Chang [1989] used Lagrange interpolation
polynomials as test functions to develop explicit formulations for determining the weighting coefficients
for the first- and second-order derivative discretization.

A generalized differential quadrature (GDQ) method was introduced in [Shu and Richards 1990; Shu
1991]. It generalized all current methods via analysis of a higher-order polynomial approximation and
analysis of a linear vector space. In GDQ, the weighting coefficients of the first derivatives are deter-
mined by a simple algebraic formulation, and there is no restriction on the coordinates of the grid points.
The weighting coefficients of the second and higher-order derivatives are determined by a recurrence
relationship.

Bert et al. [1988] were the first to apply the DQ method to structural mechanics problems. Subse-
quently, a number of researchers utilized this method to solve a variety of structural problems relevant to
thin plate theory [Striz et al. 1988; Bert et al. 1989; Sherbourne and Pandey 1991]. A bending analysis
of thin/thick laminated plates with various boundary conditions based on first-order shear deformation
theory was described in [Aghdam et al. 2006]. The DQ method was used in [Li and Cheng 2005;
Tornabene and Viola 2008] to solve for the vibration of plates and shells. In [Malekzadeh and Setoodeh
2007], large deformation of laminated plates on a nonlinear elastic foundation was analyzed by the DQ
method.

The present study deals with the bending analysis of thin/thick laminated plates with various boundary
conditions based on the higher-order shear deformation theory, in which the displacement field presented
by Reddy and Liu [1985] is considered. Introducing two new unknown functions wi (i = 1, 2) for
computational purposes, a new set of seven governing equations and corresponding boundary conditions
for each edge are derived. Applying the wi allows the governing equations and boundary conditions to be
easily obtained from the virtual work formulation. These equations, together with eighteen relationships
between the resultant stress and displacement components, form a system of 25 first-order partial differen-
tial equations. Solving a set of 25 equations simultaneously enables one to apply boundary conditions in
the HSDT more accurately and conveniently. In the HSDT of Reddy and Liu, the governing equations are
second-order partial differential equations, and the boundary conditions are first-order partial differential
relationships. By applying this technique, the governing equations convert first-order and boundary
conditions into linear algebraic relationships. Application of linear algebraic relationships as boundary



BENDING OF LAMINATED PLATES WITH MIXED BOUNDARY CONDITIONS BASED ON HSDT 1773

conditions is much easier, and the number of grid points required for convergence in the GDQ method
is reduced.

In this paper, plates with free edge and mixed boundary conditions are considered. The results are
compared with those obtained ANSYS version 5.4. Numerical results are presented to understand the
complex deformation behavior of symmetric and antisymmetric cross ply plates.

2. Formulation

A rectangular plate with different boundaries in the α1 and α2 directions is considered. The principle of
virtual work for the equilibrium of a body with surface S and volume V requires satisfaction of∫

V

3∑
i=1

3∑
j=1

σi j δεi j dV −
∫

S
δWext ds = 0, (1)

where σi j denotes the stress components, δεi j the variation of virtual strain components caused by virtual
displacements, and δWext the variation in virtual work performed by the external forces. Employing a
higher-order shear deformation theory, the displacement components, in terms of functions specifying
the deformation of the middle surface of the plate, may be approximated as [Reddy and Liu 1985]

Ui (α1, α2, ζ )= ui (α1, α2)+ ζϕi (α1, α2)+ ζ
2ψi (α1, α2)+ ζ

3θi (α1, α2), i = 1, 2

W (α1, α2, ζ )= w(α1, α2),
(2)

where, ζ , ranging from −h/2 to h/2, is the variable in the thickness direction.

Convention. Henceforth, unless otherwise stated, we use the subscript n to refer to the normal direction
(i.e., n = 3) and i, j are distinct indices ranging over the in-plane directions (i.e., i = 1, 2 and j = 3− i).

One may assume, without loss of generality, that shear stress is absent from the top and bottom surfaces
of the plate. Therefore,

τin

(
α1, α2,±

h
2

)
= 0. (3)

Hooke’s law for a laminated plate composed of orthotropic layers implies that (3) is equivalent to

γin

(
α1, α2,±

h
2

)
= 0. (4)

The strain-displacement relationships in the principal coordinates of a plate are

εi i =
∂Ui

∂αi
, εnn =

∂W
∂ζ

, γi j =
∂U j

∂αi
+
∂Ui

∂α j
, γin =

∂W
∂αi
+
∂Ui

∂ζ
. (5)

Substitution of (2) into (5) yields

γin =
∂w

∂αi
+ϕi + 2ζψi + 3ζ 2θi . (6)

Application of (4) to (6) gives the four equations{
∂w/∂αi +ϕi + hψi +

3
4 h2θi = 0

∂w/∂αi +ϕi − hψi +
3
4 h2θi = 0

i = 1, 2. (7)
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Solving the system of algebraic equations (7) yields

ψi = 0, θi =−
4

3h2

(
∂w
∂αi
+ϕi

)
. (8)

Substituting (8) into (2) gives the displacement components in the thickness direction in terms of dis-
placements of the middle surface of the plate:

Ui (α1, α2, ζ )= ui + ζϕi − ζ
3 4

3h2

(
∂w
∂αi
+ϕi

)
, W (α1, α2, ζ )= w(α1, α2). (9)

The strain-displacement equations (7), in view of (9), give

εi i = ε
0
i + ζκ

0
i + ζ

3κ2
i , γin = λ

0
i + ζ

2η1
i ,

εnn =
∂w
∂ζ
, γi j = γ

0
i + ζµ

0
i + ζ

3µ2
i + γ

0
j + ζµ

0
j + ζ

3µ2
j ,

(10)

where we have set

ε0
i =

∂ui
∂αi

, κ0
i =

∂ϕi
∂αi

, κ2
i =−

4
3h2

∂
∂αi

(wi +ϕi ), λ0
i =

∂w
∂αi
+ϕi ,

γ 0
i =

∂u j

∂αi
, µ0

i =
∂ϕ j

∂αi
, µ2

i =−
4

3h2
∂
∂αi

(w j +ϕ j ), η1
i =−

4
h2 (wi +ϕi ).

(11)

Here we have introduced two new unknown functions, wi =
∂w
∂αi

. The stress resultants are defined as[
Ni Ni j Nin Mi Mi j Min Pi Pi j Pin Si Si j

]T

=

∫ h/2

−h/2

[
σi i τi j τin ζσi i ζ τi j ζ τin ζ 2σi i ζ

2τi j ζ
2τin ζ 3σi i ζ

3τi j
]T

dζ, (12)

where T is the transpose of a vector. The applied load per unit area of the middle surface of a plate is
taken as q = q1e1+ q2e2− qnen , where e1, e2, and en are unit vectors in the directions of the principal
axes (α1, α2) and thickness direction (n), respectively. Let σ̄i i , τ̄i j , and τ̄in be the components of applied
traction on the edges αi = constant. The virtual work done by external loads on the plate is

δwext =

∫
α1

∫
α2

(q1δu1+ q2δu2− qnδw) dα1 dα2+

∮
α j

∫ h/2

−h/2
(σ̄i iδUi + τ̄i jδU j + τ̄inδW ) dζ dα j , (13)

where the second integral should be taken across the boundary of the plate. Substituting (9) into (13)
and (10) into (1), employing (12), setting σn = 0, and carrying out the required manipulations, leads to
the overall variational equation in the box on the next page.

From the first four lines of the boxed equation we derive seven governing differential equations:

∂Ni

∂αi
+
∂Ni j

∂α j
+ qi = 0,

∂Mi

∂αi
+
∂Mi j

∂α j
− Nin = 0,

∂Nin

∂αi
+
∂N jn

∂α j
− qn = 0,

∂Si

∂αi
+
∂Si j

∂α j
− 3Pin = 0.

(14)

The remaining terms in the boxed equation lead to the boundary conditions for a plate. The boundary
data on each edge αi = constant are prescribed by selecting one member of each of the following seven
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∫
α1

∫
α2

[(
∂N1

∂α1
+
∂N12

∂α2
+ q1

)
δu1+

(
∂N2

∂α2
+
∂N12

∂α1
+ q2

)
δu2+

(
∂N1n

∂α1
+
∂N2n

∂α2
− qn

)
δw

+

(
∂M1

∂α1
−

4
3h2

∂S1

∂α1
+
∂M12

∂α2
−

4
3h2

∂S12

∂α2
− N1n +

4
h2

P1n

)
δϕ1

+

(
∂M2

∂α2
−

4
3h2

∂S2

∂α2
+
∂M12

∂α1
−

4
3h2

∂S12

∂α1
− N2n +

4
h2

P2n

)
δϕ2

+

(
−

4
3h2

∂S1

∂α1
−

4
3h2

∂S12

∂α2
+

4
h2

P1n

)
δw1+

(
−

4
3h2

∂S2

∂α2
−

4
3h2

∂S12

∂α1
+

4
h2

P2n

)
δw2

]
dα1 dα2

+

∮
α2

[
[N̄1− N1]δu1+

[(
M̄1−

4
3h2

S̄1

)
−

(
M1−

4
3h2

S1

)]
δϕ1−

4
3h2
[S̄1− S1]δw1+ [N̄12− N12]δu2

+

[(
M̄12−

4
3h2

S̄12

)
−

(
M12−

4
3h2

S12

)]
δϕ2+

[(
N̄1n +

4
3h2

∂ S̄12

∂α2

)
−

(
N1n +

4
3h2

∂S12

∂α2

)]
δw

]
dα2

+

∮
α1

[
[N̄2− N2]δu2+

[(
M̄2−

4
3h2

S̄2

)
−

(
M2−

4
3h2

S2

)]
δϕ2−

4
3h2
[S̄2− S2]δw2+ [N̄12− N12]δu2

+

[(
M̄12−

4
3h2

S̄12

)
−

(
M12−

4
3h2

S12

)]
δϕ1+

[(
N̄2n −

4
3h2

∂ S̄12

∂α1

)
−

(
N2n −

4
3h2

∂S12

∂α1

)]
δw

]
dα1

= 0.

pairs of variables as a known quantity:

(Ni , ui ),
(

Mi −
4

3h2 Si , ϕi

)
, (Si , wi ), (Ni j , u j ),

(
Mi j −

4
3h2 Si j , ϕ j

)
, (Si j , w j ), (Nin, w),

The stress–strain relationship for a single orthotropic lamina on a plate is
σ11

σ22

τ2n

τ1n

τ12

=


Q̄11 Q̄12 0 0 Q̄16

Q̄12 Q̄22 0 0 Q̄26

0 0 Q̄44 Q̄45 0
0 0 Q̄45 Q̄55 0

Q̄16 Q̄26 0 0 Q̄66



ε11

ε22

γ2n

γ1n

γ12

 . (15)

The matrix components of material properties in (15) may be written in terms of the stiffness coeffi-
cients in the direction of the principal axis of material orthotropy as

Q̄11 = Q11m4
+2(Q12+2Q66)m2n2

+Q22n4, Q̄12 = (Q11+Q22−4Q66)m2n2
+Q12(m4

+n4),

Q̄22 = Q11n4
+2(Q12+2Q66)m2n2

+Q22m4, Q̄45 = (Q55−Q44)mn,

Q̄16 = (Q11−Q12−2Q66)m3n+(Q12−Q22+2Q66)mn3,

Q̄26 = (Q11−Q12−2Q66)mn3
+(Q12−Q22+2Q66)m3n,

Q̄44 = Q44m2
+Q55n2, Q̄55 = Q44n2

+Q55m2, Q̄66 = (Q11+Q22−2Q12)m2n2
+Q66(m2

−n2)2.

(16)

In the equations above, m and n are defined as m = cosχ and n = sinχ , where χ accounts for the
angle between the principal axis of material orthotropy and the α1-axis. In fact, the principal coordinates



1776 MOJGAN YAGHOUBSHAHI AND HOSSEIN RAJAIE

of a plate differ from the material principal axes. The material principal axes make an angle χ with the
principal coordinates of the plate. In terms of engineering constants, the material properties in (16) are
derived as

Q11 =
E11

1
, Q12 =

E11ν21

1
, Q22 =

E22

1
, Q44 = G23, Q55 = G13, Q66 = G12, (17)

where 1= 1− ν12ν21. However, if the equations in (10) are substituted into (15), the resultant equations
are substituted into (12), and the integration in the thickness direction is carried out, we arrive at the
following equations for the stress resultants:

N1

N12

N2

=
C1

11 C1
16 C1

12 C1
16

C1
16 C1

66 C1
26 C1

66

C1
12 C1

16 C1
22 C1

26



ε0

1
γ 0

1
ε0

2
γ 0

2

+
C2

11 C2
16 C2

12 C2
16

C2
16 C2

66 C2
26 C2

66

C2
12 C2

16 C2
22 C2

26



κ0

1
µ0

1
κ0

2
µ0

2

+
C4

11 C4
16 C4

12 C4
16

C4
16 C4

66 C4
26 C4

66

C4
12 C4

16 C4
22 C4

26



κ2

1
µ2

1
κ2

2
µ2

2

 ,


M1

M12

M2

=
C2

11 C2
16 C2

12 C2
16

C2
16 C2

66 C2
26 C2

66

C2
12 C2

16 C2
22 C2

26



ε0

1
γ 0

1
ε0

2
γ 0

2

+
C3

11 C3
16 C3

12 C3
16

C3
16 C3

66 C3
26 C3

66

C3
12 C3

16 C3
22 C3

26



κ0

1
µ0

1
κ0

2
µ0

2

+
C5

11 C5
16 C5

12 C5
16

C5
16 C5

66 C5
26 C5

66

C5
12 C5

16 C5
22 C5

26



κ2

1
µ2

1
κ2

2
µ2

2

 ,


P1

P12

P2

=
C3

11 C3
16 C3

12 C3
16

C3
16 C3

66 C3
26 C3

66

C3
12 C3

16 C3
22 C3

26



ε0

1
γ 0

1
ε0

2
γ 0

2

+
C4

11 C4
16 C4

12 C4
16

C4
16 C4

66 C4
26 C4

66

C4
12 C4

16 C4
22 C4

26



κ0

1
µ0

1
κ0

2
µ0

2

+
C6

11 C6
16 C6

12 C6
16

C6
16 C6

66 C6
26 C6

66

C6
12 C6

16 C6
22 C6

26



κ2

1
µ2

1
κ2

2
µ2

2

 ,


S1

S12

S2

=
C4

11 C4
16 C4

12 C4
16

C4
16 C4

66 C4
26 C4

66

C4
12 C4

16 C4
22 C4

26



ε0

1
γ 0

1
ε0

2
γ 0

2

+
C5

11 C5
16 C5

12 C5
16

C5
16 C5

66 C5
26 C5

66

C5
12 C5

16 C5
22 C5

26



κ0

1
µ0

1
κ0

2
µ0

2

+
C7

11 C7
16 C7

12 C7
16

C7
16 C7

66 C7
26 C7

66

C7
12 C7

16 C7
22 C7

26



κ2

1
µ2

1
κ2

2
µ2

2

 ,
{

N1n

N2n

}
=

[
C1

55 C1
54

C1
45 C1

44

]{
λ0

1

λ0
2

}
+

[
C3

55 C3
54

C3
45 C3

44

]{
η1

1

η1
2

}
,

{
M1n

M2n

}
=

[
C2

55 C2
54

C2
45 C2

44

]{
λ0

1

λ0
2

}
+

[
C4

55 C4
54

C4
45 C4

44

]{
η1

1

η1
2

}
,

{
P1n

P2n

}
=

[
C3

55 C3
54

C3
45 C3

44

]{
λ0

1

λ0
2

}
+

[
C5

55 C5
54

C5
45 C5

44

]{
η1

1

η1
2

}
,

where

C p
i j =

1
p

N∑
k=1

(Q̄i j )k(h
p
k−h p

k−1), p ∈ {1, 2, . . . , 7}, (18)
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and hk − hk−1 is the thickness of the k-th layer. Substitution of (11) into the equations on page 1776
yields the stress resultants in terms of the displacement components. These equations, combined with
(14), form a system of 25 first-order partial differential equations for displacements and stress resultants:

[K ]
{
u1, u2, w, ϕ1, ϕ2, w1, w2, N1, N12, N2,M1,M12,M2,

P1, P12, P2, S1, S12, S2, N1n, N2n,M1n,M2n, P1n, P2n
}T
= {−q1,−q2, qn, 0, . . . , 0}T . (19)

The coefficients of the matrix K are given in the box below (19). A numerical solution for (19) can be
achieved by means of the GDQ method. The method is detailed, for example, in [Shu 1991; Bert et al.
1988], and its application to first-order differential equations is summarized here. In the GDQ method,

Nonzero entries of K referenced by row and column

Rows 1 to 7:

1,8 :
∂

∂α1
1,9 :

∂

∂α2
2,9 :

∂

∂α1
2,10 :

∂

∂α2
3,20 :

∂

∂α1
3,21 :

∂

∂α2

4,11 :
∂

∂α1
4,12 :

∂

∂α2
4,20 : −1 5,13 :

∂

∂α2
5,12 :

∂

∂α1
5,21 : −1

6,17 :
∂

∂α1
6,18 :

∂

∂α2
6,24 : −3 7,19 :

∂

∂α2
7,18 :

∂

∂α1
7,25 : −3

Rows 8 to 19:

k,k : −1

k,1 : A′1
∂

∂α1
+C ′1

∂

∂α2
k,4 :

(
A′2−

4
3h2

A′4
)
∂

∂α1
+

(
C ′2−

4
3h2

C ′4
)
∂

∂α2
k,6 : − 4

3h2
A′4

∂

∂α1
−

4
3h2

C ′4
∂

∂α2

k,2 : B ′1
∂

∂α2
+C ′1

∂

∂α1
k,5 :

(
B ′2−

4
3h2

B ′4
)
∂

∂α2
+

(
C ′2−

4
3h2

C ′4
)
∂

∂α1
k,7 : − 4

3h2
B ′4

∂

∂α1
−

4
3h2

C ′4
∂

∂α2

where

for k ∈ {8, 11, 14, 17}, n = 1
3 (k− 8), A′l = Cn+l

11 , B ′l = Cn+l
12 , C ′l = Cn+l

16 ;

for k ∈ {9, 12, 15, 18}, n = 1
3 (k− 9), A′l = Cn+l

16 , B ′l = Cn+l
26 , C ′l = Cn+l

66 ;

for k ∈ {10, 13, 16, 19}, n = 1
3 (k− 10), A′l = Cn+l

12 , B ′l = Cn+l
22 , C ′l = Cn+l

16 ,

Rows 20 to 25:

k,k : = −1 k,4 : = A′1−
4
h2

A′3 k,6 : = − 4
h2

A′3

k,3 : = A′1
∂

∂α1
+ B ′1

∂

∂α2
k,5 : = B ′1−

4
h2

B ′3 k,7 : = − 4
3h2

A′3

where

for k ∈ {20, 22, 24}, n = 1
2 (k− 20), A′l = Cn+l

55 , B ′l = Cn+l
45 ,

for k ∈ {21, 23, 25}, n = 1
2 (k− 21), A′l = Cn+l

45 , B ′l = Cn+l
44 .
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the derivative of a function at any discrete point in a given direction is approximated by the weighted
linear sum of the function values at all sampling points in that direction,

d F(xk)

dx
=

N∑
l=1

Ckl F(xl), k ∈ {1, 2, . . . , N }, (20)

where N denotes the number of sampling points selected in the x-direction and Ckl are the weighting
coefficients of the first derivative with respect to the variable x . Taking the Lagrange interpolation
polynomials as test functions, the coefficients in (20) result in

Ckl =
M(xk)

(xk − xl)M(xl)
, k, l = 1, 2, . . . , N , k 6= l,

Ckk =−

N∑
l=1
l 6=k

Ckl, k = 1, 2, . . . , N ,
(21)

where M(xk)=
N∏

l=1
l 6=k

(xk − xl). The sampling points are chosen in the form of a cosine distribution as

xk =
a
2

[
1− cos

( k−1
N−1

π
)]
, k = 1, 2, . . . , N , (22)

where a is the length in x-direction. Differentiating (19) with respect to α1 and α2 and using (20) together
with the boundary conditions (see page 1775) leads to an overdetermined system of algebraic equations
for displacements and stress resultants at the sampling points. These equations are then solved using
least-squares minimization methods.

3. Numerical results

To verify the methodology developed in this study, the bending of symmetric ([0/90/0] and [90/0/90])
and antisymmetric [0/90] cross ply square plates, subjected to uniformly distributed transverse loads,
were considered. A material with the following properties was used in these numerical calculations:

E1

E2
= 25,

G12

E2
=

G13

E2
= 0.5,

G23

E2
= 0.2, ν12 = 0.25,

in which E1 and E2 are the in-plane Young’s modulus in the α1 and α2 coordinate directions. G12 is the
in-plane shear modulus, G13 and G23 are the transverse shear modulus in the α1− n and α2− n planes,
respectively, whereas ν12 is the major Poisson’s ratio in the α1-α2 plane. The quantities w∗ and M∗1 are

w∗ =−
103 E2h3

qna4 w, M∗1 =
103 Mi

qna2 .

Here, ‘a’ is the length of the edges of the square, and qn denotes the uniformly distributed transverse
load. In this study, three models with various boundary conditions were considered. The first model,
called (S-S-S-S), is a plate with an SS2-type simply supported boundary condition on all edges. The
second model, called (S-S-S-SF), is a plate with SS2-type simply supported boundary condition on three
edges, and the fourth edge, corresponding to the edge α1 = a, is a mixed boundary condition of free and
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!
Figure 1. The models used in the present study with their various boundary conditions.

SS2-type simply supported boundary conditions, as shown in Figure 1. (S-S-S-F) is the last model and
has three edges subjected to the SS2 boundary condition, and the edge corresponding to the edge α1 = a
is free.

The SS2-type simply supported boundary conditions and free edge defined on the edge αi = constant
are as follows:

SS2 type: ui = 0, Mi = 0, Si = 0, Ni j = 0, ϕ j = 0, w j = 0, w = 0.

Free edge: Ni = 0, Mi = 0, Si = 0, Ni j = 0, Mi j = 0, Si j = 0, Nin = 0.

In all models, the displacements and moments are computed at the center of the plate. Because the
bending of a plate with mixed boundary conditions has not been extensively investigated, we compared
the models to simulations performed with the ANSYS version 5.4 finite element software. The finite
element mesh is composed of 400 SHELL99 elements with identical dimensions.

Table 1 compares the normalized central deflections of antisymmetric [0/90] and symmetric [0/90/0]
and [90/0/90] cross ply square plates, characterized by four different a/h ratios, for the three models,
computed using our approach versus ANSYS. In each direction, fifteen grid points are used for model
(S-S-S-S), 17 for model (S-S-S-SF), and 19 for model (S-S-S-F). Table 2 shows the analogous compares
for central moments.

The maximum w∗ discrepancy between the two sets of results is observed for the (S-S-S-SF) model
with a [0/90/0] lamination and a/h= 10. In comparing the results with FE, we mention that the boundary
conditions used in the present approach are not identical to those in ANSYS. Therefore, we expect some
discrepancies between the results. Nonetheless, discrepancies should not be more than 11%.

The discrepancies of the normalized central moments, M∗1 , between the two sets of results can be
attributed to the fact that ANSYS calculates moments on grid points by extrapolating the moment calcu-
lated over the Gaussian points. Therefore, this method produces some approximations in the calculation
of moments on grid points.

In the [90/0/90] lamination, the normalized central deflections of (S-S-S-SF) are larger than those of
(S-S-S-F). A finite element analysis with 1600 elements (a/h = 10) was performed. The value of w∗,
in the center of both (S-S-S-SF) and (S-S-S-F) models, is 11.73.

The first three rows of Figure 2 display the convergence (with n1 = n2 = n) of normalized transverse
displacements w∗ and normalized moments M∗1 for the (S-S-S-S), (S-S-S-SF), and (S-S-S-F) models
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a/h = 100, (S-S-S-S)

a/h = 100, (S-S-S-SF)

a/h = 100, (S-S-S-F)

a/h = 10, (S-S-S-SF)

Figure 2. Convergence of the normalized central deflection w∗ (left) and the normalized
central moment M∗1 (right) of a symmetric cross ply [0/90/0] for the three models.
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(S-S-S-S) (S-S-S-SF) (S-S-S-F)
a/h [0/90] [0/90/0] [0/90] [0/90/0] [90/0/90] [0/90] [0/90/0] [90/0/90]

10
present

ANSYS
11.73
11.63

10.98
11.70

11.65
12.72

11.60
13.10

11.41
11.72

17.88
17.73

52.79
53.44

10.97
11.73

20
present

ANSYS
9.82
9.72

7.79
7.96

10.40
10.58

8.65
9.34

7.80
7.96

15.12
14.98

49.54
49.64

7.67
7.85

50
present

ANSYS
9.23
9.18

6.84
6.86

9.76
9.96

7.87
8.06

6.84
6.86

14.27
14.20

48.54
48.51

6.72
6.74

100
present

ANSYS
9.14
9.11

6.71
6.73

9.68
9.87

7.72
7.83

6.70
6.73

14.10
14.09

48.40
48.55

6.58
6.61

Table 1. Normalized central deflections of square plates with different a/h ratios, cross
ply patterns and models, calculated under the present approach and with ANSYS.

(S-S-S-S) (S-S-S-SF) (S-S-S-F)
a/h [0/90] [0/90/0] [0/90] [0/90/0] [90/0/90] [0/90] [0/90/0] [90/0/90]

10
present

ANSYS
69.42
69.96

122.88
120.97

63.19
68.47

116.55
125.10

14.94
13.94

23.14
22.81

53.90
53.32

7.26
7.65

20
present

ANSYS
70.30
70.67

128.06
128.20

70.07
69.08

136.87
141.03

9.82
9.80

22.73
22.66

57.01
56.89

5.50
5.61

50
present

ANSYS
70.64
70.92

129.57
129.93

73.75
69.19

140.15
141.90

8.58
8.56

22.57
22.63

58.21
58.42

4.92
4.94

100
present

ANSYS
70.70
70.97

129.78
130.17

72.57
69.18

140.85
142.02

8.47
8.39

22.59
22.63

58.61
58.82

4.84
4.84

Table 2. Normalized central moments of square plates with different a/h ratios, cross
ply patterns and models, calculated under the present approach and with ANSYS.

describing symmetric cross ply [0/90/0] square plates with a/h = 100. Rapid convergence was observed
for the (S-S-S-S) model, and convergence of the (S-S-S-SF) model was the slowest. The convergence of
each model was similar for different a/h ratios, with the exception of model (S-S-S-SF), with a/h = 10,
shown at the bottom in Figure 2. It is interesting to note that, as observed in this latter figure, the curve
of convergence initially ascends, then descends at n = 15. The number 15 is reported as the convergence
number for this case. Actually, convergence for the deflections and moments, for thicker plates, was ac-
complished with a smaller number of grid points. This characteristic was observed by Lanhe et al. [2005]
in the vibration analysis of composite plates, by applying a least square GDQ method based on FSDT.

Figure 3, top left, compares the variation in central deflections w∗ for three different laminations,
including antisymmetric [0/90] and symmetric [0/90/0], [90/0/90], with respect to the a/h ratio, for
the (S-S-S-S) model. It is seen in the figure that the normalized central deflections of two symmetric
cross ply laminates are equal because the boundary conditions imposed on all edges are similar. However,
the normalized central deflections, of the antisymmetric cross ply plate are considerably larger that their
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(S-S-S-S) (S-S-S-SF)

(S-S-S-F)

Figure 3. Variation in central deflection w∗ with respect to the a/h ratio for [0/90],
[0/90/0], and [90/0/90] laminations, in the three models.

symmetric counterparts. As the a/h ratio decreases from thin to moderately thick, the difference between
symmetric and antisymmetric lamination decreases, and this decrease is much larger for moderately thick
aspect ratios (10< a/h < 20). This behavior is known as the ”beam–column/tie bar” effect caused by
the bending-stretching coupling present in the antisymmetric laminate.

Figure 3, top right, presents a comparison of the variation in central deflections w∗ for three different
laminations, including antisymmetric [0/90] and symmetric [0/90/0], as well as [90/0/90], with respect
to the a/h ratio, for the (S-S-S-SF) model. As can be observed from the rule, the normalized central
deflections of the two symmetric cross ply laminates are different, because the boundary conditions on
the two edges α1 = 0 and α1 = a are different. Therefore, in the [0/90/0] lamination, the orientation of
most fibers of the laminate material is along to α1 coordinate. This increases the deflection caused by
the free part of the edge α1 = a. The difference between the behavior of the laminations [0/90/0] and
[90/0/90] for the (S-S-S-SF) model is shown in the first two panels of Figure 4.

Figure 3, bottom, shows the comparison of the of the variation in the central deflections w∗ for three
different laminations, including antisymmetric [0/90] and symmetric [0/90/0], [90/0/90], with respect
to the a/h ratio, for the (S-S-S-F) model. The figure highlights the differences between the laminations.
In the [0/90/0] lamination, as was described for (S-S-S-SF), the direction of most fibers of the laminate
material is along to α1 axis. This contributes to an increase in the deflection of the plate. The difference
between the behavior of laminations [0/90/0] and [90/0/90] is shown in Figure 4, right.
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! !
[0/90/0] [90/0/90] [0/90/0] [90/0/90]

(S-S-S-SF) (S-S-S-F)

Figure 4. Displacement contours of a plate with laminations [0/90/0] and [90/0/90]
for two of the models.

Figure 5 compares the central deflection of the (S-S-S-S) and (S-S-S-SF) models, for [0/90], [0/90/0],
and [90/0/90] laminations. The maximum difference between (S-S-S-S) and (S-S-S-SF) is observed in
the [0/90/0] lamination, and the minimum difference is observed in the [90/0/90] lamination. This
effect can be understood from the explanation given for Figure 4, left.

[0/90] [0/90/0]

[90/0/90]

Figure 5. Variation in central deflection w∗ with respect to the a/h ratio for [0/90],
[0/90/0], and [90/0/90] laminations, in the (S-S-S-S) and (S-S-S-SF) models.
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[0/90] [0/90/0]

[90/0/90]

Figure 6. Variation in central deflection w∗ with respect to the a/h ratio for [0/90],
[0/90/0], and [90/0/90] laminations, in the (S-S-S-F) and (S-S-S-SF) models.

Figure 6 illustrates the comparison of central deflections, w∗, of the (S-S-S-SF) and (S-S-S-F) models
for [0/90], [0/90/0], and [90/0/90] laminations. The maximum difference between (S-S-S-S) and (S-S-
S-SF) is observed in the [0/90/0] lamination, and the minimum difference is in the [90/0/90] lamination.
Although the boundary condition, SF, is much stronger than the boundary condition, F, in the [90/0/90]
lamination, most of the normalized central deflections in the model (S-S-S-SF) are larger than those of (S-
S-S-F). In the case of an isotropic material, it is always expected that the normalized central deflections
of (S-S-S-F) are larger than those of (S-S-S-SF). However, when using composite materials, the behavior
of the structure is more complex. We come to the conclusion that, in addition to the boundary conditions,
the direction of the lamination contributes to the behavior of the structure.

4. Conclusion

A new formulation, based on higher-order shear deformation theory, is presented to solve the problem
of laminated plates with mixed boundary conditions. Using the principle of virtual work, the govern-
ing equations, together with the required boundary conditions for higher-order shear deformation, are
formulated. The equations are solved numerically by means of the generalized differential quadrature
method. Three models differing in their boundary conditions on one edge are considered. The results are
compared against solutions obtained using ANSYS, and reasonable agreement is observed. Numerical
results presented here for cross ply plates demonstrate a reasonably fast convergence for the (S-S-S-S)
model and slow convergence for the (S-S-S-SF) model.

When an isotropic material is used, it is usually expected that, because the constraint on SF is much
stronger than the constraint on F, the normalized central deflections of (S-S-S-F) are larger than those
of (S-S-S-SF). According to the tables, for the lamination [90/0/90], normalized central deflections of
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(S-S-S-SF) are larger than those of (S-S-S-F). This result illustrates that when a composite material is
used, the behavior of the structure is more complex, and we can come to the conclusion that, in addition
to the boundary conditions, the direction of the lamination contributes to the behavior of the structures.

The direction of fibers in the [0/90/0] and [90/0/90] laminations has a significant effect, especially for
models (S-S-S-SF) and (S-S-S-F). When the direction of most of the fibers is perpendicular to the free
edge, the central deflections of the plates are larger than when it’s parallel. The effect of the transverse
shear deformation is described by the conceptual bending-stretching coupling effect, a characteristic of
antisymmetric laminates. This characteristic is obvious in the model (S-S-S-S).
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