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INELASTIC HEAT FRACTION EVALUATION FOR ENGINEERING PROBLEMS
INVOLVING DYNAMIC PLASTIC LOCALIZATION PHENOMENA

PATRICE LONGÈRE AND ANDRÉ DRAGON

The evaluation of the temperature produced during adiabatic dissipative processes for a large class of
engineering materials (metals and some polymers) remains a major subject of interest, notably in the
fields of high-speed machining and impact dynamics. The hypothesis consisting in considering the
proportion of plastic work dissipated as heat (quantified by the inelastic heat fraction β) as independent
on the loading path is now recognized as highly simplistic. Experimental investigations have shown
indeed the dependence of the inelastic heat fraction on strain, strain rate and the temperature itself.
The theoretical studies available nowadays are not entirely conclusive on various features regarding the
history dependence and the evolution of β. The present work attempts to provide a systematic approach
to the temperature rise and the inelastic heat fraction evolution for a general loading within the framework
of thermoelastic/viscoplastic standard modelling including a number of quantitative variants regarding
strain hardening/thermal softening and thermomechanical coupling description. The theoretical results
thus obtained are confronted with experimental data from the literature. An analysis of the effects of
various model simplifications on the evaluation of temperature growth with regard to conditions for
dynamic plastic localization occurrence is also carried out. It is shown that the value of critical shear
strain at localization incipience is strongly dependent on the level of simplification admitted.

1. Introduction

As a consequence of dynamic loading under (quasi) adiabatic conditions, many materials, and especially
high strength metallic ones, are subject to plastic deformation localization in the form of narrow bands.
This phenomenon, known as adiabatic shear banding (ASB), intervenes as thermal softening overcomes
strain hardening and is often the precursor of structural failure. Many experimental as well as theoretical
studies have been devoted to this deterioration process induced by thermal instability in terms of onset
conditions, collective band behaviour and postcritical response [Zener and Hollomon 1944; Recht 1964;
Marchand and Duffy 1988; Bai and Bodd 1992; Longère et al. 2005]. They all point out the crucial role
of temperature. An accurate knowledge of the heat Q̇ generated by the plastic work rate Ẇ p during
adiabatic dissipative evolution is thus needed. The quantity characterizing the proportion of plastic work
dissipated as heat is commonly denoted β, such that Q̇ = βẆ p, and is usually called the inelastic heat
fraction Taylor–Quinney coefficient [Taylor and Quinney 1934]. The engineering viewpoint consists in
supposing that the inelastic heat fraction coefficient β remains constant during any process. When simu-
lating numerically dynamic adiabatic problems using engineering computation codes, this assumption —
which supposes that the coefficient β may be postulated a priori — is useful in the sense that it allows for
accounting for thermomechanical couplings without solving the heat equation. In the literature, the value
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of β typically ranges from 80 to 100% [Campagne et al. 2005; Guo et al. 2005] — in other words, between
80% or 100% of the plastic work is supposed to be converted into heat. However many experimental
investigations have shown that the proportion of plastic work dissipated as heat is strongly dependent
on temperature, strain and strain rate. Starting from this crude fact, this paper aims at proposing a more
rigorous assessment of the temperature rate Ṫ and the related inelastic heat fraction coefficient β (as
an evolving quantity) for any three-dimensional loading path and thermoelastic/viscoplastic standard
materials by using irreversible thermodynamics concepts in the context of adiabatic processes. As an
application of this work, the consequences of various levels of simplification for evaluating both of the
aforementioned quantities are studied in the context of ASB dynamic plastic localization onset conditions.

According to the extensive review by Bever et al. [1973] concerning the experimental investigations
of the ratio a of the stored energy Ẇ s to the mechanical energy Ẇ (a = Ẇ s /Ẇ ) during various plastic
deformation processes, this ratio may be as expected strongly dependent on the loading path, on the
material and on the deformation magnitude. In the present work we are rather interested in the energy
adiabatically transformed into heat Q̇ as a linear function of the plastic deformation energy Ẇ p via
the so-called inelastic heat fraction β (β = Q̇ /Ẇ p). Particularly useful in the numerical simulation of
transient problems (crash, shock impact, etc.) for taking into account the thermomechanical coupling
under adiabatic conditions without solving the thermal problem, the inelastic heat fraction remains an
important subject of investigation, the accuracy of temperature measurement increasing thanks to the
improvement of the relevant devices. In this context, some experimental determination of heating during
plastic deformation at various strain rates tends to prove the dependence of the inelastic heat fraction on
strain, strain rate and temperature [Chrysochoos et al. 1989; Kapoor and Nemat-Nasser 1998; Oliferuk
et al. 2004]. Theoretical analyses [Aravas et al. 1990; Zehnder 1991] devoted to the subject agree with
the tendency mentioned above but qualitative results appear contradictory [Mason et al. 1994] depending
on the basic concepts used. The present work aims to propose an evaluation of the proportion of plastic
work dissipated as heat from a broad spectrum of thermoelastic/viscoplastic models within the internal
variables framework employing well-established thermodynamic concepts. With this aim in view, and
starting from the assumption of the existence of free energy and dissipation potential and applying the
first and second principles of thermodynamics, a class of characteristic constitutive three-dimensional
thermoelastic/viscoplastic models is investigated with respect to their capacity to reproduce the evolution
of β as a function of strain, strain rate and temperature. As the works by Rosakis et al. [2000] for one-
dimensional constitutive modelling and Clayton [2005] for crystalline plasticity based modelling, this
analysis strives to provide some complementary insight regarding heat generation versus dissipative
mechanisms involving strain, strain rate and temperature effects in dynamic plasticity. Comparison of
experimental and theoretical results concerning inelastic heat fraction evolution during some simple
loading is discussed showing striking effects and paradoxes.

A further item treated in the present work is the analysis of the effects of model simplifications in
the evaluation of temperature growth regarding conditions for dynamic plastic localization occurrence.
These conditions are obtained from a simplified analysis based on the theory of linear perturbation [Bai
1982; Clifton et al. 1984] in the form of a criterion relating the resolved shear stress to strain hardening,
thermal softening and viscosity parameters [Batra and Chen 2001; Longère et al. 2003] in the context
of adiabatic shear banding localization. The purpose of the present study is not to discuss or extend
the theory but to apply the method in order to obtain a practical criterion reproducing experimental
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observation — the reader can refer to [Molinari 1985; Fressengeas and Molinari 1985; Anand et al.
1987] for extensive methodological background. Various levels of simplification of the heat equation
formulation are consequently considered yielding corresponding criteria for ASB onset.

In Section 2 selected thermomechanical ingredients are recalled leading to the expression of the heat
equation in the case of thermoelastic/viscoplastic modelling. The context considered in this work con-
cerns loading at high strain rates for which adiabatic conditions can be assumed. Dissipative material
behaviour is thus supposed to be (visco)plastic and pressure insensitive. The strain rates range considered
is typically comprised between 102 and 104 s−1, and maximum value of temperature remains much lower
than the melting point.

In Section 3 several typical material behaviour models are studied including the combined effects of
isotropic strain hardening/softening, thermal softening and plastic viscosity. The influence of strain rate
and initial temperature as well as the influence of the functions used to describe the aforementioned
effects on the temperature rate and on the inelastic heat fraction are shown. A confrontation of the
theoretical results with experimental observations available in literature is also discussed.

In Section 4 three levels of simplification of heat equation are studied: first, due to its weak contribution
to temperature change the thermoelastic coupling is neglected ; second, thermodissipative couplings are
neglected as well ; finally the temperature rise is supposed to be directly linked to the plastic work rate via
the inelastic heat fraction assumed to have a constant value. The consequences of these simplifications
are examined in the context of thermal instability-induced dynamic plastic localization. With this aim in
view, the linear perturbation method is applied to the case of the simple shearing of a volume element
consisting of a thermo/viscoplastic material. The further parametric analysis shows how the value of the
critical shear strain at localization incipience is strongly dependent on the temperature rise evaluation
method.

2. Thermodynamic context and constitutive framework

The irreversible thermodynamics framework is used here to describe the thermoelastic-inelastic response
of a material [Perzyna 1966; Bataille and Kestin 1975]. For the first time, expressions of dissipated energy
and heat equation are given within the internal variable framework. The different levels of simplification
of the heat equation are then introduced in connection with the further study of heat evaluation at the
dynamic localization onset.

The instantaneous state of the material is described by a thermodynamic potential, namely the Helm-
holtz free energy per unit mass ψ(T, z) where T represents absolute temperature — which is supposed
to be a well defined entity within the thermodynamic framework employed — and z, a set of normal
variables. Gibbs’ relation takes the form:

ρ0ψ̇ = −ρ0sṪ + Z ż, s = −
∂ψ

∂T

∣∣∣∣
z
, Z = ρ0

∂ψ

∂z

∣∣∣∣
T
, (1)

where ρ0 represents the mass density in the initial configuration, s the entropy and Z the set of thermo-
dynamic (conjugate) forces associated with the state variables z.

According to the second law of thermodynamics, the mechanical part of dissipated energy is written
as

D = τ : d− Z ż ≥ 0, (2)
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where d represents the rate of deformation tensor and τ the Kirchhoff stress tensor defined as the Cauchy
stress tensor σ multiplied by the Jacobian determinant J of the deformation gradient F (J= det F), that
is, τ = Jσ .

Combination of the first law of thermodynamics and of Gibbs relation gives the local form of the heat
equation as

ρ0cz Ṫ + J div q− r = τ : d−
(

Z − T
∂Z
∂T

)
ż, (3)

where q is the heat flux vector per unit area, r the heat supply per unit volume, and

cz =−T
∂2ψ

∂T 2

∣∣∣∣
z

is the heat capacity at given z.
Equation (3) above relates thermal terms on the left side, including temperature rate Ṫ , heat conduction

div q, and heat supply r, to mechanical terms on the right side, including mechanical work rate τ : d and
other work rates Z ż, while the last term T ∂Z/∂T ż is referred explicitly to thermomechanical couplings.

The study is now reduced to thermoelastic/viscoplastic behaviour in the case of isotropic strain hard-
ening. The set of state variables is assumed in the form z ≡ (ee, p), where ee represents a measure of
moderate elastic strain, (ee

= ln V e ; Fe
= V e Q where Fe proceeds from the multiplicative split of the

deformation gradient F = Fe F p and where V e and Q represent the pure elastic stretching and the frame
rotation tensors respectively), and

p =
∫

t

√
2
3 d p
: d pdt

the isotropic strain hardening variable. The set of conjugate forces is thus given in the form Z ≡ (τ , R),
where R represents the isotropic hardening force (affinity).

The rate of deformation (symmetric part of the velocity gradient) d = [∂v/∂x]S is furthermore de-
composed into a reversible (‘elastic’) part

de
=

∇

ee
= ėe
−ωee

+ eeω,

(where ∇ designates the objective Jaumann derivative of a 2nd order tensor) and an irreversible part d p

such that d = de
+ d p [Sidoroff and Dogui 2001].

The mechanical dissipation in Equation (2) becomes

D = τ : d p
− R ṗ ≥ 0. (4)

The constitutive laws are thus expressed as

s = −
∂ψ

∂T

∣∣∣∣
ee,p

, τ = ρ0
∂ψ

∂ee

∣∣∣∣
T,p
, R = ρ0

∂ψ

∂p

∣∣∣∣
T,ee

. (5)

The free energy density ψ (T, ee
; p) is expressed in the form

ψ(T, ee
; p)= ψe(T, ee)+ψ th(T )+ψb(T ; p), (6)

where ψe(T, ee) is the recoverable energy including the isotropic linear thermoelasticity, ψ th(T ) is the
purely thermal energy, and ψb(T ; p) is the stored energy, which reflects the competition in the material
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between isotropic strain hardening and thermal softening. These contributions are written as

ρ0ψ
e(T, ee)=

λ

2
(Tr ee)2+µee

: ee
−αK (Tr ee)ϑ,

ρ0ψ
th(T )=−ρ0c0

(
T ln

T
T0
−ϑ

)
− h(0) f (T ),

ρ0ψ
b(T, p)= h(p) f (T )− h(0) f (0),

(7)

where λ and µ represent the Lamé elasticity constants, K = λ+ 2
3µ the bulk modulus, α the thermal

dilatation coefficient, c0 a thermal constant relative to heat capacity, ϑ = T − T0 the temperature rise,
h(p) the stored energy of cold work and f (T ) the thermal softening function. For simplification, the
thermoelasticity coefficients and c0 are supposed to be temperature independent.

From now on the elastic deformations will be considered as small (infinitesimal).
After partial derivation of Equation (6) with respect to (T, ee, p), thermodynamic forces (−s, τ , R)

are written as

−ρ0s =−αK Tr ee
− ρ0c0 ln

T
T0
− [h(0)− h(p)] f ′(T ), (8)

τ =
(
λTr ee

−αKϑ
)
δ+ 2µee, (9)

R = h′(p) f (T ). (10)

On the other hand, the heat capacity

cz =−T
∂2ψ

∂T 2

∣∣∣∣
z
= T

∂s
∂T

∣∣∣∣
z

takes the form

cz = c0+ T
[h(0)− h(p)]

ρ0
f ′′(T ).

Assuming a negligible contribution of the thermoplastic coupling term of this expression (this term is
always zero since f (T ) is an affine function), the heat capacity is supposed to be constant, that is, cz = c0.

By rewriting the mechanical dissipation equation (4) in the form D = Z̄ ˙̄z ≥ 0, Z̄ = (τ , R) represents
the set of thermodynamic forces associated to the set of fluxes ˙̄z =

(
d p,− ṗ

)
. Considering now time-

dependent plasticity and applying the normality rule with respect to the dual 9
(
Z̄
)

of the dissipation
potential, depending on Z̄ via the loading (yield) function F

(
Z̄
)

(that is, standard rule for ˙̄z), internal
state variable evolution laws are deduced from:

˙̄z =3
∂F

(
Z̄
)

∂ Z̄
, 3=

∂9(F)
∂F

≥ 0, (11)

where 3 represents the viscous multiplier governing dissipative mechanisms of plasticity.
Applying the normality rule to the present case yields

d p
=3

∂F
∂τ
; − ṗ =3

∂F
∂R
. (12)
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The yield function F
(
Z̄
)

in Equation (11) is assumed in the form of a Huber–von Mises criterion:

F (τ , R; T )= J2 (τ )− g(R, T ), (13)

where J2 (τ )=
√

3
2 s : s and s = τ − Tr τ

3 δ represents the stress deviator tensor.
The strain hardening function g(R, T ) in Equation (13) representing the Huber–von Mises surface

radius is expressed by
g(R, T )= R0 f (T )+ R(T, p). (14)

Evolution laws in Equation (12) are thus detailed as

d p
=

3
2
3

s
J2
; ṗ =3. (15)

The model is completed by the expression of the force potential in (11):

9(F)=
Y

m+ 1

〈
F
Y

〉m+1

, 3=

〈
F
Y

〉m

= H(F). (16)

Inverting Equation (16)2 and using (13), (14) and (15) yield

J2 = R0 f (T )+ R(T, p)+8(T, p, ṗ) (17)

with 8= H−1. According to Equation (15)1,2, the rate of plastic work τ : d p in (4) is thus given by:

τ : d p
= J2 ṗ = [R0 f (T )+ R(T, p)+8(T, p, ṗ)] ṗ. (18)

Furthermore Equation (3) becomes

ρ0c0Ṫ + J div q− r = τ : d p
+ T

∂τ

∂T
: de
−

(
R− T

∂R
∂T

)
ṗ. (19)

The context considered here concerns loading at high strain rate excluding heat supply and for which
conditions can be assumed as adiabatic (dynamic loading). Relation (19) is thus reduced to

ρ0c0Ṫ = τ : d p
+ T

∂τ

∂T
: de
−

(
R− T

∂R
∂T

)
ṗ. (20)

In Equation (20), τ : d p represents the plastic part of the mechanical work rate (plastic work rate), R ṗ
the stored energy rate (the difference τ : d p

− R ṗ represents the unrecoverable energy rate dissipated
by heating; see Equation (4)) , T (∂τ/∂T ) : de the thermoelastic coupling contribution which describes
cooling during a tensile loading and heating during a compressive one, and T (∂R/∂T ) ṗ the thermo-
plastic coupling contribution which expresses the stored energy release rate during the temperature rise
(see [Clayton 2005] for a similar approach).

In the following, the effects of strain hardening and thermal softening (acting both on isotropic hard-
ening force) on temperature rise are studied. Thermoelastic coupling contribution to temperature rise
is actually particularly significant in problems involving very high velocity impact and/or high pressure
shock loading. In the context of this work, velocity and pressure are considered moderate and thermoe-
lastic coupling is neglected.



INELASTIC HEAT FRACTION EVALUATION FOR ENGINEERING PROBLEMS 325

Accounting for Equation (18), relation (20) is thus reduced to

Ṫ =
1
ρ0c0

[
J2−

(
R− T

∂R
∂T

)]
ṗ. (21)

Injecting the expression (17) of the stress invariant J2 and the expression (10) for R yields

Ṫ =
R0 f (T )+ T h′(p) f ′(T )+8(T, p, ṗ)

ρ0c0
ṗ. (22)

Remark 1. Comparing the dissipation form in Equations (4) and (22) yields

ρ0c0Ṫ = D+ T h′(p) f ′(T ) ṗ. (23)

The dissipation is positive while the second term on the right side is negative ( f ′ being negative for
thermal softening material). The temperature increases if the dissipation is high enough to exceed the
thermomechanical coupling term which proceeds from T (∂R/∂T ) ṗ in Equation (21). The condition
for temperature growth is written from (23) as

R0 f (T )+8(T, p, ṗ) > T h′(p) f ′(T ). (24)

For R0 = 0, there is thus a competition between viscous and thermomechanical effects regarding temper-
ature changes. Neglecting this last contribution leads to the common relation

ρ0c0Ṫ = D. (25)

Furthermore, starting from the definition of the inelastic heat fraction β as β = ρ0cy Ṫ /τ : d p and under
the aforementioned assumptions, the following expression is deduced from (21):

β = 1−
R− T ∂R

∂T

J2
. (26)

Injecting the complete expressions of J2 and R from (17) and (10) gives

β = 1−
h′(p)

[
f (T )− T f ′(T )

]
[R0+ H ′(p)] f (T )+8(T, p, ṗ)

. (27)

Consequently the inelastic heat fraction β is explicitly a function of temperature, strain and strain rate.
Starting from relation (27), a series of comments can be made.

Remark 2. For cumulated plastic strain p2 > p1 close enough to consider that T1 ≈ T2 ≈ T , one can
write from (27):

β (T, p2, ṗ)−β (T, p1, ṗ)≈−
[
h′ (p2)− h′ (p1)

] f (T )− T f ′(T )
[R0+ h′(p)] f (T )+8(T, p, ṗ)

. (28)

Using the notation

χ =
f (T )− T f ′(T )

[R0+ h′(p)] f (T )+8(T, p, ṗ)
, (29)
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with χ > 0 as long as f (T )− T f ′(T ) > 0, which is the case for most (thermal softening) materials,
relation (28) is reduced to

∂β

∂p
≈−χh′′(p). (30)

According to (30), it is possible to conclude that for a material exhibiting strain hardening (h′′(p) > 0),
the inelastic heat fraction is decreasing for increasing strain, that is, ∂β/∂p < 0. Oppositely, for material
exhibiting strain softening (h′′(p) < 0), the inelastic heat fraction is increasing for increasing strain, that
is, ∂β/∂p > 0.

Remark 3. According to (27), β(T, p, ṗ) is equal to unity when h′(p)[ f (T )− T f ′(T )] = 0 which
is satisfied for a perfectly plastic material (h′(p)= 0) or for a material exhibiting a linear dependence
of strain hardening on temperature ( f (T ) = AT ). Finally, β = 1 for any loading path allowing for
f (T )= T f ′(T ).

Remark 4. Suppose now that f (T0) = ς (0 < ς < 1), f ′ (T0) = −ξ (ξ > 0), and let us note that
h′(0)= R1>0.

In this case, according to (27),

β0 = β (T0, 0, ṗ)= 1−
R1 (ς + ξT0)

(R0+ R1) ς +8(T0, 0, ṗ)
,

and for any R1 6= 0, one obtains β0 < 1.

Remark 5. Suppose finally that f (T )= 1− AT (A > 0), R0 = 0 and 8(T, p, ṗ)= h′(p) f (T )z( ṗ).
In this case

β (T, p, ṗ)= 1−
1

f (T ) [1+ z ( ṗ)]
= β (T, ṗ) .

Thus β does not depend on the plastic strain p. On the other hand, for a given strain rate ṗ, as f (T )
decreases with increasing temperature T , then β decreases with increasing temperature, and for a given
temperature T , as z ( ṗ) increases with increasing strain rate ṗ, then β increases with increasing strain
rate ṗ.

By employing the inelastic heat fraction considered as a constant, heat equation is reduced to

Ṫ =
β

ρ0c0
J2 ṗ. (31)

Injecting (17) into (31) yields

Ṫ = β

[
R0+ h′(p)

]
f (T )+8(T, p, ṗ)
ρ0c0

ṗ. (32)

Expression (32) above has to be compared with expression (22). In particular, the temperature rate here
is always positive (see Remark 1).

3. Application to usual models

Following conventional experimental procedures, material constants for most models are identified from
a series of tests carried out at various strain rates for a given initial temperature and/or at different
temperatures for a given nominal (generally low) strain rate. In this context, the respective contributions
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of separated effects of temperature, strain and strain rate can be determined during the material constant
numerical identification. The latter needs, for high strain rate (adiabatic) tests, the evaluation of heating
produced by the plastic work, that is, an expression for the inelastic heat fraction.

In this section, various thermodynamic and/or engineering models are studied in terms of stress in-
variant, temperature and inelastic heat fraction evolutions. Independently of the genuine temperature
evolution in the material, the influence of the choice of the model is pointed out. As usually assumed,
adiabatic conditions are supposed to prevail at strain rates higher than 100 s−1.

According to the methodology detailed previously, a series of mathematical functions available in
literature has been selected and reported in the following tables.

Tables 1–3 give the usual functions describing the effects of strain hardening/softening, thermal soft-
ening and strain rate, respectively. Corresponding abbreviations used later in the analysis are also given.

The Ramberg–Osgood (HRO) model in Table 1 for strain hardening has the form of a power law.
For n = 0, stored energy is linear (HL with HL=HROn=0) with respect to cumulated plastic strain
while the material is perfectly plastic; for n = 1, stored energy evolves as a quadratic function (HQ with

Ramberg–Osgood HRO Voce HV Strain softening HS

h(p) k pn+1

n+1
R∞[p+

1
k

exp(−kp)] −
R∞
k

exp(−kp)

h′(p) kpn R∞[1− exp(−kp)] R∞ exp(−kp)

h′′(p) nkpn−1 k R∞ exp(−kp) −k R∞ exp(−kp)

Table 1. Usual strain hardening/softening functions h(p).

Linear FL Power FP Exponential FE

f (T ) 1− AT 1−
(

T−Tr
Tm−Tr

)m

exp(−γ T )

f ′(T ) A > 0 −
m

Tm−Tr

(
T−Tr
Tm−Tr

)m−1

−γ. exp(−γ T )

f ′′(T ) 0 m(1−m)
(Tm−Tr )

2

(
T−Tr
Tm−Tr

)m−2

γ 2 exp(−γ T )

Table 2. Usual thermal softening functions f (T ).

additive type ADD multiplicative type MUL Exponential type EXP

ṗ = H 〈F〉 1/τ0 〈F/R0〉
m 1/τ0 〈F/R〉m ṗ0 exp 〈F/C R〉

τ0 〈Y/R0〉
m τ0 1/ ṗ0

8= H−1 Y ṗ1/m Rτ 1/m
0 ṗ1/m C R ln ( ṗ/ ṗ0)

Table 3. Usual strain rate functions H 〈F〉.
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HQ=HROn=1) of cumulated plastic strain and hardening is linear with respect to cumulated plastic
strain; for most metals the value of n is comprised between 0 and 1. The Voce (HV) model describes
strain hardening with saturation stress, the latter being represented by R∞. Finally, the strain soften-
ing model (HS) is retained in this study as an exponential decreasing function. On the other hand,
the combination of several strain hardening/softening functions is designated by linking corresponding
abbreviations. HMLRO designates, for example, hardening/softening behaviour (H) described using
multiple (M) functions including linear hardening (L) and Ramberg–Osgood (RO). HMSQ designates
hardening/softening behaviour (H) described using multiple (M) functions including softening (S) and
the quadratic hardening Ramberg–Osgood (Q) function.

The linear function (FL) in Table 2 for thermal softening can be considered as an approximation, for
low temperature changes, of a more complex dependence of material behaviour on temperature. The
power law (FP) accounts for melting point Tm and room temperature Tr in a power law expression as
proposed notably by Johnson and Cook [1983]. Finally a third thermal model (FE) is proposed in the
form of an exponential decreasing function which is valid in a wider range of temperature variations than
linear function (FL).

The additive type (ADD) and multiplicative type (MUL) functions in Table 3 are used to describe
phenomenologically the effects of plastic viscosity in bcc/hcp and fcc metals respectively. The origin
of the exponential type function (EXP) proceeds from physical considerations including the concept of
thermally activated plastic deformation mechanism.

In the multiplicative type (MUL) in Table 3, the strain rate function

8(T, p, ṗ)= Rτ 1/m
0 ṗ1/m

can be rewritten in the form
8(T, p, ṗ)= h′(p) f (T )g ( ṗ) ,

where g ( ṗ) = τ 1/m
0 ṗ1/m . In the same way, in the exponential type (EXP) in Table 3, the strain rate

function
8(T, p, ṗ)= C R ln ( ṗ/ ṗ0)

can be rewritten in the form
8(T, p, ṗ)= h′(p) f (T )g ( ṗ) ,

where g ( ṗ)= C ln ( ṗ/ ṗ0). These expressions may illustrate Remark 5.
Table 4 gives the abbreviations corresponding to models with or without initial yield stress, that is,

an initial (or no) nonzero value for the radius of the Huber–von Mises surface, see (14). Note that this
concept of initial yield stress may be entirely contained in the state potential (free energy) through a
contribution attributed to residual stresses induced by thermomechanical processes and described via a
quadratic strain hardening (HRO type model with n=1; see Table 1). As shown previously, the retained
viewpoint (nonzero value for the initial radius of the Huber–von Mises surface or residual stresses) is
not without consequence for heat evaluation (see (22) and Remark 1).

Remark 6. Consider the combination HL-FE-WYS (see Tables 1, 2 and 4 with HL=HROn=0) such
that ρ0ψ

b
= R1 p exp (−γ T ). The yield function is written as

F = J2 (σ )−
[
R0 exp (−γ T )+ R

]
.
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With initial yield stress WYS Without initial yield stress NYS

R0 f (T ) 0

Table 4. Existence of initial yield stress.

The strain hardening force and its derivative with respect to temperature are, respectively,

R = ρ0∂ψ
b/∂p = R1 exp (−γ T ) , T ∂R/∂T =−γ T R.

In this case, f (T0) = exp (−γ T0) > 0 and f ′ (T0) = −γ exp (−γ T0). As mentioned in Remark 4, the
initial inelastic heat fraction β0 is lower than unity.

In order to analyse the three-dimensional constitutive models built from the combination of strain
hardening and thermal softening functions in Tables 1–4, the loading path considered here is the simple
shearing. Designate by l = ∂v/∂x the velocity gradient tensor and li j its components. We are considering
here the simple shear loading such that v1 = 0̇x2. In this case, the components of the velocity gradient
tensor l are zero except l12 = ∂v1/∂x2 = 0̇ 6= 0.

A set of thermoelastic/viscoplastic models has been tested including various forms for strain hardening,
strain softening and their combinations. They all use the physical material constants reported in Table 5.

Evolution of the second invariant of the stress-deviator J2, temperature T and inelastic heat fraction
β is given versus shear strain e12 = γ12/2 (the strain tensor e is obtained by time integration of the
nonobjective strain rate tensor ė, with ė= d+ωe− eω) at various strain rates 0̇ and initial temperatures
T0 in Figures 1–5 for several models including strain hardening/softening, thermal softening and viscous
effects. Adiabatic conditions are assumed for strain rates higher than 100 s−1.

The physical feature of the numerical results obtained is further discussed in Section 3.1 by considering
experimental data from literature.

3.1. Strain hardening models. Consider the combination HV-FL-ADD-WYS (see Tables 1–4) summa-
rized in Table 6. As mentioned before, this combination may correspond to a bcc metal with saturating
strain hardening and linear approximation of temperature dependence (Figure 1), such as a high strength
martensitic steel.

Figure 1a shows the thermal softening induced under adiabatic conditions for simulations at different
plastic strain rates higher than 100 s−1. Figure 1b shows that the temperature rate is higher for higher
strain rate, while Figure 1e shows that the temperature rate is lower for higher initial temperature. At
1000 s−1 and for T0 = 300 K, the maximal value of temperature increase is close to 60 K.

According to Figure 1c–f, the initial value of β is equal to 1 whatever the strain rate and the initial
temperature. At large strain β converges to a value which depends on strain rate and initial temperature
with a rate (negative according to Remark 3) whose absolute value increases with decreasing strain

E (GPa) ν ρ0 (kg/m3) c0 (J/kg.K) α (K−1)

200 0,33 7800 420 10−6

Table 5. Physical steel like material constants.
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Figure 1. Influence of shear strain rate 0̇ and initial temperatures T0 on stress invari-
ant, heating and inelastic heat fraction for the HV-FL-ADD-WYS hardening model:
(a) stress invariant J2 versus strain e12, with T0 = 300 K; (b) temperature T versus strain
e12, with T0 = 300 K; (c) inelastic heat fraction β versus strain e12, with T0 = 300 K;
(d) stress invariant J2 versus strain e12, with 0̇ = 103 s−1; (e) temperature T versus strain
e12, with 0̇ = 103 s−1; (f) inelastic heat fraction β versus strain e12, with 0̇ = 103 s−1.

rate and increasing initial temperature. In other words, β depends explicitly on strain, strain rate and
temperature.

Consider next the combination HMLRO-FE-MUL-NYS (see Tables 1–4) summarized in Table 7. This
combination may correspond to a fcc metal with a power law strain hardening (n = 0.5) and exponential
dependence on temperature (Figure 2), such as an austenitic steel or a pure copper.



INELASTIC HEAT FRACTION EVALUATION FOR ENGINEERING PROBLEMS 331

h(p) f (T ) 8 (T, p, ṗ) R0

R∞
[

p+ 1
k exp(−kp)

]
1− AT Y ṗ1/m R2(1− AT )

R∞ (MPa) k A(K−1) R2 (MPa) Y (MPa s1/m) m

1000 20 10−3 1000 100 6

Table 6. Thermoviscoplastic material constants for HV-FL-ADD-WYS model.

In contrast to the previous case, the thermal softening induced under adiabatic conditions for simula-
tions at plastic strain rates greater than 100 s−1 does not seem to be really significant (see Figure 2a). In
fact, adiabatic thermal effects are present but they are here not able to compensate for strain and strain
rate hardening. Figure 2b shows that the temperature rate is higher for higher strain rate while Figure 2e
shows that the temperature rate is lower for higher initial temperature. At 1000 s−1 and for T0 = 300 K,
the maximal value of temperature increase is close to 28 K.

According to Figure 2c–f, the initial value of β is much lower than 1, increasing with increasing strain
rate and with decreasing initial temperature. As expected (see Remark 5), the rate of β is close to zero —
β does not depend explicitly on strain.

Consider finally the Johnson–Cook engineering model [Johnson and Cook 1983] as the combination
HMLRO-FP-EXP-NYS (see Tables 1–4) summarized in Table 8. This model, supposed to describe
any metal behaviour, is mainly employed in numerical simulations involving very high strain rates as
encountered notably in plate impact and shock.

In Figure 3a the thermal softening induced under adiabatic conditions for simulations at plastic strain
rates higher than 100 s−1 is not really significant. The temperature rate is seen to be higher for higher

h(p) f (T ) 8 (T, p, ṗ) R0 R1 (MPa) k n γ (K−1) τ0 (s) m

R1 p+ k pn+1

n+1
exp(−γ T ) Rτ 1/m

0 ṗ1/m 0 500 1500 0.5 10−3 10−4 10

Table 7. Thermoviscoplastic material constants for HMLRO-FE-MUL-NYS model.

h(p) f (T ) 8 (T, p, ṗ) R0

R1 p+ k(pn+1/n+ 1) 1−
(

T−Tr
T f −Tr

)m

C R ln ṗ
ṗ0

0

R1 (MPa) k (MPa) n T f (K ) Tr (K ) m ṗ0( s−1) C

600 1000 0.3 1800 100 1 1 0,05

Table 8. Thermoviscoplastic material constants for Johnson–Cook model.
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Figure 2. Influence of shear strain rate 0̇ and initial temperatures T0 on stress invariant,
heating and inelastic heat fraction for the HMLRO-FE-MUL-NYS hardening model:
(a) stress invariant J2 versus strain e12, with T0 = 300 K; (b) temperature T versus strain
e12, with T0 = 300 K; (c) inelastic heat fraction β versus strain e12, with T0 = 300 K;
(d) stress invariant J2 versus strain e12, with 0̇ = 103 s−1; (e) temperature T versus strain
e12, with 0̇ = 103 s−1; (f) inelastic heat fraction β versus strain e12, with 0̇ = 103 s−1.

strain rate (Figure 3b) and lower for higher initial temperature (Figure 3e). At 1000 s−1 and for T0 =

300 K, the maximum value of temperature increase is close to 10 K, which is not significant.
According to Figure 3c–f, the initial value of β is much lower than 1, increasing with increasing strain

rate and with decreasing initial temperature. As in the previous case, the rate of β is close to zero (see
also Remark 6).
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Figure 3. Influence of shear strain rate 0̇ and initial temperatures T0 on stress invariant,
heating and inelastic heat fraction for the Johnson–Cook hardening model: (a) stress
invariant J2 versus strain e12, with T0 = 300 K; (b) temperature T versus strain e12, with
T0 = 300 K; (c) inelastic heat fraction β versus strain e12, with T0 = 300 K; (d) stress
invariant J2 versus strain e12, with 0̇ = 103 s−1; (e) temperature T versus strain e12, with
0̇ = 103 s−1; (f) inelastic heat fraction β versus strain e12, with 0̇ = 103 s−1.

3.2. Strain softening models. Consider now the combination HS-FL-ADD-WYS (see Tables 1-4) sum-
marized in Table 9. This combination may correspond to a very high strength (strongly hardened) bcc
metal with a linear approximation of temperature dependence (see Figure 4), such as a very high strength
martensitic steel or a pure tungsten.
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Figure 4. Influence of shear strain rate 0̇ and initial temperatures T0 on stress invariant,
heating and inelastic heat fraction for the HS-FL-ADD-WYS softening model: (a) stress
invariant J2 versus strain e12, with T0 = 300 K; (b) temperature T versus strain e12, with
T0 = 300 K; (c) inelastic heat fraction β versus strain e12, with T0 = 300 K; (d) stress
invariant J2 versus strain e12, with 0̇ = 103 s−1; (e) temperature T versus strain e12, with
0̇ = 103 s−1; (f) inelastic heat fraction β versus strain e12, with 0̇ = 103 s−1.

Figure 4a shows the thermal softening induced under adiabatic conditions for simulations at plastic
strain rates higher than 100 s−1. According to Figure 4b, the temperature rate is higher for higher strain
rate while Figure 4e shows that the temperature rate is lower for higher initial temperature. At 1000 s−1

and for T0 = 300 K, the maximal value of temperature increase is close to 80 K.
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h(p) f (T ) 8 (T, p, ṗ) R0

−
R∞
k

exp(−kp) 1− AT Y ṗ1/m R2(1− AT )

R∞ (MPa) k A(K−1) R2 (MPa) Y (MPa s1/m) m

1000 20 10−3 1000 100 6

Table 9. Thermoviscoplastic material constants for HS-FL-ADD-WYS model.

According to Figure 4c–f, the initial value of β is lower than 1, increasing with increasing strain rate
and with decreasing initial temperature. The rate of β is positive (according to Remark 3) and its absolute
value which is high for small strain tends to 0 for large strain. β tends to unity (100%) for large strain.

Consider finally the combination HMSQ-FL-ADD-WYS (see Tables 1-4) summarized in Table 10.
This combination may correspond to a polymer type material (for which the thermomechanical frame-
work used in Section 2 may be applied) with a linear dependence on temperature (see Figure 5).

Figure 5a shows the thermal softening induced under adiabatic conditions for simulations at plastic
strain rates higher than 100 s−1. Figure 5b shows that the temperature rate is higher for higher strain rate
while Figure 5e shows that the temperature rate is lower for higher initial temperature. At 1000 s−1 and
for T0 = 300 K, the maximal value of temperature increase is close to 32 K.

According to Figure 5c–f, the initial value of β is lower than 1, increasing with increasing strain rate
and with decreasing initial temperature. The rate of β is initially positive, becomes zero for the minimum
of the stress-strain curve (see Figure 5a–d) and becomes negative afterwards (these different stages agree
with Remark 3). Its absolute value does not depend on strain rate and on initial temperature at the initial
stage (growing β) but depends on initial temperature afterwards.

3.3. Summary and complementary analysis. In the previous subsection a series of constitutive models
involving strain hardening/softening and thermal softening in the context of rate dependent plasticity has
been analysed in terms of evolution of stress invariant, temperature and inelastic heat fraction determined
from the heat equation under adiabatic constraint.

The first comment concerns the tendency deduced from Remark 2: for a strain hardening model, the
inelastic heat fraction decreases with increasing plastic deformation. This tendency has been notably
observed experimentally by Lerch et al. [2003] and Jovic et al. [2006] on aluminium alloy and stainless

h(p) f (T ) 8 (T, p, ṗ) R0

−
R∞
k1

exp (−k1 p)+ k2
p2

2
1− AT Y ṗ1/m R2(1− AT )

R∞ (MPa) k1 k2 A (K−1) R2 (MPa) Y (MPa s1/m) m

800 60 5000 10−3 500 100 6

Table 10. Thermoviscoplastic material constants for HMSQ-FL-ADD-WYS model.
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Figure 5. Influence of shear strain rate 0̇ and initial temperatures T0 on stress invari-
ant, heating and inelastic heat fraction for the HMSQ-FL-ADD-WYS softening model.
(a) stress invariant J2 versus strain e12, with T0 = 300 K; (b) temperature T versus strain
e12, with T0 = 300 K; (c) inelastic heat fraction β versus strain e12, with T0 = 300 K;
(d) stress invariant J2 versus strain e12, with 0̇ = 103 s−1; (e) temperature T versus strain
e12, with 0̇ = 103 s−1; (f) inelastic heat fraction β versus strain e12, with 0̇ = 103 s−1.

steel respectively. The inelastic heat fraction evolution they observe is qualitatively identical to what is
obtained numerically herein within the HV-FL-ADD-WYS model (see Figure 1c). Oppositely, according
to Remark 2, for a strain softening model the inelastic heat fraction increases and converges to unity. This
result (see Figure 4c for HS-FL-ADD-WYS model) can be compared with experimental ones obtained on
tungsten by Subhash et al. [1994]. A model combining both strain softening and strain hardening (HMSQ)
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allows for an increasing then decreasing inelastic heat fraction. This behaviour is typical of polymeric
materials, and the evolution of the inelastic heat fraction obtained numerically for HMSQ-FL-ADD-WYS
model (see Figure 5c) reproduces (qualitatively) very well experimental results for polycarbonate [Lerch
et al. 2003] and for glassy polymer [Rittel 1999].

The second comment concerns the particular case studied in Remark 5: for a multiplicative rate
dependent model (MUL and EXP) combined with the absence of initial yield stress (NYS), the inelastic
heat fraction is quasiconstant and its value is very low (see Figure 2b and Figure 3b), leading to weak
(and negligible) temperature increase (see Figure 2c and Figure 3c).

On the other hand, for strain hardening models with very similar behaviour, including HV-FL-ADD-
WYS, HMLRO-FE-MUL-NYS and Johnson–Cook ones, the maximum value of temperature increase
is observed for the former while the minimum value of temperature increase is observed for the latter.
Indeed, the corresponding conditions regarding thermomechanical behaviour let in the plastic dissipation
induced thermal softening in the first model. On the contrary, this can be hardly reproduced for the
Johnson–Cook model. A complete thermodynamics-based approach cannot be applied in this case. This
agrees with the experiment-based remark of Chrysochoos et al. [1989] concerning constitutive mod-
elling: some engineering models are not able to reproduce observed phenomena. In order to palliate
this deficiency, simplifications are usually done to evaluate temperature growth under adiabatic plasticity
conditions. As mentioned previously, they consist (often implicitly), first, in neglecting thermodissipa-
tive couplings (see Remark 2) and, second, in considering the inelastic heat fraction as a constant (see
Equation (50)). The consequences of these simplifications are now studied.

The heat equation (19) can be decomposed into various contributions. By designating Q̇ = ρ0c0Ṫ ,

D = τ : d P
− R ṗ ≥ 0, Ẇ τ

= T ∂τ
∂T
: de and Ẇ R

= T ∂R
∂T

ṗ, Equation (19) can be rewritten as

Q̇ = Ẇ , with Ẇ = D+ Ẇ τ
+ Ẇ R. (33)

Three cases are now distinguished depending on the terms retained on the right side of (33)1,2.
In the first case, called quasicomplete heat evaluation, thermoelastic coupling effects are neglected

due to their weak contribution to temperature change: Ẇ τ
= 0. Relation (33)2 is thus reduced to

Ẇ = D+ Ẇ R
=

[
J2−

(
R− T

∂R
∂T

)]
ṗ. (34)

In the second case, the heat equation (20) is further simplified by neglecting both thermoelastic and
thermoplastic couplings contributions (see [Voyiadjis and Abed 2006] for a similar simplification). The
resulting equation is here called a simplified heat evaluation. This means that Ẇ τ

= Ẇ R
= 0 and (33)2

becomes

Ẇ = D = [J2− R] ṗ. (35)

The last case is equivalent to the representation involving a constant inelastic heat fraction β— also
known as the Taylor–Quinney coefficient [Mason et al. 1994] — as is frequently done in engineering
problems. The resulting equation is here called a basic heat evaluation. The expression of work rate Ẇ
in (33)2 in this case reduces to

Ẇ = β J2 ṗ. (36)
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Figure 6. Influence of the simplifications made in the heat equation on stress invariant,
heating and inelastic heat fraction considering HV-FL-ADD-WYS hardening model (see
Table 6 and Figure 1 for comparison). (a) Stress invariant J2 versus strain e12; (b) tem-
perature T versus strain e12; (c) inelastic heat fraction β versus strain e12. In each case,
T0 = 300 K and 0̇ = 103 s−1.

Figures 6–10 show the evolution of the stress invariant, temperature and inelastic heat fraction for
a complete description, for a simplified one and finally, assuming a constant value of the inelastic heat
fraction, for the combinations used previously, namely the HV-FL-ADD-WYS type model (Figure 6),
the HMLRO-FE-MUL-NYS-type model (Figure 7), the Johnson–Cook model (Figure 8), the HS-FL-
ADD-WYS-type model (Figure 9) and the HMSQ-FL-ADD-WYS-type model (Figure 10).

Considering strain hardening models (see Figures 6, 7 and 8), the use of a constant value for β (part
c) leads to higher values for temperature (part b) causing a more significant thermal softening (part a).
This remark also holds concerning strain hardening/softening model in Figure 10. On the other hand the
different methods give very similar results in terms of temperature rates and material behaviour for strain
softening model.

4. Effects of heat evaluation method on dynamic plastic localization occurrence

This section aims at showing the influence of the choice of method for evaluating the plastic work-
induced heating on the determination of the conditions for dynamic plastic localization onset. The
localization phenomenon at stake is adiabatic shear banding (ASB) which constitutes a precursor of
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Figure 7. Influence of the simplifications made in the heat equation on stress invari-
ant, heating and inelastic heat fraction considering HMLRO-FE-MUL-NYS hardening
model (see Table 7 and Figure 2 for comparison). (a) Stress invariant J2 versus strain
e12; (b) temperature T versus strain e12; (c) inelastic heat fraction β versus strain e12. In
each case, T0 = 300 K and 0̇ = 103 s−1.

failure of structures submitted to dynamic loading and which intervenes as thermal softening overcomes
strain hardening [Marchand and Duffy 1988; Bai and Bodd 1992; Longère et al. 2003].

Conditions for ASB occurrence are commonly obtained from the linear perturbation method which is
in general applied in the case of simple shear under constant velocity boundary conditions. Assuming
negligible elastic effects, laminar viscoplastic flow and adiabatic conditions, the problem can be reduced
to a one-dimensional formulation [Bai 1982; Clifton et al. 1984; Molinari 1985; Batra and Wei 2006]
(see e.g. [Anand et al. 1987]) when three-dimensional generalization is presented). Admitting analytical
solutions, the linear perturbation method provides in this case a criterion of instability onset, which
is interpreted as the incipience of the adiabatic shear banding process, providing in fact the necessary
condition for the onset of formation of bands (possibility of a shear band type instability). In the case of
ASB phenomena, the extension of the one-dimensional loading criterion to a complex three-dimensional
loading can be performed today [Longère et al. 2003]. Simplifications are assumed in order to reproduce
qualitatively the different stages of deformation localization (weak and strong) as observed by Marchand
and Duffy [1988].

Starting from the governing equations (momentum balance, energy balance, kinematics and constitu-
tive law) in the case of simple shear in a (1, 2)-plane under adiabatic conditions and neglecting elasticity,
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Figure 8. Influence of the simplifications made in the heat equation on stress invari-
ant, heating and inelastic heat fraction considering Johnson–Cook hardening model (see
Table 8 and Figure 3 for comparison). (a) Stress invariant J2 versus strain e12; (b) tem-
perature T versus strain e12; (c) inelastic heat fraction β versus strain e12. In each case,
T0 = 300 K and 0̇ = 103 s−1.

one obtains the following system:
s12,2 = ρ0v̇1,

ρ0c0Ṫ = Ẇ ,

d12 =
1
2

(
v1,2+ v2,1

)
≈ d p

12 =
3
2 ṗ s12

J2
,

ṗ =3(s12, p, T ).

(37)

With J2 =
√

3s12, v1 = 0̇x2, v2 = 0 and 0 = 0̇t , the system (37) is reduced to
s12,2− ρ0v̇1 = 0,
ρ0c0Ṫ − Ẇ = 0,
v1,2−

√
3 ṗ = 0,

ṗ−3(s12, p, T )= 0.

(38)

A small perturbation δU = (δv1, δs12, δp, δT ) is now superimposed on the set of homogeneous solutions
U = (v1, s12, p, T ): U ⇒U + δU with δU <<U . Let the perturbation have a wave-like form:

δU =U exp ($ t + ikx2)=U exp [$Rt] exp [ik (ct + x2)] , (39)
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Figure 9. Influence of the simplifications made in the heat equation on stress invariant,
heating and inelastic heat fraction considering HS-FL-ADD-WYS hardening model (see
Table 9 and Figure 4 for comparison). (a) Stress invariant J2 versus strain e12; (b) tem-
perature T versus strain e12; (c) inelastic heat fraction β versus strain e12. In each case,
T0 = 300 K and 0̇ = 103 s−1.

where U is the perturbation magnitude, $ the wave pulsation, k the wave number, x2 the wave plane
normal,$R and$I the real and imaginary parts of the wave pulsation$ , and c=$I /k the wave velocity.

According to the right side of (39), the case $R = 0 points the transition between the stable and
unstable states:

(i) if $R > 0, the perturbation may grow with time and the instability mentioned is possible;

(ii) if $R < 0, the perturbation decreases with time.

The objective consists thus in looking for the conditions of the transition from the stable state to the
possible unstable state by studying the sign of $R .

After linearization and using the notations in Table 11 (see next page), the system (38) may be rewritten
as follows (see [Longère and Dragon 2007] for further details):

−ρ0$ ik 0 0
0 −ws −

(
wp +w ṗ$

)
(ρ0c0$ −wT )

ik 0 −
√

3$ 0
0 −2P12 ($ − B) −E



v̄1

s̄12

p̄
T̄

=


0
0
0
0

 , (40)
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Figure 10. Influence of the simplifications made in the heat equation on stress invariant,
heating and inelastic heat fraction considering HMSQ-FL-ADD-WYS hardening model
(see Table 10 and Figure 5 for comparison). (a) Stress invariant J2 versus strain e12; (b)
temperature T versus strain e12; (c) inelastic heat fraction β versus strain e12. In each
case, T0 = 300 K and 0̇ = 103 s−1.

or otherwise:

[A]
{
Ū
}
= {0} . (41)

The determinant of the matrix [A] in (41), whose components are denoted ai j , is simply

det [A]= a11a22a33a44− a11a42a33a24+ a12a31 (a23a44− a43a24) . (42)

Basic Simplified Quasicomplete

ws
√

3β ṗ
√

3 ṗ
√

3 ṗ
wp 0 −Q ṗ − (Q− T Y ) ṗ
wT 0 −S ṗ T Z ṗ
w ṗ

√
3βs12

√
3s12− R

√
3s12− (R− T S)

Table 11. Expressions of wi .
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The spectral equation deduced from (41) and (42) is a third-degree polynomial in $ :

det [A]= a3$
3
+ a2$

2
+ a1$

1
+ a0, (43)

with 
a3 =
√

3ρ2
0c02P12,

a2 = ρ0[k2c0+
√

3 (Ews − 2P12wT )],

a1 =−k2
(
Ew ṗ +wT + ρ0c0 B

)
,

a0 = k2
(
BwT − Ewp

)
,

(44)

where

Pi j =
3
2
ᾱ

si j

J2
, B =−ᾱQ, E =−ᾱ

[
R0 f ′(T )+ S

]
, (45)

Q =
∂R
∂p
= h′′(p) f (T ), S =

∂R
∂T
= h′(p) f ′(T ), ᾱ =

∂3

∂F
. (46)

As observed by Marchand and Duffy [1988] and demonstrated by Molinari [1985], instability does
not imply localization rigorously. Thus the use of the linear perturbation method provides a necessary
condition only, leading to a possible lower bound for the effective localization incipience. The idea is
here to delay the instability onset, that is, push it towards an upper bound in the sense of approaching the
strong localization incipience. In other words we distinguish the instability point characterizing locally
the equilibrium between strain hardening and thermal softening (maximum of the shear stress-shear
strain curve in most cases) and the localization point beyond which shear stress drops strongly. The
linear perturbation method provides the instability point and we are looking, via a pragmatic engineering
evaluation approach, for the localization point which eventually succeeds the instability point.

Adiabatic shear banding occurs as thermal softening overcomes strain hardening. Before the instability
point, strain hardening is predominant and the material is necessarily stable, while past the instability
point, thermal softening becomes predominant and the material may become unstable. In the linear per-
turbation method, attenuating thermal softening allows consequently for pushing forward the instability
point and approaching the localization point (see [Longère et al. 2003; 2005; Longère and Dragon 2007,
for practical applications). Detection of plastic localization onset is essential to control a process of soft-
ening behaviour for three-dimensional modelling of thermoelastic/viscoplastic materials incorporating
adiabatic shear banding formation and growth.

It is notable that the approximate instability criteria in the sense given above can be applied for any
constitutive equations based on irreversible thermodynamics.

As mentioned previously, delaying the strong localization onset with respect to the supposed instability
onset is favoured by making f ′(T ) vanish in the linear perturbation method (concept of ‘upper’ bound
approximation). This approach is consequently used in the following.

Employing Table 11, when considering the basic evaluation, the coefficients a0–a3 in (44) become
a3 =
√

3ρ2
0c02P12,

a2 = ρ0[k2c0+ 3Eβ ṗ],

a1 =−k2
(
E
√

3βs12+ ρ0c0 B
)
,

a0 = 0.

(47)
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The spectral equation is, in this case, indeed reduced to a second-degree polynomial in$ and$ > 0 if and
only if a1a3 < 0. Accordingly, the condition for possible perturbation growth (instability occurrence) is

√
3s12 >

ρ0c0

β

(∂R/∂p)
−(∂R/∂T )

. (48)

According to Table 11, the coefficients a0 to a3 in (44) in the simplified evaluation become
a3 =
√

3ρ2
0c02P12,

a2 = ρ0[k2c0+ 3 ṗ(E + 2
√

3
P12S)],

a1 =−k2
[E(
√

3s12− R)− S ṗ+ ρ0c0 B],
a0 = k2 ṗ (E Q− BS),

(49)

with E + 2
√

3
P12S = 0 and E Q− BS = 0.

The corresponding components in (49) are thus expressed by
a3 =
√

3ρ2
0c02P12,

a2 = ρ0k2c0,

a1 =−k2
[E(
√

3s12− R)− S ṗ+ ρ0c0 B],
a0 = 0.

(50)

The spectral equation is once more reduced to a second-degree polynomial in $ and the condition for
perturbation growth is given by

√
3s12 > R−

ṗ
ᾱ
+ ρ0c0

(∂R/∂p)
−(∂R/∂T )

. (51)

Following the previous procedure for quasicomplete evaluation gives
a3 =
√

3ρ2
0c02P12,

a2 = ρ0[k2c0+ 3 ṗ(E − 2
√

3
P12T Z)],

a1 =−k2(E[
√

3s12− (R− T S)] + T Z ṗ+ ρ0c0 B),
a0 = k2 ṗ[E Q− T (EY − B Z)].

(52)

The spectral equation remains a third-degree polynomial in $ for which the condition of instability onset
is not trivial. In order to obtain a practical criterion in the sense of [Bai 1982], the condition for instability
onset is again deduced from the sign of the product a1a3.

The condition for perturbation growth in this case is given by

√
3s12 > R− T

(
∂R
∂T
−
(∂2 R/∂T 2)

(∂R/∂T )
ṗ
ᾱ

)
+ ρ0c0

(∂R/∂p)
−(∂R/∂T )

.

The conditions for dynamic plastic localization occurrence for the basic heat evaluation method, the
simplified heat evaluation method and the quasicomplete heat evaluation method, as defined above, are

√
3s12 >

ρ0c0

β

(∂R/∂p)
−(∂R/∂T )

,
√

3s12 > R−
ṗ
ᾱ
+ ρ0c0

(∂R/∂p)
−(∂R/∂T )

,
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√
3s12 > R− T

(
∂R
∂T
−
(∂2 R/∂T 2)

(∂R/∂T )
ṗ
ᾱ

)
+ ρ0c0

(∂R/∂p)
−(∂R/∂T )

.

(see [Longère and Dragon 2007]). The description of the postlocalization behaviour is not the purpose
of the present paper. But in order to visualize the drop in stress induced by adiabatic shear banding,
the ASB deterioration model developed by Longère et al. [2003] has been used. The details regarding
numerical calculations and corresponding algorithmic procedure can be found in [Longère et al. 2005].

Figures 11 and 12 give, respectively, the material response to shearing and the temperature evolution
for the three cases of heat evaluation (two values for β are given). According to Figure 11, the value of
shear strain at localization (critical shear strain) onset is close to 30% for basic evaluation with β = 1.0,
close to 32% for basic evaluation with β = 0.8, close to 35% for simplified evaluation, and close to 38%
for complete evaluation. In parallel, the influence of heat evaluation is shown in Figure 12, which gives
the evolution of temperature. According to the basic evaluation temperature increases until a value close
to 380 K while according to the quasicomplete evaluation, the maximum of temperature remains under
350 K. This difference of 30 K is enough to provoke a difference of 8% for the estimation of the critical
shear strain in the conditions prescribed here.
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Figure 11. Shear stress versus shear strain: T0 = 300 K; 0̇ = 103 s−1.
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Evaluation type β R0 (MPa) A (K−1)

Basic 1.0 1000 1. 10−3

0.8 1015 1.05 10−3

Simplified X 1050 1.1 10−3

Quasicomplete X 1080 1.15 10−3

Table 12. Material constants.

In this example, the shear stress-shear strain curves begin to diverge from each other when shear strain
is close to 10% (see Figure 11). As a consequence, the value of shear stress at the maximum of each curve
is different (the highest is obtained for the quasicomplete evaluation while the lowest is obtained for the
basic evaluation for β = 1). So, we are considering here next shear stress vs. shear strain curves with the
same maximum value of shear stress (see Table 12 for the new sets of material constants). Numerical
results including instability criterion are given in Figures 13 and 14. In these figures, the values of critical
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Figure 13. Shear stress versus shear strain: T0 = 300 K; 0̇ = 103 s−1.
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shear strain are lower than the previous ones (see Figure 11) but the tendency is preserved: critical shear
strain is greater for the quasicomplete evaluation.

5. Concluding remarks

Following an internal variable approach including strain, strain rate and temperature dependence in the
context of viscoplastic behaviour embracing a wide range of features involved for a large class of engi-
neering materials, a three-dimensional rather general expression of the evolving inelastic heat fraction
has been obtained. This relation allows us to conclude that for a strain hardening model, the inelastic
heat fraction decreases for increasing strain, and for a strain softening model the inelastic heat fraction
increases and converges to unity. These theoretical results are in agreement with experimental observa-
tions. However, depending on the formulation of the constitutive equations, these effects can be well
reproduced or totally erased. The choice of the constitutive laws in terms of strain hardening/softening,
thermal softening and strain rate dependence is thus crucial. Consequently some models are intrinsically
able to reproduce observed phenomena, notably the temperature rise induced by plastic deformation
under adiabatic conditions, while others are not. The latter fact sometimes invites selection of an arbitrary,
albeit conservative, empirical value for the (constant) inelastic heat fraction. But the use of a constant
value for the inelastic heat fraction constitutes a coarse and mostly conservative simplification which can
sometimes lead to erroneous results.

The quantitative investigation presented, which employs a spectrum of existing thermoviscoplastic
modelling variants at finite strain, aims to show some history effects on the evolution of the inelastic heat
fraction β in dynamic plasticity. It points out some limitations regarding commonly employed hypotheses
and simplifications concerning the variation of β in engineering applications. It indicates the need for
more involved experimental research and for enhanced description of thermomechanical couplings. The
multiscale aspects were deliberately set apart in this text, which, in some aspects, provides a critical
review of the field while remaining subject to the limits of phenomenological modelling. However, the
thermodynamical and physical status of absolute temperature with respect to microscopic heterogeneity
of, say, polycrystalline metals and other engineering materials, represents in itself a further challenge
and needs more clarification.
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