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ZIAD MOUMNI, WAEL ZAKI AND HABIBOU MAITOURNAM

We present an energy-based low-cycle fatigue criterion that can be used in analyzing and designing
structures made from shape memory alloys subjected to cyclic loading. Experimentally, a response
similar to plastic shakedown is observed. During the first cycles the stress-strain curve shows a hys-
teresis loop which evolves during the first few cycles before stabilizing. By adopting an analogy with
plastic fatigue, it is shown that the dissipated energy of the stabilized cycle is a relevant parameter for
estimating the number of cycles to failure of such materials. Following these observations, we provide an
application of the cyclic model, previously developed by the authors within the framework of generalized
standard materials with internal constraints in order to evaluate such parameter. Numerical simulations
are presented along with a validation against experimental data in case of cyclic superelasticity.

1. Introduction

The interesting behavior of SMAs (shape memory alloys) is essentially due to their capability of un-
dergoing a reversible diffusionless solid–solid phase transition known as the martensitic transformation
[Wayman and Otsuka 1999; Shaw and Kyriakides 1995; Moumni et al. 2008]. This transition is charac-
terized at the microscopic level by a modification of the crystallographic lattice structure which can be
induced by altering either the material temperature or the stress to which it is subjected or both, hence a
strong thermomechanical coupling. At high temperatures, a shape memory alloy consists of a relatively
ordered parent phase called austenite which transforms when cooled into a less ordered product phase
called martensite. In the absence of stress, this leads to self-accommodation of martensite plates, that is,
to the formation of lattice twins without any macroscopic deformation.

Mechanical loading may lead to detwinning of self-accommodating martensite. In this case, martensite
plates become oriented according to privileged directions that depend on the applied stress. The resulting
inelastic macroscopic strain usually reaches several percent; it can be recovered by heating, in which case
the SMA regains its initial undeformed austenitic shape. Simple way shape memory refers to the ability
of a shape memory alloy to remember its high temperature state.

Besides the characteristic shape memory behavior, SMAs exhibit other interesting effects, namely:
superelasticity or pseudoelasticity, which is the ability of a shape memory alloy to accommodate large
strains due to stress-induced phase change at a constant and sufficiently high temperature and to recover
its undeformed shape upon unloading; and the superthermal effect, which is the ability to deform an
initially austenitic SMA by cooling under constant stress and then to recover the austenitic shape by
heating. The magnitude of the temperature-induced strains depends on the applied stress.

Keywords: cyclic pseudoelasticity, shape memory alloys, SMA fatigue, cyclic loading, residual strain, internal stress,
dissipation.
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Furthermore, cyclic loading may allow SMAs to have a two-way shape memory effect. In this case,
the material can change its shape reversibly due to cyclic heating-cooling.

Since components made of SMAs usually operate under cyclic thermomechanical loading; their design
requires reliable prediction of the material’s cyclic three-dimensional response and fatigue resistance. In
this regard, several models exist that are capable of handling cyclic, mainly superelastic, SMA behavior;
see, for instance, [Liu et al. 1999; Abeyaratne and Kim 1997; Lim and McDowell 2002; Tanaka et al.
1995; Lexcellent and Bourbon 1996; Bo and Lagoudas 1999; Zaki and Moumni 2007a].

The interesting properties of SMAs promoted their use in several fields, especially in outer space
(antennas, braces) and in medical applications (orthodontia, cardiology, implant miniaturization, etc.).
SMAs are also becoming increasingly attractive for automotive, nuclear, and civil engineering applica-
tions, mainly due to their high damping capacity.

One of the main difficulties facing their use in technologically advanced applications with high safety
specifications is the poorly known fatigue behavior of these alloys; another is the amnesia phenomenon.
Better knowledge and control of these two aspects should promote their use. Two types of fatigue have
to be considered.

First, classical mechanical fatigue due to mechanical cycling in the pseudoelastic domain [Miyazaki
et al. 1986; Van Humbeeck 1991]. The objective is to determine the number of cycles before failure. For
instance, SMAs are used in the biomedical field to manufacture stents, endovascular prostheses inserted
in blood vessels to avoid thrombosis and occlusion of the vessels. In stents, cyclic loads would arise from
the difference in systolic and diastolic blood pressures and from the stress associated with the contraction
of the heart muscle [McKelvey and Ritchie 1999]. It is of primary importance to know the number of
cycles before any damage occurs to the stent.

Second, thermal fatigue or amnesia of the material due to a degradation of the material characteris-
tics responsible for the shape memory effect like the transformation temperatures. The question is to
determine if the material remains able to remember its initial shape.

Fatigue of shape memory alloys has also attracted considerable attention [Melton and Mercier 1979a;
1979b; 1979c; Wagner et al. 2004; Vaidynanathan et al. 2000; Porter et al. 2001]; it is still, however,
not very well understood. In particular, fatigue mechanisms at the microscopic level are still being
investigated [Siredey et al. 2005; Predki et al. 2006]. Nevertheless, Manson–Coffing-type criteria have
been successfully used for predicting fatigue induced failure of simple SMA structures subjected to
uniaxial loading [Melton and Mercier 1979a; Siredey et al. 2005; Wagner et al. 2004]. Like in classical
elastoplastic materials, such as steel, the number of cycles to failure of a SMA varies depending on its
composition and on the applied loading, among other factors. This number may range from 104 cycles
for thermal valves using one-way shape memory effect [Eggeler et al. 2004] to a nominal 4× 108 cycles
for stents [Morgan 2004].

Using the analogy with plastic fatigue (low-cycle fatigue) [Halford 1966; Charkaluk et al. 2002], a
relation was established in [Moumni et al. 2005] between the amount of dissipated energy associated with
the stabilized hysteresis cycle and the number of cycles to failure. In this paper, we provide an application
of the cyclic model, developed previously by the authors within the framework of generalized standards
materials with internal constraints [Moumni et al. 2008], in order to simulate the dissipated energy at
the stabilized cycle. Our aim here is to shown that the cyclic model can be combined with the fatigue
criterion in order to predict low-cycle failure of superelastic shape memory structures.
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Figure 1. Cyclic superelastic tensile response of a NiTi wire. The characteristic hystere-
sis loop tends to stabilize when the number of cycles increases.

Section 2 is devoted to the presentation of the cyclic Zaki–Moumni model, where the behavior is
described using three state variables representing residual strain induced by cyclic loading, internal stress
induced by repeated phase change, and the cumulated martensite volume fraction. See [Zaki and Moumni
2007a; 2007b] for a detailed discussion of the model. Section 3 discusses the low cycle fatigue law and
numerical simulations of the dissipated energy at the stabilized cycle, along with a validation against
experimental data in the case of cyclic superelasticity.

2. The cyclic model of SMA behavior

2.1. Experimental observations. The response of a nickel-titanium wire to repeated tension, illustrated
in Figure 1, displays the following features:

• Recovery of inelastic strain is not complete at the end of each cycle; after complete unloading, some
residual strain remains. This strain increases exponentially with the number of cycles, as shown in
Figure 2, left.

• Forward phase change yield stress decreases with increasing number of cycles (Figure 2, right).
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Figure 2. Left: residual strain versus number of tensile loading cycles. Right: forward
phase change yield stress versus number of cycles.
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• The hysteresis loop evolves progressively with the number of cycles before stabilizing. In Figure 1,
the stabilized loop is shown by a continuous dark line.

Residual strain is generally considered to be due to some oriented martensite not transforming back
into austenite during reverse phase change [Lexcellent and Bourbon 1996; Auricchio et al. 2003]. Re-
peated forward and reverse phase changes create some defects within the material [Abeyaratne and Kim
1997], which result in localized internal stresses [Tanaka et al. 1995], allowing SMAs to exhibit two-
way shape memory. In this case the material is said to be trained (training phenomena). The internal
stress eliminates the need for external loading in order to orient martensite variants. As a result, the shape
memory structure can assume two different shapes when the temperature varies: an austenitic undeformed
shape at high temperatures and a deformed low-temperature shape resulting from martensite orientation
due to internal stress.

2.2. Phenomenological model. For full details regarding the model presented in this section, the reader
is referred to [Zaki 2006; Zaki and Moumni 2007a; 2007b; Moumni et al. 2008].

As seen in the previous section, the macroscopic cyclic response of superelastic SMAs induces resid-
ual inelastic strains and localized internal stresses within the material. Hence, two state variables are
introduced: a residual strain tensor εr and an internal stress tensor B. A third variable ze representing
cumulated martensite volume fraction is also used:

ze =

∫ t

0
|ż|dτ,

where t is a kinematic time. The effect of cyclic loading on the material parameters can be modeled by
considering these parameters to depend on ze.

2.2.1. State variables and free energy. The following state variables are considered

• Macroscopic strain ε and temperature T .

• Volume fraction z and cumulated volume fraction ze of martensite.

• Local strain tensors: εA for austenite and εM for martensite.

• Local martensite transformation strain tensor εtr.

• Internal stress B and residual strain εr.

Phase change latent heat is assumed to depend on the cumulated fraction ze. The respective free energy
densities of austenite and martensite are taken to be

WA
def
= WA(εA, εr)=

1
2(εA− εr) :KA : (εA− εr) ,

and

WM =WM(εM, εtr, εr, T,B, ze)=
1
2(εM− εtr− εr) :KM : (εM− εtr− εr)+C(T, ze)−

2
3 B : εtr.

B : εtr in the expression of WM allows modeling the two-way shape memory effect. It represents a modi-
fication of the free energy of martensite due to the creation of internal stresses, which allows austenite to
transform more easily into oriented martensite. Subsequent sections will help clarify this idea, especially
when phase change criteria are established.
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The contribution of austenite–martensite interaction to the SMA free energy density is assumed to be

I= I (z, ze, εtr)= G
z2

2
+

z
2
[αz+β(1− z)]

(2
3εtr : εtr

)
.

G, α and β are material parameters functions of the cumulated martensite volume fraction ze (G = Ĝ(ze),
α = α̂(ze), and β = β̂(ze))

• β z(1−z)
2

( 2
3εtr : εtr

)
represents interaction between austenite and martensite. Following many pub-

lished works [Leclerq and Lexcellent 1996; Raniecki et al. 1992; Patoor and Berveiller 1993, etc.],
this interaction is taken to be proportional to the volume fractions of interacting phases. β determines
how a mechanical loading applied to an initially austenitic shape memory material affects martensite
orientation during phase change.

• G z2

2 quantifies orientation-independent interaction between martensite variants.

• α z2

2

( 2
3εtr : εtr

)
accounts for the interaction increase due to orientation of martensite plates; its expres-

sion is similar to that of the energy contribution due to linear kinematic hardening of an elastoplastic
material with hardening coefficient α. α controls the slope of the stress-strain curve corresponding
to martensite orientation.

Finally, the free energy density of the material is given by

W
def
= W (ε, T, εA, εM, z, εtr, εr,B, ze)

= (1− z)
[1

2(εA− εr) :KA : εA− εr
]
+ z

[ 1
2(εM− εtr− εr) :KM : (εM− εtr− εr)+C(T, ze)

]
+

1
2 Gz2

+
1
2 z
[
αz+β(1− z)

](2
3εtr : εtr

)
−

2
3 zB : εtr. (1)

2.2.2. Internal constraints and Lagrangian. State variables obey the following constraints

• Martensite volume fraction is necessarily within the [0, 1] interval.

z > 0, (1− z)> 0. (2)

• The equivalent transformation strain
√

2
3εtr : εtr has a maximum value γ that varies with respect to

the cumulated volume fraction ze

γ −

√
2
3εtr : εtr > 0, γ

def
= γ̂ (ze). (3)

Constraints given by (2) and (3) are assumed to be perfect. They derive from a constraints potential

Wl =−λ : [(1− z)εA+ zεM− ε] −µ
(
γ −

√
2
3εtr : εtr

)
− ν1z− ν2(1− z),

where λ ν1, ν2, and µ are Lagrange multipliers. ν1, ν2 and µ, associated with unilateral constraints, must
obey the following conditions

ν1 > 0, ν1z = 0, ν2 > 0, ν2(1− z)= 0 and µ> 0, µ
(
γ −

√
2
3εtr : εtr

)
= 0. (4)
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The sum of the free energy W and of the constraints potential Wl gives the Lagrangian

L=W+Wl
def
= L(ε, T, εA, εM, z, εtr, εr,B, ze)

= (1−z)
[1

2(εA−εr) :KA : (εA−εr)
]
+z
[ 1

2(εM−εtr−εr) :KM : (εM−εtr−εr)+C(T, ze)−
2
3 B : εtr

]
+G 1

2 z2
+

1
2 z[αz+β(1−z)]

( 2
3εtr : εtr

)
−λ : [(1−z)ε1+zε2−ε]−µ

(
γ−

√
2
3εtr : εtr

)
−ν1z−ν2(1−z), (5)

where conditions (4) must be met.

2.2.3. State equations. Phase change, martensite orientation, training, as well as the creation of residual
strain and internal stress are dissipative processes. Thus, if Az , Atr, Ae, Ar, and AB represent thermody-
namic forces associated with state variables z, εtr, ze, εr, and B respectively; only these forces may take
nonzero values during a given transformation. Hence the state equations

∂L

∂ε
= σ ⇒ λ− σ = 0, (6)

−
∂L

∂εA
= 0 ⇒ (1− z)[KA : (εA− εr)−λ] = 0, (7)

−
∂L

∂εM
= 0 ⇒ z[KM : (εM− εtr− εr)−λ] = 0, (8)

−
∂L

∂z
=Az ⇒ Az =

1
2

[
(εA− εr) :KA : (εA− εr)− (εM− εtr− εr) :KM : (εM− εtr− εr)

]
−C(T, ze)−Gz− [(α−β)z+ 1

2β]
( 2

3εtr : εtr
)
−λ : (εA− εM)+

2
3 B : εtr,

−
∂L

∂εtr
=Atr ⇒ Atr = z{KM : (εM− εtr− εr)−

2
3 [αz+β(1− z)] εtr}+

2
3 zB− 2

3µεtr

/√
2
3εtr : εtr,

−
∂L

∂λ
= 0 ⇒ (1− z)εA+ zεM− ε = 0, (9)

−
∂L

∂εr
=Ar ⇒ Ar = (1− z)KA : (εA− εr)+ zKM : (εM− εtr− εr),

−
∂L

∂B
=AB ⇒ AB =

2
3 zεtr,

−
∂L

∂ze
=Ae ⇒ Ae =−z

∂C(T, ze)

∂ze
−
∂G
∂ze

z2

2
−

z
2

[ ∂α
∂ze

z+
∂β

∂ze
(1− z)

]( 2
3εtr : εtr

)
−µ

∂γ

∂ze
.

Equations (6), (7), (8), and (9) allow us to establish the stress-strain relation

σ =K: (ε− zεtr− εr).

K, the equivalent SMA elastic moduli tensor, is given by

K=
[
(1− z)K−1

A + zK−1
M

]−1
.
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2.2.4. Yield functions and evolution laws. Residual strain and internal stress depend on the number of
loading cycles. Indeed, as shown in Figure 2, left, residual strain is found to increase exponentially with
respect to the number of cycles up to an asymptotic value εsat

r . From a theoretical point of view, this can
be simulated using the evolution law

ε̇r =
εsat

r

τ

(3
2

s
σVM

)
exp

(
−

ze

τ

)
że.

Residual strain is considered to be deviatoric and so it does not induce any volume change. τ is a time
constant, εsat

r is the maximum residual strain in tension when the hysteresis loop stabilizes, s is the
deviatoric part of the stress tensor, and σVM is the equivalent Von Mises measure on the stress tensor.
Dissipation due to the evolution of εr is necessarily positive. Indeed, it can easily be shown that Ar is
unconditionally equal to the stress tensor σ . Ar : ε̇r is therefore positive. Similarly, the evolution of
internal stress B is assumed to be governed by the equation

Ḃ=
Bsat

τ

(
2
3εtr

/√
2
3εtr : εtr

)
exp

(
−

ze

τ

)
że, (10)

where Bsat is a positive scalar.
Equation (10) expresses an increase in equivalent internal stress with respect to the number of cycles.

Given the expression of the thermodynamic force AB associated with state variable B, dissipation AB : Ḃ
is positive. Because the evolution of state variables εr, B, and ze is related to that of the martensite volume
fraction, one does not need to define specific yield functions for each of these variables. Nevertheless,
three yield functions: F1

z , F2
z , and Fori are needed in order to describe forward phase change, reverse

phase change, and orientation of martensite variants. Thermodynamic forces Az and Atr are chosen to
be such that

Az ∈ ∂żD, Atr ∈ ∂ε̇trD, (11)

where D is a convex positive continuous function that is equal to zero at the origin:

D
def
= D(ż, ε̇tr)= P(z, ze, ż) ż+ R(z)

√
2
3 ε̇tr : ε̇tr, (12)

with

P(z, ze, ż) def
= [a(1− z)+ bz] sign ż,

for certain ze-dependent parameters a = â(ze) and b = b̂(ze). Moreover, R(z) = z2Y , where Y is a
constant material parameter. It is easy to show that Y , a, and b are always positive; D is therefore
positive. Hence, evolution equations (11) necessarily satisfy the Clausius–Duheim inequality.

From this point on, austenite and martensite are considered to be homogeneous and isotropic media,
having the same Poisson coefficient ν. Specifically,

νA = νM
def
= ν.

Table 1 summarizes the notations used throughout this paper. Using equations (11), one can establish
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Meaning or Expression

EA Young modulus of austenite

EM Young modulus of martensite

ν Poisson coefficient

ElA (1+ν)/EA

ElM (1+ν)/EM

PA −ν/EA

PM −ν/EM

ElMA ElM−ElA

PMA PM−PA

Meaning Expression

Eeq Equivalent Young modulus
(1−z

EA
+

z
EM

)−1

tr M Trace of symmetrical tensor M
∑

i Mi i

dev M Deviator of M M−1
3 (tr M) I

MVM Von Mises equivalent of M
√

3
2 dev M: dev M

s Stress deviator tensor dev σ

σVM Von Mises equivalent stress
√

3
2 s : s

µA Austenite shear modulus 1
2 EA/(1+ν)

µM Martensite shear modulus 1
2 EM/(1+ν)

µeq Equivalent shear modulus 1
2 Eeq/(1+ν)

Table 1. Notations used in this paper.

expressions for F1
z , F2

z , and Fori:

F1
z =

{1
3 ElMAσ

2
VM+

1
2

(1
3 ElMA+ PMA

)
( tr σ )2−C(T, ze)

}
+
(
σ + 2

3 B
)
: εtr− (G+ b)z− a(1− z)−

[
(α−β)z+ 1

2β
](2

3εtr : εtr
)
,

F2
z =−

{1
3 ElMAσ

2
VM+

1
2

(1
3 ElMA+ PMA

)
( tr σ )2−C(T, ze)

}
−
(
σ + 2

3 B
)
: εtr+ (G− b)z− a(1− z)+

[
(α−β)z+ 1

2β
](2

3εtr : εtr
)
,

Fori =

∥∥∥∥(σ + 2
3 B
)
−

2
3

[
αz+β(1− z)

]
εtr−

2µ
3z
εtr

/√
2
3εtr : εtr

∥∥∥∥
VM

− zY.

It is worth noting that in each of these expressions, a quantity 2
3 B, proportional to internal stress due to

training, is added to the stress tensor σ . Thus both B and σ have similar effects on phase change and
martensite orientation.

Phase change evolution laws obey certain conditions

• If F1
z < 0 and F2

z < 0, no phase change can occur. Hence, ż = 0.

• If forward phase change is triggered, F1
z is equal to zero. In this case, ż is equal to zero if Ḟ1

z < 0;
otherwise, ż is given by the consistency condition Ḟ1

z = 0.

• If reverse phase change is triggered, F2
z is equal to zero. In this case, ż is equal to zero if Ḟ2

z < 0;
otherwise, ż is given by the consistency condition Ḟ2

z = 0.

Let

X def
=
(
s+ 2

3 B
)
−

2
3

[
αz+β(1− z)

]
εtr−

2µ
3z
εtr

/√
2
3εtr : εtr.
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The yield function Fori, associated with martensite orientation, can be written as Fori = XVM − zY .
Evolution of the local inelastic strain tensor εtr satisfies the normality law:

ε̇tr = η
∂Fori

∂X
=

3
2η

X
XVM

. (13)

Here η is a positive scalar satisfying the Kuhn–Tucker conditions

η > 0, Fori 6 0 and ηFori = 0.

Let σrs and σrf be orientation start and finish stresses of self-accommodating martensite

• When orientation starts, the yield function Fori is necessarily equal to zero for µ= 0, εtr = 0, and
‖σ +B‖VM = σrs . It follows that

Y = σrs; (14)

• When orientation is complete, Fori = 0 for
√

2
3εtr : εtr = γ . If

√
2
3εtr : εtr tends towards γ with lower

values, µ is equal to zero for ||σ +B||VM = σrf. In case of uniaxial tension, it follows that

| σrf−αγ | = Y ;

the above equation, together with Equation (14), gives α as a function of γ

α =
σrf− σrs

γ
.

• When austenite transforms into oriented martensite, orientation is complete when the stress becomes
greater or equal to σrf. Particularly, if the stress tends towards σrf with lower values, µ remains equal
to zero. In this case,

z = 0, ‖σ +B‖VM = σrf,

√
2
3εtr : εtr = γ, and µ= 0.

In case of uniaxial tension
β =

σrf

γ
.

α and β are both functions of ze due to their dependence on γ . Finally, explicit expressions of the
evolution laws can be derived using the consistency conditions.

2.3. Numerical simulation. Figure 3, left shows the experimental response of a NiTi test sample to
repeated uniaxial tension. Residual strain evolution with respect to the number of cycles is shown in
Figure 3, right. The nickel-titanium used in the experiments has an orientation start stress of 80 MPa
and an orientation finish stress equal to 160 MPa. The reverse transformation finish temperature of the
untrained material at zero stress is equal to 42◦C; this temperature does not evolve considerably with the
number of cycles. Figure 4 shows good agreement between experimental and numerical results in the
case of repeated tension. For clarity, only loops 2, 4, and 12 are shown. Figure 5 (left) illustrates the
evolution of internal strain B with respect to the cumulated martensite volume fraction ze. Stress-strain
response for all 20 loading cycles is shown in Figure 5 (right).

The next section is devoted to the presentation of an energy approach to the fatigue of shape memory
alloys. It is shown how the cyclic model presented in the previous section can be combined with the
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Figure 3. Left: experimental stress-strain response of a NiTi wire to repeated tension.
The stabilized cycle is shown by a continuous line. Right: residual strain evolution with
respect to the number of tension cycles.
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Figure 4. Experimental versus numerical results: evolution of the superelastic loop.
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fatigue criterion in order to perform numerical calculations of the fatigue parameters necessary for the
evaluation of the life time of structures made on SMAs.

3. An energy approach to the fatigue of shape memory alloys

Fatigue of shape memory alloys is generally explained by the creation and propagation of defects within
the material at the microscopic level [Melton and Mercier 1979a]. A more rigorous understanding is
complicated, however, due to phenomena like formation of residual martensite [Siredey et al. 2005]
and local phase changes at the tip of microscopic cracks [Wagner et al. 2004] resulting in slower crack
propagation in martensite [Eggeler et al. 2004]. Because of similar damage creation and propagation
mechanisms, it is interesting to investigate the fatigue of SMAs within a framework similar to that of
usual elastoplastic materials (like steel). It is, hence, useful to distinguish between low-cycle fatigue,
finite fatigue life in high-cycle fatigue, and high-cycle fatigue (infinite life). We will focus on low-cycle
fatigue associated with cyclic superelasticity.

3.1. Experimental analysis.

3.1.1. Material and thermomechanical treatment. The material is a 51.3% Ti–48.7% Ni in mass nickel-
titanium with a grain size between 60µm and 70µm (see Figure 6). The phase change temperatures at
zero stress are as follows M0

f = 25◦C, M0
s = 39◦C, A0

s = 29◦C and A0
f = 42◦C. All the test specimens

Figure 6. Metallographic structure of the NiTi alloy.
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were worked up to 20% in tension while cold, then heat treated at 400◦C for one hour. This kind of
treatment increases the plastic yield limit of the material while improving its superelasticity [Wayman
and Otsuka 1999].

3.1.2. Experimental setup. The testing machine used is a force controlled MTS810/100KN. The strains
are measured using an MTS extensometer model 632-13C-21. Load and extensometer signals are cap-
tured by an MTS TestStarII data acquisition board and processed by a computer. Experiments are Stress-
controlled push-pull tests with a constant amplitude σa. They are carried out at a frequency of 0.3 Hz. In
order to ensure that the tests are performed in the pseudoelastic domain the temperature is kept constant
at T = 50◦C which is higher than the austenite finish temperature A0

f . The experiments were conducted
in a SERVATHIN hermetic enclosure where the temperature can be regulated and kept constant through a
range values from −50◦C to 200◦C. Maximum stress was kept below the critical stress for slip (750 MPa)
to ensure that no macroscopic plastic deformations occurs. The tests were taken through to rupture of
the specimen.

In order to examine the effect of mean stress on the fatigue of nickel-titanium, three load ratios (R =
σmin/σmax) were considered, equal to 0, 0.2, and −1 respectively. The geometry of the specimens we
used is illustrated in Figure 7.

3.2. Results and discussions.

3.2.1. S-N curves. The S–N curves (Wöhler curves) relating the number of cycles to failure under uni-
axial loading to the amplitude of the applied stress obtained for these experiments are shown on Figure
8. The effect of mean stress on fatigue life can be observed. Indeed, a higher mean stress corresponds to
a lower number of cycles to failure. These Wöhler curves can be used for fatigue life prediction when
the applied loading is uniaxial and for a given mean stress. They are inadequate, however, for fatigue
analysis of shape memory structures under multiaxial loading.

3.2.2. Low-cycle fatigue life prediction for superelastic SMAs. Existing SMA low-cycle fatigue life pre-
diction models are mostly of the Manson–Coffin type where the number of cycles to failure is related to
the amplitude of plastic strain. As early as 1979, [Melton and Mercier 1979a] showed that, for different
types of shape memory alloys, fatigue life of wires follows the Manson–Coffin law. This result has been
confirmed in several subsequent papers [Tolomeo et al. 2000; Wagner et al. 2004]. Even though multiaxial
loading can be accounted for theoretically by means of a generalized Manson–Coffin relationship using

l = 49 mm

L = 106 mm

ˆ = 15 mm

ˆ = 10 mm
ˆ = 6,18 mm

l = 12 mm

L = 120 mm

40 mm

10 mm

ˆ = 8 mm

ˆ = 15 mm
ˆ = 19 mm

Figure 7. Geometries of specimens used for cyclic experiments for R = 0 (left) and
R = 0.2,−1 (right), respectively.
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Figure 8. Wöhler curves of nickel-titanium for different mean stress values.

equivalent plastic strain, the ability to predict three-dimensional structure failure using this approach has
not been proved.

In the scope of this paper, an energy-based approach is used for estimating low-cycle fatigue life of
superelastic SMAs. This is inspired from Charkaluk et al. [2002], where a similar approach was success-
fully applied on cast iron. Indeed, superelastic hysteresis stabilization for a shape memory material is
similar to plastic shakedown of cast iron. In both cases, inelastic (plastic deformation for iron cast and
transformation strain for SMAs) deformation is confined but the material continues to dissipate energy.
Energy dissipation is usually explained, in the case of superelastic SMAs, by strain incompatibilities
across the boundaries of the grains [Melton and Mercier 1979b] which in time lead to the creation and
accumulation of defects at the boundaries [Melton and Mercier 1979a].

In this paper, the martensitic transformation, responsible for the creation of martensite grains, is
accounted for using state variables z and εtr. Given the above interpretation of energy dissipation in
SMAs, the inelastic deformation zεtr, being proportional to the number of martensite grain boundaries
(through state variable z) and to the level of orientation of martensite variants within these grains, seems
an adequate parameter for predicting fatigue failure of superelastic SMAs.

The amount of dissipated energy per loading cycle, Wd, is given by

Wd =

∮
σ : dε.

Once the material response stabilizes, this energy becomes constant, as shown by the experimental result
given in Figure 9, left (stress ratio = 0).

In the case of the studied nickel-titanium, an example of the evolution of the dissipated energy with
respect to the number of cycles is illustrated in Figure 9, right. Even though the use of dissipated energy
per cycle for fatigue life prediction has been criticized [Halford 1966; Pineau and Pétrequin 1997], its
usefulness in practice is well proven. The work of [Charkaluk et al. 2002] has been successfully applied
to predicting failure of automotive components subjected to complex thermomechanical loading.

The data points in Figure 10, left, represent the amount of dissipated energy per cycle Wd with respect
to the number of cycles to failure Nf, plotted on a log-log scale. The figure shows a quasilinear depen-
dence of log Wd on log Nf for several values of the mean stress. Hence it is interesting to approximate
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Figure 9. Left: experimental stabilization of the amount of dissipated energy per cycle,
Wd, with the number of cycles. Right: dissipated energy per cycle versus number of
loading cycles: experimental result for 1σ = 400Mpa.

the experimental results using the following curve from [Moumni et al. 2005]:

Wd = αNβ
f , (15)

where α and β are material parameters. This is shown as the gray line in the same figure. Expression
(15) can readily be used for three-dimensional structure analysis because dissipated energy per cycle is
well defined and its calculation is straightforward.

The stabilized cycle and the corresponding amount dissipated energy to the stabilized cycle can be
numerically determined using the model presented in this paper as shown in Figure 10, right. The
number of cycles to failure of a SMA structure can be estimated using the suggested fatigue criterion.
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Figure 10. Left: experimental results for dissipated energy per cycle as a function of
the number of cycles to failure, for α = 11 and β =−0.377, and fit using Equation (15).
Right: numerical results for dissipated energy per cycle with respect to the number of
cycles, with 1σ = 400Mpa.
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It is important to note, however, that the validity of this criterion has only been proven in the case of
uniaxial loading; its ability to predict failure of structures subjected to complicated loading conditions
remains to be established.

4. Conclusion

In the first part of this paper, a model capable of simulating several phenomena associated with shape
memory materials subjected to cyclic loading is presented. The modeling process is based on a simple ob-
servation. On the macroscopic level, SMA training can be interpreted as a thermomechanically-induced
transition from an unstable virgin material configuration into a stable one. From a theoretical point of
view, it is easy to account for this transition by making some of the model parameters depend on a
cumulated martensite volume fraction which evolves with the applied loading. Inelastic residual strain,
which appear during repeated phase change, is accounted for by introducing a state variable similar to
plastic deformation strain of classical elastoplastic materials. Numerical results show good agreement
with available experimental data.

The second part of the paper investigates the fatigue of SMAs by analogy with plastic fatigue. It
has been shown that the dissipated energy at the stabilized cycle during a cyclic loading is a relevant
parameter for fatigue life prediction. A relationship between this parameter and the number of cycles to
failure has been derived from experimental results. It has also been shown that the cyclic model can be
combined with the fatigue criterion in order to predict low-cycle failure of superelastic shape memory
structures. Nevertheless, it is clear that the model must be improved on some points. First, it is important
to investigate the fatigue of SMAs criterion for another type of loading, namely torsion. Second, it is
interesting to check the validity of the model against experimental results for complex structures under
complex loading. This work is undertaken and will be presented in future papers.
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