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The resistance to macrocrack propagation in two-dimensional periodic cellular materials subjected to
uniaxial remote stresses is improved by redistributing the material of the solid phase. The materials are
represented by beam lattices with regular triangular or hexagonal patterns. The purpose of the design
is to minimize the maximum tensile stress for all possible crack locations allowed by the material mi-
crostructure. Two design cases are considered. In the cell design case material is redistributed between
the otherwise uniform elements of the repetitive cell. In the element design case the shape of identical
elements is optimized. The analysis of such infinite trellis with an arbitrary macroscopic crack is enabled
by an efficient exact structural analysis approach. It is shown that the fracture toughness of the triangular
layout can be significantly increased by redistribution of the material between the elements with uniform
cross sections while for the case of hexagonal lattice the effect is achieved mainly by using identical
elements with variable thickness distribution.

1. Introduction

The present paper is concerned with the improvement of the resistance of periodic cellular materials
to the propagation of mature cracks by redesigning the repetitive cell. The two-dimensional cellular
materials, or honeycombs, considered here are modeled as lattices with rigidly connected beam elements
exhibiting both axial and flexural stiffness. Borrowing from the continuous case the resistance to crack
propagation of a cellular material is given by the fracture toughness KC . In contrast to a continuous
material where the fracture toughness is determined experimentally, in cellular materials, where the tip
of a macroscopic crack can be always associated with a void, thus precluding singularities in the stress
field, the fracture toughness can, in principle, be determined numerically in terms of the rupture stress of
the parent brittle material. The aim of the present paper is to improve the fracture toughness of cellular
material by redesigning the repetitive cell using a formal mathematical programming approach.

A numerical structural optimization process is basically a conjunction of an analysis module embedded
within an optimization algorithm. The availability of an efficient and robust analysis tool is thus a central
concern since the optimizer will usually navigate through a plethora of candidate designs, each requiring
a separate analysis, before reaching the best configuration. We need therefore an adequate capability
for a detailed analysis of a cellular material in a given stress field in the presence of a crack. The basic
problem in the presence of a crack is that the periodicity of the structure is lost, which causes difficulties
for the analysis. Some authors have obtained the fracture toughness of cellular material numerically, most
of them in some restrictive cases. The published methods of determining the fracture toughness either
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involve some sort of representation of the honeycomb as an equivalent continuum (homogenization) —
an indirect approach — as in [Maiti et al. 1984; Gibson and Ashby 1997; Chen et al. 1998], or tackle
the problem directly with a finite element method by reducing the infinite honeycomb to a finite-size
model [Huang and Gibson 1991; Schmidt and Fleck 2001; Choi and Sankar 2005; Fleck and Qiu 2007;
Quintana Alonso and Fleck 2007].

In all these examples, and to the best of our knowledge, also among other publications which deal
with the fracture toughness estimation of cellular materials no numerical work was published on the
fracture toughness of honeycombs with asymmetric or irregular topologies. Recently, a general approach
which uses exact structural analysis for a crack in an infinite lattice was presented in [Lipperman et al.
2007a] to determine the fracture toughness of honeycombs with prismatic-like elements. The method
can accommodate any topology of the unit repetitive cell, with or without symmetry, and any type of
remote loading.

The above references deal with the determination of the fracture toughness of cellular material. The
present paper intends to redesign the unit cell in order to improve the fracture toughness, that is, to
improve the resistance of all mature cracks which may exist in the cellular material, to propagate when
subjected to a uniaxial stress field in a given direction. Since cracks are assumed ab initio, all possi-
ble crack types and orientations compatible with the internal arrangement of the microstructure of the
particular material are made allowance for in each case. To this respect, this is probably a first attempt
for a systematic design of crack-resistant honeycombs (we use the term crack-resistant to indicate the
resistance of mature cracks to propagate).

Two design formulations are presented starting with the cell design case where material is moved
between the otherwise uniform elements of the unit cell. In the element design formulation all the
elements of the unit cell are identical and the shape of a typical prismatic element of variable cross-
section is optimized. Note, elements with variable thickness were considered in [Warren and Kraynik
1987], where the linear elastic response of an undamaged hexagonal honeycomb was studied for three
different element shapes, and in [Warren and Kraynik 1988] for a tetrahedral unit cell, but the shape of
the elements were not optimized. The present paper deals with two basic topologies: regular triangular
and regular hexagonal lattices. As indicated the honeycombs considered here will be redesigned to resist
crack propagation of any possible mature crack under a given unidirectional remote tensile loading.

For the analysis, the method in [Lipperman et al. 2007a] is used. The analysis is direct, in the sense
that it remains in the discrete realm without first associating the honeycomb with a continuous material
using homogenization. A conjunction of the structural variation method of Majid et al. [1978], the repre-
sentative cell method of Nuller and Ryvkin [1980] and stress localization [Michel et al. 1999; Lipperman
et al. 2008a] allows for an exact analysis of fractured honeycombs with repeating unit cells of any shape
and subjected to any type of remote loading. With this versatile analysis module at hand the honeycombs
are optimized for maximum resistance to crack propagation.

In Section 2 the design problem is formulated. Section 3 gives a succinct description of the analysis
process. In Sections 4 and 5 we present the redesign of the honeycombs for best crack-resistance. The
paper closes with a summary of the main results and some conclusions (Section 6).
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2. The design formulations

The purpose of the design is to produce honeycombs which have improved resistance to crack propagation
under remote stresses. This property is characterized by the honeycomb fracture toughness. Huang and
Gibson [1991], who evaluated the stress field in the vicinity of a Mode I crack of length 2a in a square-
celled honeycomb, calculated this quantity by means of the formula

KC = σr
√
πa, (1)

where σr is the remote tensile loading corresponding to the onset of fracture, that is, when the most
stressed element in the crack-tip vicinity fails. We will follow this approach completed by the assumption
that noninteracting cracks of same length, of all possible types and orientations, dictated by the material
microstructure, are present simultaneously. Consequently, the magnitude of σr in (1) is defined by the
stress field in the vicinity of the most dangerous crack. Clearly, the crack length used in the simulations
must be large enough such as to produce self-similar K -fields close to the crack tips. The issue of possible
crack types was investigated by Lipperman et al. [2007b], who found numerically that they are parallel
to the microstructure symmetry planes. It should be noted that the optimization of the fracture properties
was carried out for a specific loading direction.

The redesign is performed on honeycombs with two popular patterns: equilateral triangles and regular
hexagons (Figure 1). The unit cells of the planar repetitive structures have walls of length L , rectan-
gular cross sections of thickness t and a unity inward depth. For the analysis model, the cell walls
are represented by rigidly connected Euler–Bernoulli beam elements, including their axial rigidity. A
displacement-based analysis is used with 3 degrees of freedom defined at each node. The bulk material is
assumed isotropic, homogeneous, linear-elastic and brittle with a rupture modulus σ f s . The honeycombs
are subjected to a uniaxial remote stress σr as shown in Figure 1.

We will take into account all the possible straight paths which can be formed by the sequential fracture
of elements along the lattice axes of symmetry. As shown in Figure 2, top, the triangular pattern has a
single crack type, denoted by T1, whereas the hexagonal grid exhibits 3 crack types: H1, H2 and H3
(see Figure 2, bottom). It will be seen that the macroscopic cracks in Figure 2 can for both patterns be
rotated three times by an angle of π/3 radians, yielding three possible propagation orientations in each
case. Consequently, the triangular layout has in total 3 possible cracks whereas the hexagonal lattice has
9 possible cracks.

  

στ στ

στστ

Figure 1. Honeycombs with equilateral triangles (left) and regular hexagons (right),
subjected to a uniaxial remote loading.
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Figure 2. The possible macrocrack paths types of the triangular and hexagonal, honeycombs.

We consider two design cases. In the cell design case the beam-elements of the unit cell are uniform
and the design variables are the thicknesses of the elements (Figure 3, left). During the optimization
process material is moved between the elements until the optimal layout is reached. Moving material
between elements creates nonsymmetric unit cells and as stated earlier, there are no published results
for the analysis of such materials, with or without cracks. In the element design case the unit cells
are composed of an identical typical element of variable thickness (Figure 3, right). The optimization
searches for the optimal shape of the typical element and the design variables are parameters which
govern the contour of the element.

A crack propagates by the failure of an element in the crack tip vicinity. It is assumed that an element
will fail when the tensile stress, anywhere along the element, reaches the rupture modulus or when the
axial load in a compressed element reaches the Euler buckling load. Note that the maximal tensile stress
in a uniform element (cell design case, shown on the left in Figure 3) will occur at one of the ends of

L L

η η

ξ ξ

t
tp(ξ)

ηc(ξ)

Figure 3. Beam elements with uniform and variable cross-sections.
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the element. On the other hand, with variable cross-sections (element design case, shown on the right
in Figure 3), the maximum stress can also occur at intermediate locations. As indicated, we can have
several possible crack types and crack orientations. Consequently, we are in the presence of a minimax
problem in the sense that we want to minimize the maximum stress anywhere along elements in the front
of any possible crack and thus improving the resistance of the structure to the propagation of existing
cracks. Minimizing the maximum stress in the elements is commensurate with maximizing the allowable
remote stress, that is, maximizing KC .

3. Analysis considerations

A central ingredient in a structural optimization scheme is the analysis module which provides the internal
forces in the structure for any given candidate design. In the present case we need to analyze a fractured
cellular material under remote uniaxial tension. The crack is formed by a series of fractured elements
in contiguous cells along a linear path. It must be sufficiently long, so that the K -field in its vicinity
emerges, allowing one to determine the fracture toughness. Since the fractured elements do not contribute
to the stiffness of the assembly they can be removed from the analysis model which results in an infinite
structure which is no longer periodic subjected to uniaxial tension at infinity. The central idea in analyzing
the cracked honeycomb is to consider the failed elements as a finite set of components whose stiffness was
modified (in our case, reduced to zero) in an otherwise repetitive infinite structure. We will refer to the
undamaged honeycomb as the nominal structure, the cracked honeycomb as the modified structure and
the stresses at infinity will be the nominal loads. The analysis will be based on the structural variations
method of Majid et al. [1978], which is an efficient reanalysis method when only part of the stiffnesses of
a structure are modified. In particular, for the broken elements considered here, the modification is to set
the stiffnesses to zero. This method determines the internal forces in the modified structure on the basis
of analyses performed on the nominal structure under the nominal loads and under self-equilibrating
loads. The latter are unit and opposite forces applied in turn to the extremities of the elements that will
eventually be removed to form the crack (Figure 4). This method suits the present needs perfectly since
we need to analyze only intact infinite repetitive structures.

For the analysis of the nominal structure under the nominal loads, that is, the uniaxial stress field, we
follow the methodology for stress localization for honeycombs in a macroscopic stress field [Michel et al.
1999]. Stress localization gives the detailed stresses in the repetitive cell of a cellular material subjected

a) b) c) 

����

����

����

����

����
����

L/2
 

L/2
 

1

1

1

1
1

1

axial mode bending mode shear mode

Figure 4. The unit loads applied at the nodes of an arbitrary rigid-jointed element of the
hexagons honeycomb.
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to a periodic stress filed, without the need for prior homogenization. We will be using a slightly modified
version of stress localization developed in [Lipperman et al. 2008a].

The unit loads solutions are obtained by the representative cell method [Nuller and Ryvkin 1980;
Ryvkin and Nuller 1997], which enables to solve infinite and repetitive structures subjected to arbitrary
loads, as opposed to periodic loads (see, for instance, [Ryvkin et al. 1999; Fuchs and Ryvkin 2002; Fuchs
et al. 2004]). A discrete Fourier transform replaces the problem formulated for an infinite structure by
an equivalent problem defined over the repetitive cell, albeit in transformed variables. After solving
the analysis equations in the transformed space, inverse transforms can produce the requested analysis
information in any cell of the infinite structure. It is instructive to emphasize that both stress localization
and the representative cell method perform the analysis on a single repetitive module.

4. Optimal design of the unit cell

In the cell design example we maximize the fracture toughness KC of the cellular material by redistribut-
ing the material between the uniform elements of the unit cell while maintaining a constant material
density. This is akin to minimizing the maximum skin stress in elements in the vicinity of the crack
tips for all possible crack types and orientations. The mathematical programming formulation of this
min-max optimization problem is

min
t

max
{
σ (t) such that ρ(t)= ρr

}
, (2)

where t is the design vector composed of the unit cell elements thicknesses, σ (t) is the vector containing
the set of largest stresses in elements that are to be considered for all possible cracks, ρ(t) is the relative
density of the cellular material defined as the ratio of the density of the honeycomb over the density of the
bulk material and ρr is a given relative density, taken here as ρr = 0.15. The cracks length 2a is chosen
sufficiently long to ensure continuum fracture mechanics behavior characterized by the proportionality
of the near tip stress field to the square root of the crack length.

Failure of an element is assumed to occur when the normal stress anywhere along the element reaches
the critical tension stress or the critical compression stress. The critical tension stress σ T

cr is simply the
bulk material rupture modulus σ f s

σ T
cr ≡ σ f s (3)

and the critical compression stress is adopted as the Euler buckling stress for the uniform hinge supported
element

σ B
cr ≡

E
12
π2(t/L)2, (4)

where E is the Young’s modulus of the solid material and t is the thickness of the element. Hinge
supports are assumed for conservative reasons. In order to set the tensional and buckling modes on a
common footing we have assumed E/σ f s = 103, which is a common ratio for ceramics and many metal
materials [Bolton 1998]. Consequently

σ T
cr

σ B
cr
=

12
103π2(t/L)2

. (5)
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The value σ j of the stress vector σ is defined by the most critical axial stress failure mode

σ j =max(σ T
j ; σ

B
j ), (6)

where σ T
j and σ B

j are the skin stresses related to the tensional and buckling failure modes for element j ,
respectively given by

σ T
j =

N j

t j
+max

(
6 |M1 j |

t2
j
;

6 |M2 j |

t2
j

)
and σ B

j =
−N j

t j

(
σ T

cr

σ B
cr

)
j
. (7)

N j is the internal axial force in element j , and M1 j , M2 j are the internal bending moments at its extrem-
ities.

We consider two cell layouts, the triangular pattern and the hexagonal one. With each pattern we first
take the basic repeating cell as the redesign unit. Next we consider a larger redesign unit consisting of four
basic cells thus quadrupling the number of design variables and consequently enriching the optimization
space. All computations were performed on a Matlab platform and for the actual minimization we have
used the fminimax subroutine of Matlab which implements a sequential quadratic programming method.

4.1. Triangles: one basic unit. As a first design scenario we consider the triangular honeycomb for
which the smallest repeating pattern possesses three elements, as shown in Figure 5(a). They will typi-
cally be referred to as 1-elements, 2-elements and 3-elements. The constraint on the relative density of
the material is

ρ(t)≡
2
√

3L

3∑
i=1

ti = 0.15. (8)

As mentioned, the triangle has only one crack type, T1, with 3 possible orientations yielding the macro-
scopic cracks T10, T1π/3, T12π/3, where the orientation angles θp are given in the subscript. In parts (b)
and (c) of Figure 5 one can see a depiction of cracks T10 and T1π/3.

(a)

(b) (c)

T10

T1π/3

3 2

1

θp

Figure 5. (a) The unit cell of the triangles honeycomb with (b) θp = 0 and (c) θp = π/3
paths orientations.
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Each of the three cracks can end in front of two different unit cell elements. For instance, crack T10 in
Figure 5(b) ends in front of a 2-element but it could also stop in front of a 3-element. For the triangular
case (one basic unit) we need to ensure that none of the 3× 2 = 6 possible cracks propagates while
maximizing the fracture toughness. This triangular pattern with three design variables is a relatively
simple case. We will see in the sequel that in more intricate designs with more elements in the repeating
unit we may have several possible cracks in the material. It is therefore worthwhile to try to reduce the
number of candidate cracks prior to solving (2). We need to determine not only which cracks should be
considered for the optimization but also in front of which element they end.

The structure was analyzed in the initial configuration (identical elements) for every possible crack,
and cracks with relatively low near-tip stresses were discarded. In the case of triangular cells this left
only crack T10. Since we omit cracks on the basis of the initial design the optimal solution was again
checked against all the cracks to ensure that in the final layout no crack propagates.

An arguably intrinsic feature of designing for crack-resistance is that including two cracks of a same
type and orientation but with different end-elements may impede the process from reaching the optimal
solution. To illustrate the concept consider again the T10 of the triangular pattern. It propagates by
sequential breaking of 2- and 3-elements — with the labeling as in Figure 5(a) — along the crack line
illustrated in Figure 5(b). Including both cracks in the optimization will yield a symmetric design with
equal thicknesses for elements 2 and 3 (and half the thickness for element 1). Consequently, a T10 crack,
whether facing a 2-element or a 3-element will not propagate. However, this may not be the best solution.
In contrast to classical structural design where no failure is tolerated, with crack propagation we do not
really care if a crack facing a 2-element breaks that element as long as it stops in front of the subsequent 3-
element (or vice-versa.) We could thus weaken the 2-elements and reinforcing the 3-elements by moving
material from 2 to 3. By setting the trap at 3 (or at 2) we should produce better resistant materials albeit
with nonsymmetric repetitive cells. This can be achieved by including only one T10 crack, facing either
a 2- or a 3-element, in the optimization formulation.

For the triangular case with 3 design variables we need to include only one crack. With unit cells of
complex geometries and more design variables, the selection of cracks and corresponding traps is not
always obvious and in such cases (2) must be solved separately for several alternatives.

In this example we selected 2 as the trap element and the optimization in (2) gave elements of thick-
nesses

topt
1 = 0.026L , topt

2 = 0.053L , topt
3 = 0.051L (9)

with a normalized fracture toughness

K T3
C /(σ f s

√
L)= 0.091, (10)

where the superscript indicates that we deal with a triangular layout with 3 design variables. The im-
provement of this design with respect to a design with equal thicknesses [Lipperman et al. 2007a] is

K T3
C

K T
C
= 1.20. (11)

Thus, the thicknesses distribution obtained in (9), increases the KC of the triangular honeycomb, loaded
in the direction given in parts (b) and (c) of Figure 5, by 20%.
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(1) 

(2) 

(3) (4) (5) (6) 
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Figure 6. Left: The enlarged unit cell of the triangles honeycomb. Right: the six T1
propagation possibilities.

4.2. Triangles: four basic units. Improved results can be expected if we increase the size of the re-
peating cell and therefore the number of design variables. In this example we consider a repeating cell
composed of 4 basic units. We have thus 12 design variables and 6 different T1 possibilities (Figure 6).
However, as noted in Section 4.1, it suffices to consider the two horizontal paths. The relative density
constraint is now

ρ(t)≡
1

2
√

3L

12∑
i=1

ti = 0.15. (12)

The selection of the trap elements is a little more intricate. Here one needs to make allowance for
cracks to propagate in both directions. After due considerations the traps were set at elements 2, 6, 11
and 12 and from symmetry the number of independent design variables could be reduced to 4. The
optimal layout given in Figure 7 has thicknesses

topt
2 = topt

6 = topt
11 = topt

12 = 0.086L , topt
1 = topt

4 = 0.025L ,

topt
3 = topt

5 = topt
8 = topt

9 = 0.017L , topt
7 = topt

10 = 0.029L
(13)

with an optimal fracture toughness K T12
C /(σ f s

√
L)= 0.110 which gives an improvement with respect to

the original design of
K T12

C

K T
C
= 1.45. (14)

Figure 7. An option for an optimal triangles honeycomb where the maximal length and
the minimal thickness of its elements have been previously set.
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0 1 1.46 2
0    

0.091

0.110 

0.129

 Le/L 

 

Le/L

Kc

σ f s
√

Le

Figure 8. The dependence of the optimal fracture toughness obtained with 3 design
variables on the scale length of the elements.

At this juncture it is instructive to address an issue related to the relative scale of the grid. In Figure 8
we show the dependence of the optimal fracture toughness on the element length Le where the relative
density was kept unchanged by maintaining a constant value of t/Le. We assume that the basic value
K T3

C /(σ f s
√

L) = 0.091 of (10) was obtained for a unit element length, that is, when Le/L = 1. The
fracture toughness is a square root function of the element length and doubling the latter (Le = 2L)
should produce K T3

C /(σ f s
√

L) = 0.091
√

2 = 0.129, as indicated on the figure. This result could have
been obtained by the optimization in the absence of Euler buckling constraints by removing elements
5, 6, 7, 8, 10 and 12. This is a classical case of a disjoint design space. The double-sized triangle lies
in the shadow of the buckling constraints, however, once it is reached, the design is acceptable because
the buckling constraints on the now vanished elements are no longer valid. The optimal design of the
present problem should in fact be the trivial solution in the form of a triangle with double lengths and
thicknesses.

We can however make a case for the design in Figure 7. Clearly, increasing Le will improve the
fracture toughness but it also increases the size of the holes or apertures in the material. The holes in the
triangles with Le = 2L have doubled and if we want to limit the size of the holes to the scale Le = L
(think of a net capturing fish) the design in Figure 7 is to be preferred. In fact, as shown on the graph,
the design in Figure 7 of scale Le = L is equivalent to an optimal solution with 3 design variables of
scale Le = 1.46L .

4.3. Hexagons: one basic unit. The basic hexagonal pattern has three design variables, with a relative
density constraint

ρ(t)≡
2

3
√

3L

3∑
i=1

ti = 0.15. (15)

As noted from Figure 2, right, there are a total of 9 propagation paths: H10,π/3,2π/3, H20,π/3,2π/3,
H3π/6,π/2,5π/6. A preliminary investigation of the initial design (equal thicknesses) has shown that the
problem could be simplified. Because of symmetry, as noted for instance in Figure 9 for the H10 crack,
we have t2 = t3 and the set of cracks can be reduced to H10, H20 and H3π/6 in view of the fact that the
constraints produced by the remaining cracks can be shown to be nonactive.

The optimum result is

topt
1 = 0.119L and topt

2 = topt
3 = 0.135L (16)
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Figure 9. The H10 macrocrack with its two most loaded elements (in bold).

for K H3
C /(σ f s

√
L) = 0.016, an improvement of only 6% over the fracture toughness with equal cross-

sections (0.015), given in [Lipperman et al. 2007a]. The resistance to macrocrack propagation in this
case is only moderately improved.

The location of the most loaded elements (Figure 9) may be counterintuitive however an earlier work
on crack nucleation and propagation has shown that this type of crack under same loads at some early
stage of the crack formation changed direction from the path perpendicular to the loading to a direction
inclined by 60 ◦ [Lipperman et al. 2007b]. The most loaded elements at the crack-tip are probably the
harbingers of the kink in the crack path.

4.4. Hexagons: four basic units. We now consider an augmented design domain, composed of four
basic unit cells with 12 design variables, as shown in Figure 10. The relative density constraint here is

ρ(t)≡
1

6
√

3L

12∑
i=1

ti = 0.15. (17)

The number of design variables could be reduced from 12 to 5 and from the 18 possible propagation
paths only 5 were retained.

The thickness distribution for the optimal solution is

topt
7 = 0.15L , topt

10 = 0.01L , topt
2 = topt

6 = topt
11 = topt

12 = 0.09L ,

topt
1 = topt

4 = 0.15L , topt
3 = topt

5 = topt
8 = topt

9 = 0.18L .
(18)

A typical unit cell and an overview of the hexagonal pattern are depicted in Figure 11. In the optimal
layout we notice ellipse-like quasiholes in the form of cells with embedded slender elements oriented
along the remote stress direction. The optimal fracture toughness is here K H12

C /(σ f s
√

L)= 0.018 which
represents an increase of 18% over the initial design.

1 4 

7 10 

11 12 

3 2 6 5 

9 8 

Figure 10. The enlarged hexagon unit cell with 12 elements.
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Figure 11. The optimal hexagonal honeycomb (left) with enlarged unit cell (right).

Unlike with the enlarged repetitive cell of the triangular honeycomb, the optimal hexagonal layout of
scale L cannot be replicated on the present grid with elements of twice the length and thickness. The
optimal design in Figure 11 is thus the only possible layout.

4.5. Summary of results. The main results for the optimal design of the cellular material with relative
density ρr = 0.15 are summarized in Table 1 for both layouts. The fundamental difference between the
two patterns is already apparent in the initial design. The triangular patterns are markedly more resistant
to crack propagation then the hexagonal ones. This is to be attributed to the axial mode being dominant
in triangular lattices whereas hexagons deform primarily in bending [Deshpande et al. 2001]. In addition,
the optimization is relatively more effective for triangles, where, for instance, a 45% improvement was
obtained for repetitive cells with 12 design variables as compared to 18% in the hexagonal case. The
counterexamples in the next section will show that using elements of varying thickness will prove much
more effective for bending dominated patterns than for materials where the axial mode is predominant.

Triangles Hexagons

Initial (equal thicknesses) 0.076 0.015
Optimized (3 design variables) 0.091 (20%) 0.016 (6%)
Optimized (12 design variables) 0.110 (45%) 0.018 (18%)

Table 1. Optimal fracture toughness KC/(σ f s
√

L) for triangular and hexagonal patterns
with ρr = 0.15 for two sizes of the repetitive module. The initial values correspond to
equal thickness elements. σ f s is the rupture stress of the bulk material and L is the
beams length. Improvements with respect to the initial design are given in parentheses.

5. Optimal design of the element

In this section we improve the material’s resistance to macroscopic crack propagation by using same
beams but of variable thickness for the elements of the honeycomb. We assume the thickness of the
elements tp(ξ) along ξ = 0÷ L/2 (see Section 2) to be

tp(ξ)= 2ηc(ξ)= 2
p∑

j=0
c jξ

j , (19)
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where p is the order of the polynomial and c j are the parameters which define the shape of the elements
and constitute the variables in this design problem. In addition we impose, for sound engineering design,
a zero slope at the center of the symmetric element and positiveness of the thickness:

dtp(ξ)

dξ
= 0 for ξ = L/2, tp(ξ)≥ ε for 0≤ ξ ≤ L/2, (20)

with ε = 10−5L . The mathematical programming formulation, solved with the same analysis and design
subroutines as in Section 4, is here

min
c

max
{
σ (c) such that ρ(c)= ρr

}
, (21)

where the design vector c holds the coefficients c j ( j = 0, 1, . . . , p) of the polynomial. In line with (2),
σ (c) is the vector containing the set of stresses that are to be considered for all possible cracks. The
relative density constraint is now

ρ(c)≡
nce Ae

Auc
= ρr , (22)

where nce (= 3 herein) is the number of elements of the unit cell, Auc is the area of the unit cell and Ae

is the area of the projection of the elements given by

Ae = 4
∫ L/2

0
(c0+ c1ξ + · · ·+ cpξ

p)dξ = 4
p∑

j=0

c j (L/2) j+1

j + 1
. (23)

For calculating the stiffness matrix of the beam element we have approximated the thickness by a piece-
wise linear function.

The material with the triangular pattern has a unit cell of area Auc =
√

3L/2 and making allowance
for the symmetry of the problem we considered only macroscopic cracks T10 and T1π/3 (Figure 5).
The optimal solution topt

p (ξ) obtained with a second- and a third-order polynomial contour functions are
presented in Table 2. The linear case is not addressed since it can not yield a zero slope at the middle of
the element. Taking for baseline the material composed of elements with constant uniform cross-sections
the improvement of the fracture toughness for honeycombs with optimized contours is given under the
heading K Topt

C in Table 2. It will be seen that the improvements are not dramatic. Better results were
obtained for the triangle when transferring material between the elements of the unit cell design.

We now turn our attention to the hexagonal pattern (Auc = 3
√

3L/2) where it was noticed that it
suffices to include macroscopic cracks H10, H20 and H3π/6, only. The results given in Table 3 clearly
indicate a marked improvement in K Hopt

C . In Figure 12 we have drawn the contours of the elements for
different orders of the polynomial. It should be emphasized that the optimum was obtained for equal
values of the skin stress at the root of an element and at mid-field. The latter could be calculated with

p Contour function topt
p (ξ)[10−2L] K Topt

C [%]

2 4.6− 1.4(ξ/L)+ 1.4(ξ/L)2 4.2
3 4.6− 0.6(ξ/L)− 2.0(ξ/L)2+ 3.4(ξ/L)3 4.8

Table 2. The optimal contour functions and fracture toughness increase of the triangles honeycomb.
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p Contour function topt
p (ξ)[L] K Hopt

C [%]

2 0.20− 0.39(ξ/L)+ 0.39(ξ/L)2 77.7
3 0.17− 0.05(ξ/L)− 0.82(ξ/L)2+ 1.16(ξ/L)3 96.8
4 0.18− 0.15(ξ/L)+ 0.13(ξ/L)2− 1.63(ξ/L)3+ 2.50(ξ/L)4 103.7

Table 3. The optimal contour functions and fracture toughness increase of the hexagons honeycomb.

p = 3 
p = 4 

p = 2 
p = 0 

Figure 12. The optimal contours of the elements with ρr = 0.15.

relative confidence however at the root we have a concentration of material and consequently the model
is locally less representative. As a consequence the stresses calculated at the ends may carry an error
and should be utilized with care. The general trend is however clear and substantial improvements are
to be gained by using variable thickness elements. In Figure 13 we give the shape of the hexagons
obtained with optimal elements for densities ρr = 0.15, 0.25. The shape for the 0.25 density was added
to show a tendency to form circular holes as the relative density of the cellular material increases. This

ρr = 0.15 ρr = 0.25

Figure 13. The topologies of the hexagons with the optimal elements obtained with the
fourth-order contours, for ρr = 0.15 and ρr = 0.25.
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corroborates a result obtained in a separate work on the K I C fracture toughness of perforated plates
where a parametric study on the optimal shape of holes has shown that for holes stacked in a hexagonal
pattern, circular holes produced optimal designs [Lipperman et al. 2008b].

It is interesting to notice that variable thickness elements have a rather marginal effect on the fracture
of the triangular pattern but are of paramount importance in hexagonal honeycombs. This feature is to
be related to the flexion versus stretch dominance of the two families of cellular materials which were
studied in this work.

6. Conclusions

This paper has presented a methodology for designing two-dimensional cellular materials with improved
resistance to crack propagation under macroscopic uniaxial tensile stresses. The material is modeled as
repetitive patterns of bending resistant elements and crack propagation by the sequential breaking of the,
assumed, brittle beam elements. With such grids the material can have cracks in a limited number of
directions and we have defined the fracture toughness concept which is akin to the fracture toughness
generalized by assuming the presence of all possible noninteracting cracks. The purpose is to maximize
the fracture toughness by redistributing the material in the repetitive cell in an optimal fashion. Both
the analysis and design are confined to the repetitive unit. For the analysis of the material with a crack
we have used the representative cell method in conjunction with stress localization. These methods
produce the results for the cracked medium by analyzing infinite pristine structures. The analysis is thus
exact within the realm of Bernoulli–Euler beams. Two types of honeycombs were studied. A stretch
dominated material with triangular patterns and a material with hexagonal unit cells which exhibits
substantial flexion. It was shown that the material with triangles has only one type of crack which can
appear in three directions. The hexagonal pattern presents three types of cracks each in three possible
directions. In addition a given crack can end in front of different elements and each alternative should
in principle be considered. Precluding an exhaustive optimization procedure where all the possibilities
are tested it was suggested that the designer choose a trap element which is designed to arrest the crack
and sacrifice other elements along the crack path. It was also shown that a prior study of the cracks can
reduce the number of possibilities to a more tractable set. Since engineering judgment is involved the
final design is always checked against all possible cracks. The actual computations were performed on
a Matlab platform and for the optimization we have used a sequential quadratic optimization algorithm.

Two types of redesigns were considered. In the cell design case material was moved between the,
otherwise uniform, elements. In the second design all elements were identical but had variable cross-
sections. The parameters controlling the contour of the elements were here the design variables. The
computations for the cell design were repeated for small repeating units (three design variables) and for
larger ones (twelve design variables). As a rule results indicate that the stretch dominated triangular
pattern is much more crack-resistant than the corresponding flexion dominated hexagonal layout. It is
also much more sensitive to moving material between uniform elements than to the use of elements with
variable thickness. An opposite conclusion can be drawn for the hexagonal honeycomb. A practical
conclusion which could be drawn from the present work is that in order to increase the resistance to
crack propagation of two dimensional cellular material one should redistribute the material between the
elements of the repetitive model when the primary deformation mode of the structural elements is axial
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deformation. In the case of models where bending is dominant the use of elements with variable thickness
is the way to go. With the methodology presented herein one can quantify the expected improvements
in a coherent manner. It is noteworthy that the computations, although confined to the repetitive unit,
produce exact results for the infinite model.

The feasibility of manufacturing such optimal cellular materials may, at present, be questionable. It
is however difficult to foresee what the future holds in store. MEMS technology, amongst others, could
perhaps implement such optimal layouts.
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