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STATIC BENDING ANALYSIS OF LAMINATED CYLINDRICAL PANELS
WITH VARIOUS BOUNDARY CONDITIONS

USING THE DIFFERENTIAL CUBATURE METHOD

S. MAHMOUD MOUSAVI AND MOHAMAD M. AGHDAM

This paper deals with the application of the differential cubature method (DCM) to the bending analysis
of laminated cylindrical panels. Symmetric and unsymmetric laminate, with various combinations of
clamped, simply supported and free boundary conditions, are considered, with either uniform or sinu-
soidal transversely distributed loads. Using first-order shear deformation theory, fifteen first-order partial
differential equations are obtained, containing as many unknowns in terms of displacements, rotations,
moments, and forces. Comparison of the results obtained by DCM shows very good agreement with
those of other numerical and analytical methods, with decreased computational effort. Further, in this
method, a free boundary condition and unsymmetric laminates do not violate the accuracy of the results.

A list of symbols can be found starting on page 519.

1. Introduction

Considerable research has been conducted to investigate the response of thin/thick laminated cylindrical
panels, as one of the fundamental parts of engineering structures. Since only particular elasticity problems
can be studied using analytical methods, numerical techniques have been developed to obtain solutions for
different structural components subjected to various types of loading and boundary conditions. Among
the methods employed we mention the finite difference [Smith 2000], finite element [Qatu and Algothani
1994; Reddy 2004], boundary element [Jianqiao 1988], dynamic relaxation [Ramesh and Krishnamoorthy
1995], and extended Kantorovich methods [Yuan et al. 1998; Alijani et al. 2008], meshless methods
[Alavi et al. 2006], and the differential quadrature (DQ) [Artioli et al. 2005], generalized differential
quadrature (GDQ) [Aghdam et al. 2006], and differential cubature methods (DCM) [Civan 1994; Liew
and Liu 1997; 1998; Teo and Liew 2002; Wu and Liu 2005].

In the literature of the static bending analysis of shells and plates, the free boundary condition has been
a major problem and usually the methods lose their accuracy when there is even one free edge. Although
this is more of a problem with analytical methods than numerical ones, only a few numerical methods —
such as GDQ [Aghdam et al. 2006], FEM [Bhaskar and Varadan 1991], and state space [Khdeir et al.
1989] — can be assumed safe for dealing with static problems involving shells and plates with free edges.
Naturally, then, the development of new methods usable for unsymmetric shells with some free edges is
a desirable goal.

The DCM was presented in [Civan 1994] as an efficient procedure to obtain solutions for partial dif-
ferential equations with a relatively small number of grid points and less computational effort. However,
reported applications of the DCM in the open literature are restricted to analyses of plates, including
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bending [Liew and Liu 1997; 1998; Teo and Liew 2002] and vibration [Wu and Liu 2005]. Nothing was
found in the open literature for other structural elements, such as shells and panels.

Here we perform a bending analysis of laminated cylindrical panels with various loading boundary
conditions using the DCM. The complete form of the governing partial differential equations of the
problem based on first-order shear deformation theory is considered. All panel variables including
displacements, rotations, moment, and force resultants are presented in the governing equations. The
presence of all variables provides an easy way to satisfy different boundary conditions.

The solution to the governing equations provides direct predictions of all variables with the same
order of accuracy. Both governing equations and solution domain are discretized using DCM. As with
most other numerical techniques, this yields a system of linear algebraic equations. Comparison of the
predictions for stress resultants and displacement components shows very good agreement with results
of other analytical and numerical techniques. The lamination sequence of the examples are symmetric,
unsymmetric, cross-ply and angle-ply. There is no restriction to using this method for panels with free
edges.

2. Governing equations

As a test case for the capabilities of the DCM and the accuracy of its results, we consider a moderately
thick laminated cylindrical shell panel with length a, thickness h, and mid-surface radius R (Figure 1).
Using the principle of minimum potential energy and the assumptions of first-order shear deformation
theory (FSDT), one obtains the fifteen first-order PDEs listed in Table 1, which constitute the general form
of the governing partial differential equations of the problem; see [Toorani and Lakis 2000] for details.
(These governing equations have been used and verified in some recent surveys such as [Aghdam et al.
2006; Toorani and Lakis 2001].)
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Figure 1. Shell geometry and coordinate system.
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Table 1. Governing equations for the system in Figure 1.

Here Qi , Ni j , and Mi j represent shear and normal forces and moments, ux , uθ , w are the components
of the displacement in cylindric coordinates, and βx , βθ are rotations of the tangents to the reference
surface along the x and θ axis. We also denote by θ the counterclockwise orientation angle between the
fiber direction and the panel coordinate system, and we set m = cos θ , n= sin θ . Other panel constants are

Ai j =
N∑

k=1
(Q̄i j )k(hk − hk−1), Bi j =

1
2

N∑
k=1

(Q̄i j )k(h2
k − h2

k−1), Di j =
1
3

N∑
k=1

(Q̄i j )k(h3
k − h3

k−1),

Gi j = Ai j + a1 Bi j + a2 Di j , Hi j = Bi j + a1 Di j + a2 Ei j , Ji j = Di j + a1 Ei j + a2 Fi j ,

G ′i j = Ai j + b1 Bi j + b2 Di j , H ′i j = Bi j + b1 Di j + b2 Ei j , J ′i j = Di j + b1 Ei j + b2 Fi j ,

(1)

where for cylindrical panels a1 = b1 = 1/R, a2 = 0, and b2 = 1/R2. Although some of their values
are very small for the problems considered below, these coefficients are all preserved, to achieve better
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accuracy and do justice to the capability of the differential cubature method. The Q̄i j are defined as

Q̄11 = Q11m4
+ 2(Q12+ 2Q66)m2n2

+ Q22n4,

Q̄12 = (Q11+ Q22− 4Q66)m2n2
+ Q12(m4

+ n4),

Q̄22 = Q11n4
+ 2(Q12+ 2Q66)m2n2

+ Q22m4,

Q̄45 = (Q55− Q44)mn,

Q̄16 = (Q11− Q12− 2Q66)m3n+ (Q12− Q22+ 2Q66)mn3,

Q̄26 = (Q11− Q12− 2Q66)mn3
+ (Q12− Q22+ 2Q66)m3n,

Q̄44 = Q44m2
+ Q55n2,

Q̄55 = Q44n2
+ Q55m2,

Q̄66 = (Q11+ Q22− 2Q12− 2Q66)m2n2
+ Q66(m4

+ n4),

(2)

while the Qi j denote the elastic stiffness in the material coordinates (local axes) and are defined by

Q11 = E1/1, Q12 = E1ν21/1, Q22 = E2/1, Q44 = G23,

Q55 = G13, Q66 = G12, 1= 1− ν12ν21,
(3)

where Ei , Gi j and νi j are, respectively, the Young’s moduli of elasticity in the principal directions, the
shear moduli of each lamina, and Poisson’s ratios characterizing the transverse contraction (expansion)
under tension (compression) in the directions of the coordinate axes.

The boundary conditions for the panel can be any combination of

Free (F):

{
Nxx = Nxθ = Qx = Mxx = Mxθ = 0 for x constant,

Nθx = Nθθ = Qθ = Mθx = Mθθ = 0 for θ constant;
(4)

Simply supported (S):

{
Nxx = uθ = w = Mxx = βθ = 0 for x constant,

ux = Nθθ = w = βx = Mθθ = 0 for θ constant;
(5)

Clamped (C): ux = uθ = w = βx = βθ = 0 for x constant and for θ constant. (6)

Since there are ten derivatives in the fifteen equations, five boundary conditions is available and also
enough in each edge.

3. Application of the DCM

The first step to apply the DCM is to form a nondimensional version of the governing equations in Table 1.
To do so, we let q0 be the uniform load or the amplitude of a sinusoidally distributed load, and introduce
the dimensionless parameters

w∗ = w× E1h3/q0a4, ui
∗
= ui × E1h3/q0a4, βi

∗
= βi × E1h3/q0a3,

Mi j
∗
= Mi j/q0a2, Ni j

∗
= Ni j/q0a, Qi

∗
= Qi/q0a,

(7)
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where i, j = 1, 2. It is obvious that in the isotropic panel, E1 in (7) should be replaced by E . Then, for
instance, the first equation in Table 1 becomes
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The next step is to choose a grid for the panel domain. A particular procedure should be used for node
generation and their numbering in the DCM; details are given in [Civan 1994; Liew and Liu 1997; 1998;
Teo and Liew 2002; Wu and Liu 2005]. For example, Figure 2 shows the entire panel with 61 nodes and
their numbers. This method for grid generation and node numbering minimizes computational efforts.
For other kinds of structures such as rectangular panel, the same numbering pattern for square panel is
used in a scaled format.

It is then necessary to discretize the dimensionless governing equations. In the DCM, any linear
operation such as a continuous function or various orders of partial derivatives of a multivariable function
can be expressed as a weighted linear sum of discrete functions chosen within the overall domain of the
problem [Civan 1994]. For instance, in a two-dimensional problem, the cubature approximation at the
i-th discrete node is given by

<{ f (x, y)}i ∼=
n∑

j=1

ci j f (x j , y j ) i = 1, 2, . . . , n, (9)

where < denotes a linear differential operator which can be any order of partial derivatives or combina-
tions of these partial derivatives, i is the index of arbitrarily sequenced grid points for the two-dimensional
solution domain, n is the total number of discrete points within the domain, and the ci j are the n× n

Figure 2. Grid generation and node numbering based on the DCM.
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cubature weighting coefficients, to be determined. In order to find these coefficients, one uses a set of
monomials in the form

F(x, y)= xm−n yn
; m = 0, 1, 2, . . . , k− 1; n = 0, 1, 2, . . . ,m. (10)

The number of these monomials should be equal to the total number n of grid points. The appropriate
value of k in Equation (10) can be determined to satisfy this condition. For instance, for the case with 41
nodes, all of the monomials up to k = 8 should be used. However, for k = 8 there are only k(k+1)/2= 36
monomials. Therefore, five more monomials from the value of k = 9 should be added to complete 41
monomials. The selection of these five monomials among those from k = 9 does not influence the results.
Once the monomials in (10) are constructed, one can reach n equations by substituting these monomials
into (9). Introducing the n equations obtained to all grid points leads to n× n equations, which are then
used to calculate the n× n unknowns ci j in (9).

This process should be done for all of the operators in the governing equations and boundary conditions
if necessary. Having determined all the coefficients for the operators in the governing equations, one can
substitute them according to (9) into the equations of Table 1 to reach a set of linear equations.

The last step is to apply boundary conditions to the main equations. As with other numerical methods,
various techniques can be used for this purpose. In this study, the discretized forms of the boundary
conditions are added to the main system of equations. This leads to an over-determined system, whose
(approximate) solution is obtained using the least-squares method [Toorani and Lakis 2000].

4. Numerical results and discussions

The accuracy, convergence rate and performance of the presented DCM in obtaining solutions for the
bending of laminated cylindrical panels are studied using seven test cases. Comparisons with results of
other analytical and numerical studies available in the literature are provided in each case. To facilitate
the comparison of our results with those in the literature, different definitions for dimensionless deflection
of the panel are used in each case; the appropriate parameter definitions are mentioned both in the text
and above the tables. Two kinds of loading conditions are used: uniform and sinusoidal distributed loads.
To refer to the various boundary conditions, a number from 1 to 4 is assigned to each edge of the panel;
see Figure 1. Thus, FSFC refers to a panel with free edges on the curved boundaries 1 and 3, simply
supported on edge 2 and clamped on edge 4.

Case 1: SSSS panels with uniform loading. The first example is a SSSS cylindrical panel subjected to
uniform loading q0. Three types of panels are considered: isotropic, [0/90/0] and [0/90]. The panel is
made of a square platform with side a. The ratio a/h of side length to thickness is chosen as 100, and
the ration a/R of side length to radius as 0.5. The Poisson’s ratio for the isotropic panel is 0.3, while the
material properties of the orthotropic layers are taken from [Qatu and Algothani 1994]:

E1/E2 = 15.4, G12/E2 = 0.79, n12 = 0.3. (11)

Table 2 reports the predictions of the DCM for dimensionless central deflection, moments, and forces
as defined in (7). Only 81 nodes are used to reach final convergence for DCM. Included in the table
are also results of analytical and finite element method reported in [Qatu and Algothani 1994]. It is
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Model 103w∗ 10Nx
∗ 10Nθ ∗ 10Nxθ

∗ 103 Mx
∗ 103 Mθ

∗ 103 Mxθ
∗

Analytic 179 −278 −248 0 6 −13 0
FEM 177 −274 −250 0 5 −12 0

Is
ot

ro
pi

c
(ν
=

0.
3)

DCM 179.41 −278.49 −247.96 0.000708 5.7191 −13.079 0.0003283

Analytic 86 −214 −248 0 50 −19 0
FEM 89 −215 −252 0 53 −15 0

[0
/9

0/
0]

DCM 86.09 −214.37 −247.66 0.000558 50.26 −18.814 0.0001531

Analytic 110 −268 −247 0 −40 38 0
FEM 109 −264 −247 0 −40 42 0

[0
/9

0]

DCM 110.54 −268.83 −246.79 0.000655 −40.122 37.551 0.0004902

Table 2. Dimensionless central deflection and stress resultants of SSSS cylindrical
panels under uniform load. Analytic and FEM results from [Qatu and Algothani 1994].

seen from the table that the DCM predictions for deflection, forces and moments are much closer to the
analytical results than those of the FEM, although the DCM computation used 81 grid points, versus 100
eight-node elements used in the FEM results.

Case 2: Symmetric SSSS panel under sinusoidal loading. This example deals with two kinds of sym-
metric cross-ply laminated cylindrical panels: [0/90/0] and [90/0/90]. The geometric parameters are
length a = 4, total angle α = π/4 and radius R = 1. The material properties of the layers are

E1/E2 = 25, G12/E2 = 0.5, G23/E2 = 0.2, ν12 = 0.25 (12)

and we use the sinusoidal loading condition

q = q0 sin
πx
a

sin
πθ

α
. (13)

The predictions of the presented model for normalized deflection of symmetric panels are tabulated
in Table 3 for the [0/90/0] panel and in the top half of Table 4 for the [90/0/90] panel. For comparison,
the table lists the normalized deflection w1 and the nondimensional deflection w2, defined by

w1 = 10wE1/q0s3, w2 = 10wE1/q0 Rs3
; s = R/h. (14)

DCM FEM
s = R/h n = 25 n = 41 n = 61 [Reddy 2004]

50 0.2350 0.5458 0.5459 0.5458
100 0.1500 0.4718 0.4718 0.4718
500 0.0342 0.1028 0.1026 0.1028

Table 3. Normalized central deflection w1 = 10wE1/q0s3 of a [0/90/0] symmetric SSSS
cylindrical panel under sinusoidal loading.
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[90/0/90] unsymmetric pannel

DCM FEM FEM TSDT FSDT
s = R/h n = 25 n = 41 n = 61 Bhaskar Cheng Reddy Reddy

4 2.8742 3.7792 3.8197 4.0090 3.6067 4.0816 3.7990
10 0.6992 1.0589 1.0752 1.2230 1.2033 1.1835 1.0713
50 0.2350 0.5425 0.5459 0.5495 0.5486 0.5504 0.5457

100 0.1500 0.4702 0.4718 0.4715 0.4711 0.4727 0.4718
500 0.0342 0.1025 0.1026 0.1027 0.1027 0.1028 0.1028

[0/90] unsymmetric pannel

DCM FEM FEM TSDT FSDT
s = R/h n = 25 n = 41 n = 61 Bhaskar Cheng Reddy Reddy

4 4.7670 6.8671 6.9548 6.1000 5.0970 6.6698 7.3282
10 2.0527 3.4692 3.5066 3.3300 3.1658 3.4498 3.6715
50 0.1572 2.2558 2.2641 2.2420 2.2371 2.2627 2.2865

100 0.1718 1.3665 1.3737 1.3670 1.3667 1.3738 1.3781
500 0.0435 0.1007 0.1005 0.1005 0.1005 0.1006 0.1006

Table 4. Normalized central deflection w2 = 10wE1/q0 Rs3 of a [90/0/90] symmetric
SSSS cylindrical panel (top) and a [0/90] unsymmetric SSSS cylindrical panel (bottom)
under sinusoidal loading. The columns marked “Bhaskar”, “Cheng” and “Reddy” are
taken from [Bhaskar and Varadan 1991], [Cheng et al. 2000] and [Reddy and Arciniega
2004].

We validate the model with the FEM results from [Reddy 2004; Reddy and Arciniega 2004; Bhaskar
and Varadan 1991], and the results from [Cheng et al. 2000], which are based on a new imperfect-interface
model. Considering that the loading is nonuniform in this example, the agreement is encouraging: with
only 61 grid points we get highly accurate predictions for deflection of the panel when compared with
FEM. The results for [0/90/0] deviate by less than 0.2% from those obtained in [Reddy 2004], which is
quite satisfactory.

Case 3: Unsymmetric SSSS panel under sinusoidal loading. Table 4, bottom, deals with the results for
an unsymmetric panel under the same loading condition and having the same material and geometric
properties as in case 2. The laminate arrangement is [0/90]. Verification is done with the results in
[Reddy and Arciniega 2004; Bhaskar and Varadan 1991; Cheng et al. 2000], and the nondimensional
deflection w2 defined in (14) is used. We see that even for an unsymmetric panel, the DCM provides
acceptable predictions. For lower values of s = R/h, the DCM results are closer to the third-order shear
deformation theory (TSDT) predictions.

Case 4: Symmetric panel with different boundary conditions. Next we consider a symmetric [0/90/0]
cylindrical panel made from a square platform of side a, choosing the ratios a/h = 10 and a/R = 0.2.
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DCM
n = 25 n = 41 n = 61 n = 85 n = 113 HSDT CST

FSFS 6.8906 5.7138 5.7997 5.7910 5.8390 5.7912 5.5270
SSFS 3.4831 3.0705 3.2503 3.3308 3.3760 3.3519 3.1130
CSFS 1.3319 1.4614 1.5225 1.5490 1.5609 1.5809 1.1945
SSSS 0.8818 0.9428 0.9440 0.9440 0.9436 0.9650 0.7615
CSSS 0.5563 0.6103 0.6118 0.6119 0.6117 0.6337 0.3659
CSCS 0.3876 0.4346 0.4357 0.4357 0.4357 0.4540 0.2047

Table 5. Dimensionless central deflection w3 = 100wE2h3/q0a4 of [0/90/0] cylindrical
panel with various boundary conditions under sinusoidal loading. Our DCM calculations
are based on FSDT assumptions, while the comparison results, taken from [Bhaskar and
Varadan 1991], are obtained using higher-order shear deformation theory (HSDT) and
classical shell theory (CST).

The two straight edges of the panel are simply supported, while the curved edges can be free, simply
supported or clamped. The panel is subjected to sinusoidal loading given by (13), and the material
properties of the layers are

E1=19.2×106 psi, E2=1.56×106 psi, G12=0.82×106 psi, G23=0.523×106 psi, ν12=0.24. (15)

Comparison of the dimensionless central deflection of the panel with FEM [Bhaskar and Varadan
1991] is reported in Table 5. Following that paper, the dimensionless form of the deflection reported is
w3 = 100wE2h3/q0a4.

Clearly the DCM results are closer to the HSDT predictions than the CST results. Furthermore,
the results show rapid convergence of the method; only minor differences are observed between the
predictions with 41 grid points and higher numbers.

Case 5: Unsymmetric panel with different boundary conditions. The next case differs from Case 4
only in that it deals with an unsymmetric [0/90] cylindrical panel. Table 6 presents the results for the
dimensionless central deflection w3 = 100wE2h3/q0a4. The predictions are compared with the results of
CST, FSDT and HSDT reported in [Khdeir et al. 1989]. We see that the FSDT results obtained by DCM
are in very good agreement with FSDT predictions reported in that reference, with a discrepancy never
exceeding 1.3%. The results for shells with free boundary condition show slightly higher discrepancy
than those without free edges. For instance, in comparison with the FSDT results of [Khdeir et al. 1989],
the differences for FSFS, SSFS and CSFS are 1.24%, 1.18%, and 0.95%, respectively, whereas for SSSS,
CSSS, and CSCS they are 0.63%, 0.47%, and 0.35%.

Case 6: A symmetric SSSS angle-ply [θ/−θ/θ/−θ/θ] panel. The next example is a symmetric angle-
ply [θ/−θ/θ/−θ/θ ] cylindrical panel made of a square platform with side length of a. choosing the
ratios a/h = 10 and a/R = 1

3 . All edges are simply supported and the transverse load is assumed to be
uniform. The material properties of the layers are the same as in case 2; see (12).

Table 7 shows the predictions for the dimensionless central deflection w3 = 100wE2h3/q0a4 of the
panel, for various orientation angles θ , together with FSDT- and HSDT-based results from [Bhaskar and
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DCM
n = 25 n = 41 n = 61 n = 85 n = 113 CST FSDT HSDT

FSFS 3.1259 2.9997 2.9720 2.9483 2.9576 2.6933 2.9213 2.9061
SSFS 2.3134 2.3003 2.3033 2.3062 2.3170 2.1053 2.2899 2.2791
CSFS 1.2296 1.5853 1.6198 1.6288 1.6364 1.4163 1.6210 1.6154
SSSS 1.2361 1.5666 1.5712 1.5714 1.5712 1.4211 1.5614 1.5550
CSSS 0.7472 1.0911 1.0994 1.1000 1.1002 0.9221 1.0951 1.0914
CSCS 0.4304 0.7886 0.7964 0.7971 0.7974 0.6148 0.7946 0.7925

Table 6. Dimensionless central deflection w3 = 100wE2h3/q0a4 of [0/90] cylindrical
panel with various boundary conditions under sinusoidal loading The comparison results
on the right are taken from [Khdeir et al. 1989].

DCM
n = 25 n = 41 n = 61 n = 85 n = 113 HSDT FSDT

θ = 15◦ 0.7896 0.8334 0.8481 0.8531 0.8552 0.8507 0.7802
θ = 30◦ 0.6179 0.7062 0.7233 0.7262 0.7199 0.7393 0.6386
θ = 45◦ 0.4516 0.5958 0.6234 0.6245 0.6471 0.6514 0.5561
θ = 60◦ 0.5781 0.7352 0.7421 0.7505 0.7516 0.7525 0.6517
θ = 75◦ 0.6181 0.8846 0.8812 0.8873 0.8893 0.8769 0.8053

Table 7. Dimensionless central deflection w3 = 100wE2h3/q0a4 of a [θ/−θ/θ/−θ/θ ]
SSSS cylindrical panel under uniform load. The comparison results are from [Bhaskar
and Varadan 1991].

Varadan 1991]. It can be seen that discrepancies of the results for angle-ply laminated shells are higher
than those of cross ply laminates.

Case 7: Symmetric [0/90/0] square plate under sinusoidal loading. The governing equations and so-
lution procedure discussed here can also be employed for the bending analysis of rectangular plates, by
making the panel radius R and the total angle α correspondingly small. If the dimensions of the plate
are a and b, we take a as before and α = b/R.

The last example includes a fully simply supported symmetric [0/90/0] square plate subjected to
sinusoidal load; see Equation (13). Material properties of all layers are the same as (12). Predictions
for the dimensionless central deflection w4 = wE2h3/q0a4 of the square plate are tabulated in Table
8. Again, comparisons with the results of analytical solutions [Whitney and Pagano 1970] and the
generalized differential quadrature (GDQ) method [Aghdam et al. 2006] demonstrate good agreement.
As can be concluded from the table, in the GDQ method results are obtained with 121 nodes while the
DCM reaches the same level of accuracy by employing only 61 nodes. This might potentially mean that
DCM requires less computation time than GDQ, for results of similar quality.
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DCM GDQ 11× 11 Analytic
a/h n = 13 n = 25 n = 41 n = 61 Aghdam Whitney

2 3.6450 5.2116 5.2288 5.2294 5.2293 5.2293
4 1.0174 1.7719 1.7750 1.7758 1.7758 1.7758

10 0.2086 0.6672 0.6683 0.6693 0.6693 0.6693
20 0.0556 0.4574 0.4923 0.4920 0.4921 0.4921
50 0.0021 0.1893 0.4406 0.4406 0.4411 0.4411

100 0.0001 0.1456 0.4310 0.4326 0.4337 0.4337

Table 8. Dimensionless central deflection w4 = wE2h3/q0a4 of an SSSS [0/90/0]
square plate under sinusoidal loading. The columns marked “Aghdam” and “Whitney”
are taken from [Aghdam et al. 2006] and [Whitney and Pagano 1970].

5. Conclusion

We studied the performance of the differential cubature method in the static analysis of laminated
cylindrical panels subject to uniform and sinusoidal loadings. The formulation presented allows the treat-
ment of any type of lamination, whether symmetric or unsymmetric, and any combination of clamped,
simply supported and free boundary conditions on the edges. Starting from the governing equations
for cylindrical panels based on first-order shear deformation theory (fifteen first-order partial differential
equations in the same number of unknowns), we proceed by discretizing the solution domain, governing
equations and related boundary conditions, according to the DCM procedure. The results show that
DCM can provide reasonably accurate predictions with relatively few grid points, and so may require less
computational time than other numerical techniques, for a given accuracy level. The method provides the
same order of accuracy for all stress and displacement variables within the solution domain. Comparison
of calculated stress resultants and displacement components shows good agreement with results obtained
using other analytical and numerical techniques.

List of symbols

R radius a side length
h thickness s radius–to–thickness ratio
α total angle (Figure 1) q0 uniform load or the maximum
θ orientation angle of sinusoidally distributed load
Ni j normal force Qi shear force
ux , uθ , w displacement components Mi j moment
Qi j elastic stiffness in the material βx , βθ rotations of the tangents

coordinates (local axes) Ei Young’s moduli
Gi j shear moduli νi j Poisson’s ratios
w1 normalized deflection w2 nondimension deflection
w∗, ui

∗, βi
∗ dimensionless parameters Mi j

∗, Ni j
∗, Qi

∗ dimensionless parameters
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