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INDENTATION ANALYSIS OF FRACTIONAL VISCOELASTIC SOLIDS

ROUZBEH SHAHSAVARI AND FRANZ-JOSEF ULM

The constitutive differential equations governing the time-dependent indentation response for axisymet-
ric indenters into a fractional viscoelastic half-space are derived, together with indentation creep and
relaxation functions suitable for the backanalysis of fractional viscoelastic properties from indentation
data. These novel fractional viscoelastic indentation relations include, as a subset, classical integer-type
viscoelastic models such as the Maxwell model or Zener model. Using the correspondence principle
of viscoelasticty, it is found that the differential order of the governing equations of the indentation
response is higher than the one governing the material level. This difference in differential order between
the material scale and indentation scale is more pronounced for the viscoelastic shear response than for
the viscoelastic bulk response, which translates, into fractional derivatives, the well-known fact that an
indentation test is rather a shear test than a hydrostatic test. By way of example, an original method for the
inverse analysis of fractional viscoelastic properties is proposed and applied to experimental indentation
creep data of polystyrene. The method is based on fitting the time-dependent indentation data (in the
Laplace domain) to the fractional viscoelastic model response. Applied to polysterene, it is shown that
the particular time-dependent response of this material is best captured by a bulk-and-deviator fractional
viscoelastic model of the Zener type.

1. Introduction

The aim of indentation analysis is to link indentation data, typically an indentation force versus inden-
tation depth curve, F-h, to meaningful mechanical properties of the indented material. It is common
practice to condense the indentation data into two quantities, the hardness H and the indentation modulus
M , which are related to measured indentation data, namely the maximum indentation force Fmax, the
initial slope (or indentation stiffness) S of the unloading curve, and the projected contact area Ac by

H def
=

Fmax

Ac
, S =

d F
dh
|h=hmax

def
=

2
√
π

M
√

Ac. (1)

Traditionally, for metals, the hardness H was early on recognized to relate to strength properties of
the indented material [Brinell 1901; Tabor 1951], and recent developments in indentation analysis have
extended those approaches to account for strain hardening [Cheng and Cheng 2004], cohesive-frictional
strength behavior [Ganneau et al. 2006], and the effect of porosity on the strength behavior [Cariou et al.
2008]. The investigation of the link between the unloading slope S and the elasticity properties of the
indented material is more recent, requiring depth sensing indentation techniques that provide a continuous

Keywords: fractional viscoelasticity, indentation analysis, creep, relaxation, correspondence principle, polysterene.
This work was supported by Schoettler Fellowship Program at MIT, and Schlumberger–Doll Research, Cambridge, MA. The
experimental data on Polystyrene was provided by Dr. Catherine Tweedie and Prof. Krystyn J. Van Vliet, of MIT’s Department
of Material Science and Engineering.

523



524 ROUZBEH SHAHSAVARI AND FRANZ-JOSEF ULM

Indenter shape n B φ F-h relation

Cone 1 cot θ 2 tan θ
π

F = 2M tan θ
π

h2

Sphere 2 1/2R 4
√

R
3

F = 4M
√

R
3

h1.5

Flat punch →∞ 1/an 2a F = 2Mah

Table 1. F-h equations for different indenter shapes. θ is the half-cone angle, R and a
are the sphere radius and the flat cylinder punch, respectively.

record of the F-h curve during loading and unloading in an indentation test [Tabor 1951; Doerner and
Nix 1986; Oliver and Pharr 1992; Bulychev 1999]. Relation (1)2 is an exact relation for linear elastic
materials. For non-elastic materials, (1)2 becomes an approximate relation and S may be affected by the
residual stress field and by adhesion of materials [Borodich and Galanov 2008]. Application of the depth
sensing indentation techniques in indentation analysis confirmed the link provided by classical linear
elastic contact mechanics solutions [Hertz 1882; Boussinesq 1885; Love 1939; Galin 1961; Sneddon
1965; Borodich and Keer 2004] for a rigid indenter of axysmmetric shape that can be described by a
monomial function of the form z = Brn:

F = φMh1+1/n, (2)

where r and z are, respectively, the first and the third cylindrical coordinates of the surface of the tip, φ
(of dimension [φ] = L1−1/n), condenses the indenter specific geometry parameters,

φ =
2

(
√
πB)1/n

n
n+ 1

[
0(n/2+ 1/2)
0(n/2+ 1)

]
1/n, (3)

B is the shape function of the indenter at unit radius, n ≥ 0 is the degree of the homogeneous function,
0(x) is the Euler Gamma function, 0(x)=

∫
∞

0 t x−1 exp(−t)dt . Table 1 develops expression (2) for some
common indenter shapes. Finally, M is the indentation modulus. The indentation modulus M provides a
snapshot of the elasticity of the indented material. In the isotropic case, M relates to the bulk and shear
modulus (K ,G) of the indented half-space by

M = 4G
3K +G

3K + 4G
. (4)

Based on the adaptation for indentation analysis of the method of functional equations [Lee and Radok
1960], closed-form solutions for indentation in various linear viscoelastic solids became recently available
for a variety of indenter shapes: flat punch indentation [Cheng et al. 2000], spherical indentation [Cheng
et al. 2005; Oyen 2005], and conical indentation [Vandamme and Ulm 2006; Oyen 2006], which have
been synthesized into viscoelastic indentation creep and relaxation functions for any indenter of axysm-
metric shape [Vandamme and Ulm 2007]. Those linear viscoelastic approaches are relevant for materials
whose behavior can be described by the classical integer-type time-dependent differential equation of
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linear viscoelasticity [Bland 1960],

σ +

I∑
i=1

Pi
d iσ

dt i = E ′
(
ε+

J∑
j=1

Q j
d jε

dt j

)
, (for i = 1, 2, . . . I ; j = 1, 2, . . . J ), (5)

where σ and ε are stress and strain, Pi and Q j stand for relaxation and retardation time, respectively,
and E ′ is the relaxed elasticity modulus. The restriction to integer-type time derivatives to describe
the ‘real’ stress relaxation and creep behavior of polymers and other materials has been recognized as
a drawback for material characterization [Rossikhin and Shitikova 2004] and can be removed by the
introduction of fractional derivatives in the time-dependent differential equation. The application of
fractional viscoelastic material models in indentation analysis is the focus of this paper. The paper is
structured as follows: Following a brief review of the basic concepts of fractional derivatives, we derive a
general differential representation of the time-dependent indentation response of a fractional viscoelastic
material half-space using the correspondence principle. The general solution is then adapted to derive
creep and relaxation functions that potentially allow the determination of meaningful viscous material
properties from time-dependent experimental indentation data.

2. Elements of fractional order derivatives

Fractional calculus is an old mathematical topic, but its application in physics and engineering is more
recent. For instance, in viscoelasticity and hereditary solid mechanics [Bagley and Torvik 1983], elec-
tromagnetic systems [Engheta 1996], and diffusion phenomena in inhomogeneous media [Arkhincheev
1993] , fractional order derivatives have been used to describe the system behavior. From a mathematical
perspective, fractional derivatives are an extension of ordinary derivatives, and possess mathematical
definitions and properties that stem from ordinary derivatives. Some definitions of fractional derivatives
can be found in [Podlubny 1999] and [Kilbas et al. 2006]. The Riemann–Liouville definition is the
simplest one. According to this definition, the α-th order fractional derivative of a function f (t) with
respect to t is

Dα f (t)=
∂α

∂tα
f (t)=

1
0(m−α)

∂m

∂tm

∫ t

a

f (τ )
(t − τ)α+1−m dτ, m− 1≤ α < m, (6)

where m is the first integer larger than α, and a is the lower limit related to the operation of fractional
differentiation. Following [Ross 1977], we call a the lower terminal value and set a = 0 for all fractional
definitions in this article. We also use the short hand notation Dα f (t)= ∂α

∂tα f (t). The Laplace transform
of the Riemann–Liouville derivative is given by

D̂α f (t)= sα f̂ (s)−
m−1∑
k=0

sk Dα−k−1 f (0), m− 1≤ α < m, (7)

where s is the Laplace parameter and f̂ (s) stands for the Laplace transform of f (t). Applying this
definition to solve initial value problems requires knowledge of the non-integer derivatives of the initial
conditions at t = 0. Despite the fact that mathematically these problems can be solved successfully,
their solution is practically meaningless because there is no physical interpretation available for such
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initial conditions. A solution to this conflict was proposed by Caputo [1967; 1969]. Caputo’s fractional
derivative (for a zero terminal value) can be written as

Dα f (t)=
1

0(m−α)

∫ t

0

f (m)(τ )
(t − τ)α+1−m dτ, m− 1< α < m, (8)

where f (m)(τ )= ∂m

∂τm f (τ ). The Laplace transform of (8) is given by

D̂α f (t)= sα f̂ (s)−
m−1∑
k=0

sα−1−k f (k)(0), m− 1< α ≤ m, (9)

where in (9), only ordinary derivatives are acted upon initial conditions. Another main difference between
the two definitions is that the Caputo derivative (8) of a constant C is zero,

DαC = 0, (10)

whereas in the cases of a finite lower terminal value, the Riemann–Liouville fractional derivative (6) of
a constant C is not zero but is given by [Podlubny 1999]

DαC =
Ct−α

0(1−α)
. (11)

It can be shown that for α→ m, Caputo’s fractional derivative becomes a conventional m-th derivative
[Podlubny 1999; Kilbas et al. 2006],

Dα f (t)= f (m)(t). (12)

Similar to integer-order differentiation, Caputo’s fractional differentiation is a linear operation,

Dα
(
λ f (t)+µg(t)

)
= λDα f (t)+µDαg(t), (13)

where λ and µ are constants. Analogous to [Schiessel et al. 1995], by using Caputo’s fractional deriv-
ative, the well-known Hookian spring relation, σ(t)= Eε(t), and Newtonian dashpot relation, σ(t)=
η dε(t)/dt , can be generalized to

σ(t)= Eτα
dαε(t)

dtα
= EταDαε(t), 0< α < 1. (14)

In (14), the parameter τ with units of time is employed to non-dimensionalize the fractional derivative of
ε, which helps to obtain a meaningful physical relation between stress and strain. Note that here, since
0< α < 1, Eq (8) reduces to

Dα f (t)=
1

0(1−α)

∫ t

0

f (1)(τ )
(t − τ)α

dτ, 0< α < 1. (15)

Throughout this work, we will exclusively refer to Caputo’s definition when using the term fractional
derivatives. A full discussion on differences between Caputo and Riemann–Liouville fractional deriva-
tives, and the conditions when they both become equivalent, can be found in [Podlubny 1999]. The
introduction of the integrodifferential operator (15) in (14) offers a number of interesting perspectives
for modeling viscoelastic behavior. From a mathematical perspective, due to the convolution with t−α,
σ(t) has a fading memory [Baker et al. 1996]. To illustrate this behavior, consider a simple rod in uniaxial
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α = 0 No memory α = 1 Perfect memory 0< α < 1 Partial memory

σ = Eτ 0 ∂
0ε
∂t0 = Eε σ = Eτ ∂

1ε
∂t1 = η

∂1ε
∂t1 σ = Eτα ∂

αε
∂tα

Figure 1. Illustration of integer and fractional models.

extension by a strain ε. In the limit cases, if α = 0, Dαε = ε, and if α = 1, Dαε = ε̇ (this can be proved
by integration by parts). Thus, by multiplying a constant, Eτα, to Dαε, depending on the value of α,
one obtains either the elastic force (spring model) or the damping force (dashpot model). In other words,
α = 0 corresponds to a system with no memory since the stress depends only on the instantaneous
magnitude of ε (Figure 1, left), while α = 1 corresponds to a system with perfect memory since the
time history and the particular way the system has reached its current position becomes important for
derivative calculations (Figure 1, middle). For any 0 < α < 1, the system has partial memory, and
consequently the derived stress is a combination of dashpot and spring models (symbolized by a square
in Figure 1, right). Relative to discrete (integer) derivatives, therefore, fractional derivatives offer a wide
range for modeling the rate of change of the time-dependent behavior of viscoelastic materials in a
continuous fashion. Figure 2 displays a simple function along with its half-derivative and first derivative,
showing that fractional derivatives are usually sandwiched in between the closest lower and upper integer-
derivatives. This allows one to monitor changes in a much smoother and compact fashion than offered
by integer derivatives.

While spring and dashpot models can be recognized by only one material property parameter (E and η,
respectively), introducing a fractional element requires three parameters, called α, τ , and E . A fractional
element with only three parameters is mathematically and physically equivalent to an infinite number of
simple springs and dashpots connected through a certain hierarchical arrangement [Schiessel and Blumen
1993]. Thus, capturing the continuous rate of change in time by means of integer-type models requires

0 1 2 3 4 5 6
0

1

2

3

4

5

6 D0 f = f

D1/2 f = g, g(x)= 2
√

x/π

D1 f = 1

Figure 2. Derivatives of f (x)= x of order 0 (black), 1
2 (red) and 1 (blue).
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),,( 2Etg

1E

0E

F

h

G

G

Figure 3. Fractional Zener model with identical fractional order derivatives on stress
and strain.

generally many higher integer-order derivative terms in (5) to achieve a similar accuracy. With the above
preliminary explanations, the extension of (5) to fractional derivatives can be written as

σ +

I∑
i=1

Piτ
αi Dαiσ = E ′

(
ε+

J∑
j=1

Qτβ j Dβ j ε
)
, (for i = 1, 2, . . . I ; j = 1, 2, . . . J ), (16)

where αi , β j ∈ [0, 1]. Each fractional term in (16) can be considered as a replacement of a system made
of many conventional springs and dashpots.

By way of application, consider a fractional Zener viscoelastic material, shown in Figure 3, in which
the dashpot of the conventional Zener model is replaced by a fractional element. As shown below, this
model is described by a fractional differential equation in which only the first fractional derivative terms
(I = J = 1) are present in each series in (16), and in which the fractional derivative of stress and strain is
identical (α1 = β1). There are five independent parameters in this model, called E0, E1, E2, γ, τ . Indeed,
the total strain on the right branch is

ε = εs + ε f , (17)

where subscripts s, f refer to the spring element and the fractional element, respectively. As these
elements are connected in series, their stresses are equal,

σR = E1εs = E2τ
γ Dγ ε f . (18)

We now take advantage of the linearity property of the fractional operator (13). By taking the γ -th
derivative of (17) and using (18) (assuming E1, E2 and τ are constants), we obtain

σR +
E2τ

γ

E1
Dγ σR = E2τ

γ Dγ ε, (19)

where we let

τ0 =

(E2τ
γ

E1

)1/γ
, S = E2

( τ
τ0

)γ
. (20)

Equation (19) simplifies to
σR + τ

γ
0 Dγ σR = Sτ γ0 Dγ ε. (21)
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Equation (21), which describes the behavior of the right branch of the model in Figure 3, turns out to be
the constitutive fractional differential equation of a Maxwell model in which the conventional dashpot is
replaced by the fractional element.

The total stress in the parallel system is

σ = σL + σR, (22)

where σL is the elastic stress in the left branch of the model displayed in Figure 3

σL = E0ε. (23)

Then, take the γ -th derivative of (22) and multiply the result with τ γ0 :

τ
γ
0 Dγ σ = τ

γ
0 Dγ σL + τ

γ
0 Dγ σR. (24)

Finally, by adding (24) and (22), and using (23) and (21), we obtain

σ + τ
γ
0 Dγ σ = E0ε+ (E0+ S)τ γ0 Dγ ε. (25)

Equation (25) is recognized as the one-dimensional constitutive equation of the fractional Zener model
shown in Figure 3. It is characterized by identical fractional order derivatives on stress and strain. This is
an important requirement for thermodynamic stability of the model described by (25).1 More generalized
constitutive equations including different fractional order derivatives on stress and strain can be found in
[Schiessel et al. 1995]. In what follows, we employ the fractional Zener model in indentation analysis.

3. Time-dependent indentation response of fractional viscoelastic materials

In general, the time-dependent behavior of hereditary materials, for which the stress depends nonlineraly
on the strain history, can be described by the volterra integral equations [Rabotnov 1980]. Most vis-
coelastic indentation solutions originate from the method of functional equations developed for linear
viscoelastic contact problems by Radok [1957] and completed by Lee and Radok [1960]. The method of
functional equations consists of solving the viscoelastic problem from the elastic solution by replacing
the elastic moduli with their corresponding viscoelastic operators. The method of functional equations
can be seen as an extension of the Laplace transform method, as formulated by Lee [1955]. The Laplace
transform method consists of eliminating the explicit time dependence of the viscoelastic problem by
applying the Laplace transform to the time-dependent moduli and solving the corresponding elasticity
problem in the Laplace domain. The Laplace method, however, is restricted to boundary value problems
in which the displacement and stress boundary conditions are fixed in time. This is generally not the
case in indentation problems (except for the flat punch problem), in which the contact area changes with
time, hence changing a part of the stress boundary outside the contact area into a displacement boundary
inside the contact area and vice versa. This drawback of the Laplace transform was lifted in [Radok
1957; Lee and Radok 1960], which introduced and developed the method of functional equations, valid
for linear viscoelastic problems with time-dependent boundary conditions. Galanov [1982] established

1There is a special case in which (25), with different fractional derivatives on stress and strain, can be thermodynamically
stable. That is, when the fractional derivative acting on strain is greater than that acting on stress, and only below a certain
limiting frequency [Glöckle and Nonnenmacher 1991].
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h
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G

Figure 4. A rigid conical indenter on a fractional viscoelastic half-space material (mid-
dle) can be studied with a fractional Zener model describing volumetric behavior in
indentation (left) or one describing deviatoric behavior in indentation (right).

self-similarity of the contact problem for some viscoelastic solids and gave dimensionless distributions
for stresses under Vickers and Berkovich indenters. For indentation problems, the method of functional
equations remains valid as long as the contact area (or, equivalently, for viscoelastic materials, the pene-
tration depth) increases monotonically [Lee and Radok 1960]. We shall adopt this method for indentation
analysis of fractional viscoelastic materials.

We consider the fractional Zener model shown in Figure 3, whose one-dimensional behavior is de-
scribed by (25).2 We employ this model separately for the volumetric and deviatoric part of the three-
dimensional stress tensor and strain tensors of the material response to indentation. For the volumetric
part with parameters Q0, Q1, Q2,α, τv, by setting, similarly to (20),

ζv =
(Q2τ

α
v

Q1

)1/α
, K0 = Q2

(τv
ζv

)α
, (26)

the fractional differential equation governing the time-dependent spherical isotropic material response
reads (Figure 4, left),

σv + ζ
α
v Dασv = Q0εv + (Q0+ K0)ζ

α
v Dαεv, (27)

where σv = 1
3(tr σ )1, εv = 1

3(tr ε)1, are the volumetric parts of the second order stress tensor σ and second
order strain tensor ε, respectively. Similarly, for the deviatoric part with parameters q0, q1,q2, β, τd , by
setting

ζd =

(q2τ
β
d

q1

)1/β
, G0 = q2

(τd

ζd

)β
, (28)

the fractional differential equation governing the time-dependent deviatoric isotropic material response
reads (Figure 4, right)

σd + ζ
β
d Dβσd = q0εd + (q0+G0)ζ

β
d Dβεd . (29)

Here σd and εd are, respectively, the deviatoric parts of the second order stress and strain tensors, σ and
ε. From basic tensor algebra, relations σ = σv + σd , ε = εv + εd hold. Thus, as Figure 4 shows, based

2For a general nonlinear stress-strain behavior in solids, the fraciotnal calculus can be integrated into the volterra equations
[Rabotnov 1980].
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on our chosen models, there are in total 10 independent parameters Q0, Q1, Q2,α, τv, q0, q1,q2, β, τd

that describe the volumetric and deviatoric material behavior (five for each behavior). For simplicity in
notation and avoiding carrying too many parameters in our analytical derivations, we rewrite (27) and
(29) as

σv(t)+ P Dασv(t)= Q0εv(t)+ Q Dαεv(t), (30)

σd(t)+ pDβσd(t)= q0εd(t)+ q Dβεd(t), (31)

where we let

P = ζ αv , Q = (Q0+ K0)ζ
α
v , (32)

p = ζ βd , q = (q0+G0)ζ
β
d . (33)

Using (9), the Laplace transforms of (30) and (31) are readily obtained:

(1+ Psα)σ̂v(s)− Psα−1σv(0)= (Q0+ Qsα)ε̂v(s)− Qsα−1εv(0),

(1+ psβ)σ̂d(s)− psβ−1σd(0)= (q0+ qsβ)ε̂d(s)− qsβ−1εd(0),
(34)

where σ̂v(s), σ̂d(s), ε̂v(s), ε̂d(s) denote the Laplace transforms of σv(t), σv(t), εv(t), εd(t), whereas
σv(0), σd(0), εv(0), εd(0) represent the stress and strain initial conditions at t = 0. We remind ourselves
of the classical Laplace transformations of the stress convolution integrals of linear isotropic viscoelas-
ticity [Christensen 1971]:

σv(t)=
∫ t

−∞

3K (t − τ)
d

dτ
εv(τ )dτ → σ̂v(s)= 3s K̂ (s)ε̂v(s),

σd(t)=
∫ t

−∞

2G(t − τ)
d

dτ
εd(τ )dτ → σ̂d(s)= 2sĜ(s)ε̂d(s),

(35)

where K (t) and G(t) are the time-dependent bulk and shear modulus, respectively. Then, by comparing
(34) and (35), one obtains the following relations for bulk and shear response of the fractional material:

3s K̂ (s)=
Q0+ Qsα

1+ Psα
, 2sĜ(s)=

q0+ qsβ

1+ psβ
, (36)

and
Pσv(0)= Qεv(0), pσd(0)= qεd(0). (37)

Equations (37) indicate that the initial conditions acting upon stress and strain are not completely inde-
pendent, and relations such as (37) must be satisfied. These constraints do not appear only in fractional
viscoelastic models. Analogous constraints on initial conditions also exist for integer-order viscoelastic
models [Christensen 1971; Shahsavari and Ostoja-Starzewski 2005].

Similarly, application of the correspondence principle to the elastic indentation modulus M defined
by (4) yields [Vandamme and Ulm 2006]

M→ s M̂(s)= 4sĜ(s)
3s K̂ (s)+ sĜ(s)

3s K̂ (s)+ 4sĜ(s)
. (38)
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Next, analogously to (35), the application of the correspondence principle of viscoelasticity to the
elastic indentation force relation (2) yields

F(t)= φ
∫ t

−∞

M(t − τ)
d

dτ
h1+1/n(τ ) dτ H⇒ F̂(s)= φs M̂(s) ̂h1+1/n(s). (39)

In (39), we a priori assumed the geometry parameter φ is a time-independent parameter, following [Lee
and Radok 1960]. By substituting (36) in (38) and then in (39), one obtains the viscoelastic relation be-
tween F̂(s) and ĥ1+1/n in the transformed Laplace space. Next, by extensively rearranging the terms and
using the relation (9) along with the linearity property (13) for the fractional order terms, the constitutive
differential equation governing the time-dependent indentation response becomes

DF (F(t))= 2φDh(h1+1/n(t)). (40)

This is a differential equation with constant coefficients involving the operators

DF = c0+ c1 Dα
+ c2 Dβ

+ c3 Dα+β
+ c4 Dα+2β

+ c5 D2β,

Dh = l0+ l1 Dα
+ l2 Dβ

+ l3 Dα+β
+ l4 Dα+2β

+ l5 D2β
(41)

with coefficients

c0 = Q0+ 2q0, l0 =
1
2q2

0 + q0 Q0,

c1 = Q+ 2Pq0, l1 = q0 Q+ 1
2 Pq2

0 ,

c2 = 2Q0 p+ 2q + 2pq0, l2 = q0 pQ0+ qq0+ q Q0,

c3 = 2Qp+ 2Pq + 2Ppq0, l3 = q0 pQ+ Pqq0+ q Q,

c4 = Qp2
+ 2Ppq, l4 = qpQ+ 1

2 Pq2,

c5 = Q0 p2
+ 2pq, l5 = qpQ0+

1
2q2.

(42)

Note that in view of (37) the following relations between initial conditions hold:

ci F(0)= 2φli�(0), (i = 1, 2, . . . , 5), (43)

ci F (1)(0)= 2φli�
(1)(0), (i = 3, 4, 5), (44)

c4 F (2)(0)= 2φl4�
(2)(0), (45)

where we have set �(0) = h1+1/n (0). Considering the initial conditions above, the use of Caputo’s
derivative results in five integer-order relations in (43) and four inter-order derivatives in (44) and (45).
In order for (44) to hold with i = 3, we must have α+ β > 1; the same relation with i = 4 and i = 5
requires α+ 2β > 1 and 2β > 1, respectively. Similarly, (45) requires that α+ 2β > 2. If any of these
conditions is not met, the corresponding relation in (44)–(45) does not exist.

The following observations deserve attention:
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h

G

Mh
Vh

VG

G

Figure 5. Left: Maxwell model. Right: Zener model.

(i) For α = β = 0, which corresponds to the case of a material with no memory (Figure 1, left), Equation
(40) reduces to the elastic indentation relation (2), with

M =
2l0

c0
= 2q0

Q0+
1
2q0

Q0+ 2q0
, K =

1
3

Q0, G =
1
2

q0. (46)

(ii) Letting α = 0 corresponds to the case of a pure deviatoric creep, a case which was extensively
studied in integer-type viscoelastic indentation analysis (for example, [Cheng and Cheng 2004; Cheng
et al. 2000; 2005; Vandamme and Ulm 2006]). In this case β = 1, and one obtains(

c0+ (c2+ c3)D1
+ (c4+ c5)D2)F(t)= 2φ

(
l0+ (l2+ l3)D1

+ (l4+ l5)D2)h1+1/n(t). (47)

Note that a deviatoric creep behavior described at a material level by a first-order differential equation
(see (31) for β = 1), yields a second-order differential equation that governs the F(t)− h(t) indentation
response. This includes, as integer subset models, the three-parameter deviator creep Maxwell model
and the four-parameter deviator creep Kelvin–Voigt or Zener model (Figure 5), for which the constant
coefficients read as follows:

P Q0 Q p q0 q

Maxwell 0 3K 0 ηM/G 0 2ηM

Zener 0 3K 0 ηV
G+GV

2 GGV
G+GV

2 G
G+GV

ηV

(48)

Here ηM and ηV stand for the viscosity in the respective models. Use of (48) in (42) and then in (47)
yields the following differential equations for the two particular integer-type viscoelastic models:

Maxwell: F(t)+
c2

c0

∂F
∂t
+

c5

c0

∂2 F
∂t2 = 2φ

( l2

c0

∂h1+1/n

∂t
+

l5

c0

∂2h1+1/n

∂t2

)
, (49)

Zener: F(t)+
c2

c0

∂F
∂t
+

c5

c0

∂2 F
∂t2 = 2

l0

c0
φ
(

h1+1/n
+

l2

l0

∂h1+1/n

∂t
+

l5

l0

∂2h1+1/n

∂t2

)
. (50)

(iii) The difference in differential order between the material and the indentation scale becomes even
more apparent for α = β = 1, which converts the fractional model into an integer-type model governed
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by a third-order differential equation:(
c0+(c1+c2)D1

+(c3+c5)D2
+c4 D3)F(t) = 2φ

(
l0+(l1+l2)D1

+(l3+l5)D2
+ l4 D3)h1+1/n(t). (51)

Setting α = β reduces the model to the often considered case of a material with time independent
Poisson’s ratio [Gao and Ogden 2003], which is obtained by letting P = p, q = bQ, and q0 = bQ0 for
any non-negative value of b in (30)–(31) and (42). This concept is similar to using two same-type integer
viscoelastic models with the aforementioned relations between their parameters which lead to a constant
Poisson’s ratio [Tschoegl et al. 2002].

(iv) This difference in differential order between the material and the indentation scale holds true for
fractional materials; that is, because of the definition of the differential operators in (41), the order of the
fractional derivatives at the indentation scale given by (40), is always greater than the one of the material
level defined by (30)–(31). For example, for a deviatoric fractional creep model, α = 0, the differential
equation (31) governing the material behavior is of order 0< β < 1, while the indentation response is
of order 2β, and can thus be greater than unity:(

c0+ (c2+c3)Dβ
+ (c4+c5)D2β)F(t)= 2φ

(
l0+ (l2+l3)Dβ

+ (l4+l5)D2β)h1+1/n(t). (52)

The specification of (52) for a fractional deviatoric Maxwell material (P = Q = q0 = 0) and a fractional
deviatoric Zener material (P = Q = 0) reads as follows:

Maxwell: F(t)+
c2

c0

∂βF
∂tβ
+

c5

c0

∂2βF
∂t2β = 2φ

( l2

c0

∂βh1+1/n

∂tβ
+

l5

c0

∂2βh1+1/n

∂t2β

)
, (53)

Zener: F(t)+
c2

c0

∂βF
∂tβ
+

c5

c0

∂2βF
∂t2β = 2

l0

c0
φ
(

h1+1/n
+

l2

l0

∂βh1+1/n

∂tβ
+

l5

l0

∂2βh1+1/n

∂t2β

)
, (54)

where the coefficients c0, . . . , c5 and l0, . . . , l5) are still given by (42). Their dimensionality, however,
changes due to the application of non-integer time derivatives. For instance, we have [c2/c0] = [l2/ l0] =

T β , while [c5/c0] = [l5/ l0] = T 2β , and so on. Still, analogously to (19)–(20), one can define parameters
similar to τ0 with the dimension of time and replace the the fractional dimension of c2/c0, etc.

(v) The operators (41) are not symmetric with respect to α and β; that is, in contrast to α, which is the
fractional exponent for the volumetric viscoelastic response (30), there are some extra terms that involve
higher derivatives of order 2β, which is the fractional exponent for the viscoelastic shear response (31).
This observation translates, into fractional derivatives, the well-known fact that an indentation test is a
shear test than a hydrostatic test. For this reason, the effect of β dominates over the effect of α in the
fractional derivatives that define the indentation response (40). This dominance of shear over bulk exists
for conventional viscoelastic materials in indentation, but it is hidden in the constitutive equations.

4. Indentation creep and relaxation functions

A convenient way to analyze time-dependent experimental indentation data is in the form of indentation
creep and relaxation functions, derived for a step force loading or step displacement loading, respectively.
It is also a formidable illustration of the use of the fractional model developed here before.
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4.1. Indentation creep compliance. Consider a Heaviside step loading F(t) = FmaxH(t), where Fmax

is the maximum load, and H(t) the Heaviside step function. We recall the Laplace transform F̂(s) of
the Heaviside load function:

F(t)= FmaxH(t) ⇐⇒ F̂(s)=
Fmax

s
. (55)

Then, a substitution of (55) in (39) along with a substitution of (55) in Laplace transform of (40) can be
developed in the form

L̂(s)=
φ ̂h1+1/n(s)

Fmax
=

1

s2 M̂(s)
=

D̂F (s)

2s D̂h(s)
, (56)

where DF (s) and Dh(s) are the Laplace transforms of the operators (41) according to definition (9):3

D̂F (s)= c0+ c1sα + c2sβ + c3sα+β + c4sα+2β
+ c5s2β, (57)

D̂h(s)= l0+ l1sα + l2sβ + l3sα+β + l4sα+2β
+ l5s2β . (58)

Note that the inverse Laplace transform of (56), L(t), has dimension of compliance [L] = 1/(L−1 MT−2),
and can therefore be appropriately called an indentation creep compliance function. As discussed in detail
for integer-type viscoelasticity models in [Vandamme and Ulm 2007], the indentation creep compliance
is independent of the indenter-shape. The right-hand side of (56), therefore, is representative of the
material response of the considered fractional viscoelastic material. The inverse transform of (56) exists,
is real, and continuous. The following statements are derived in the Appendix:

(i) For a ‘double’ Zener model (Zener bulk and Zener deviatoric creep model), the inverse Laplace
transform of (56) yields the following expression of the time-dependent indentation creep compliance:

L(t)=
φh1+1/n(t)

Fmax

=
c0

2l0
+

1
π

Im
∫
∞

0

̂DF (re−iπ )

2re−iπ ̂Dh(re−iπ )
exp(−r t) dr +

∑
j

lim
s→λm

j

(s− λm
j )

D̂F (λ
m
j ) exp(λm

j t)

2λm
j D̂h(λ

m
j )

, (59)

where m is the smallest common denominator of the fractional numbers α and β. Note that λm is a
complex number with negative real part. Thus, as t→∞, the second and the third terms on the right-
hand side of (59) vanish and L(t) converges to a constant c0/2l0. This is because in Zener-type models
(either fractional or integer; see Figure 5, right), there is a spring parallel to the rest of the system that
prevents infinite deformation.

3Initial conditions in the Laplace transform of a derivative of a Heaviside function are zero, since 0− ( and not 0+ ) is taken
as a lower limit of Laplace integration for a Heaviside function. More details can be found in [Flügge 1967].
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(ii) For a ‘double’ Maxwell model, the expression of the inverse Laplace transform is the same one as
(59), except for the first term on the right:

L(t)=
φh1+1/n(t)

Fmax

=
1

2(k− 1)!
∂k−1

∂uk−1 [ f (u) exp(um t)]u=0+
1
π

Im
∫
∞

0

̂DF (re−iπ )

2re−iπ ̂Dh(re−iπ )
exp(−r t) dr

+

∑
j

lim
s→λm

j

(s− λm
j )

D̂F (λ
m
j ) exp(λm

j t)

2λm
j D̂h(λ

m
j )

, (60)

where k = m(1+β) is an integer, and

f (u)=
c1+ c2um(β−α)

+ c3umβ
+ c4u2mβ

+ c5um(2β−α)

2(l3+ l4umβ + l5um(β−α))
, α ≤ β,

f (u)=
c1um(α−β)

+ c2+ c3umα
+ c4um(α+β)

+ c5umβ

2(l3um(α−β)+ l4umα + l5)
, α > β.

(61)

Specification of (60) for a fractional deviatoric Maxwell material (P = Q = q0 = 0, α = 0) and of (59)
for a fractional deviatoric Zener material (P = Q = 0, α = 0) yields

Maxwell: L(t)=
1

2(k− 1)!
∂k−1

∂uk−1

[
Q0+ (2Q0 p+ 2q)umβ

+ (Q0 p2
+ 2pq)u2mβ

q Q0+ (qpQ0+
1
2q2)umβ

exp(um t)
]

u=0

+
1
π

Im
∫
∞

0

Q0+ (2Q0 p+ 2q)rβe−iπβ
+ (Q0 p2

+ 2pq)r2βe−2iπβ

2r1+βe−iπ(1+β)
(
q Q0+ (qpQ0+

1
2q2)rβe−iπβ

) exp(−r t) dr

+

∑
j

lim
s→λm

j

(s−λm
j )

Q0+ (2Q0 p+ 2q)λβm
j + (Q0 p2

+ 2pq)λ2βm
j

2λm(1+β)
j

(
q Q0+ (qpQ0+

1
2q2)sβ

) exp
(
λm

j t
)
, (62)

Zener: L(t)=
1
2 Q0+ q0

1
2q2

0 + q0 Q0

+
1
π

Im
∫
∞

0

(
Q0+ 2q0+ (2Q0 p+ 2q + 2pq0)rβe−iπβ

+ (Q0 p2
+ 2pq)r2βe−2iπβ

)
exp(−r t)

2re−iπ
( 1

2q2
0 + q0 Q0+ (q0 pQ0+ qq0+ q Q0)rβe−iπβ + (qpQ0+

1
2q2)r2βe−2iπβ

) dr

+

∑
j

lim
s→λm

j

(
s− λm

j
) Q0+ 2q0+ (2Q0 p+ 2q + 2pq0)λ

βm
j + (Q0 p2

+ 2pq)λ2βm
j

2λm
j

( 1
2q2

0+q0 Q0+(q0 pQ0+qq0+q Q0)sβ+(qpQ0+
1
2q2)s2β

) exp(λm
j t). (63)

(iii) For β = 1, since e−iπ
=−1, the imaginary part of the integrand in the middle terms of both (62) and

(63) become zero and hence the middle terms vanish. In this case, the other two terms in (62) and (63)
are found to reduce to the known indentation creep compliance functions of the integer-type deviatoric
models as follows [Vandamme and Ulm 2007]:

Maxwell: L(t)=
1
M
+

t
4ηM
+
(1− 2ν)2

4E

(
1− exp

(
−

E
3ηM

t
))
, (64)

Zener: L(t)=
1
M
+

1
4GV

(
1− exp

(
−

GV

ηV
t
))
+

(1− 2ν)2

4(E + 3GV )

(
1− exp

(
−

E+3GV
3ηV

t
))
. (65)
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Here we have used the notation (42) and (42) along with the well known elasticity relations

E =
9K G

3K +G
, ν =

3K − 2G
2(3K +G)

.

(iv) Finally, the indentation creep compliance function can be used to study the time-dependent indenta-
tion response h(t) for any prescribed monotonically increasing indentation load history F(t)= Fmax F(t),
in both the Laplace and time domain [Vandamme and Ulm 2007]:

φ ̂h1+1/n(s)
Fmax

= s L̂(s)F̂(s) H⇒
φh1+1/n(t)

Fmax
=

∫ t

−∞

L(t − τ)
d

dτ
F(τ )dτ, (66)

where F̂(s) is the Laplace transform of the normalized loading history F(t) = F(t)/Fmax, satisfying
(dF/dt)(t)≥ 0.

4.2. Indentation relaxation modulus. For a Heaviside displacement loading h1+1/n(t) = h1+1/n
max H(t),

one can principally proceed in a similar way as for the indentation creep compliance. Alternatively, one
can make use of the link between indentation creep compliance L(t) and indentation relaxation modulus
M(t), given by (see [Vandamme and Ulm 2007])

(s M̂(s))−1
= s L̂(s). (67)

The expression of the relaxation modulus in the Laplace space thus becomes

M̂(s)=
F̂(s)

φh1+1/n
max

=
1

s2 L̂(s)
=

2D̂h(s)

s D̂F (s)
. (68)

The inverse Laplace transform for a selected number of models are as follows:

(i) For the ‘double’ Zener material:

M(t)=
F(t)

φh1+1/n
max

=
2l0

c0
+

1
π

Im
∫
∞

0

2D̂h(s)

s D̂F (s)
exp(−r t) dr +

∑
j

(
s− λm

j
)2D̂h

(
λm

j

)
exp

(
λm

j t
)

λm
j D̂F

(
λm

j

) . (69)

(ii) For the ‘double’ Maxwell material:

M(t)=
F(t)

φh1+1/n
max

=
1

(k− 1)!
∂k−1

∂uk−1 [ f (u) exp(um t)]u=0

+
1
π

Im
∫
∞

0

2 ̂Dh(re−iπ )

re−iπ ̂DF (re−iπ )
exp(−r t) dr +

∑
j

(
s− λm

j
)2D̂F

(
λm

j

)
exp

(
λm

j t
)

2λm
j D̂h

(
λm

j

) , (70)

where k = m(1−β) is an integer, and

f (u)=
2(l3+ l4umβ

+ l5um(β−α))

c1+ c2um(β−α)+ c3umβ + c4u2mβ + c5um(2β−α) , α ≤ β,

f (u)=
2(l3um(α−β)

+ l4umα
+ l5)

c1um(α−β)+ c2+ c3umα + c4um(α+β)+ c5umβ , α > β.

(71)
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The relaxation moduli for fractional deviatoric Maxwell and Zener materials are, respectively,

M(t)=
1

(k− 1)!
∂k−1

∂uk−1

[
Q0+ (2Q0 p+ 2q)umβ

+ (Q0 p2
+ 2pq)u2mβ

q Q0+ (qpQ0+
1
2q2)umβ

exp(um t)
]

u=0

+
1
π

Im
∫
∞

0

2
(
Q0+ (2Q0 p+ 2q)rβe−iπβ

+ (Q0 p2
+ 2pq)r2βe−2iπβ

)
r1+βe−iπ(1+β)

(
q Q0+ (qpQ0+

1
2q2)rβe−iπβ

) exp(−r t) dr

+

∑
j

lim
s→λm

j

(s− λm
j )

2
(
Q0+ (2Q0 p+ 2q)λβm

j + (Q0 p2
+ 2pq)λ2βm

j

)
λ

m(1+β)
j

(
q Q0+ (qpQ0+

1
2q2)sβ

) exp(λm
j t), (72)

M(t)=
1
2q2

0 + q0 Q0
1
2 Q0+ q0

+
1
π

Im
∫
∞

0

2
( 1

2q2
0 + q0 Q0+ (q0 pQ0+ qq0+ q Q0)rβe−iπβ

+ (qpQ0+
1
2q2)r2βe−2iπβ

)
exp(−r t)

re−iπ
(
Q0+ 2q0+ (2Q0 p+ 2q + 2pq0)rβe−iπβ + (Q0 p2+ 2pq)r2βe−2iπβ

) dr

∑
j

lim
s→λm

j

(s−λm
j )

2
( 1

2q2
0+q0 Q0+(q0 pQ0+qq0+q Q0)λ

βm
j +(qpQ0+

1
2q2)λ

2βm
j

)
exp(λm

j t)

λm
j

(
Q0+ 2q0+ (2Q0 p+ 2q + 2pq0)sβ + (Q0 p2+ 2pq)s2β

) , (73)

Similar to creep compliances, for β = 1, the previous expressions are found to reduce to the known
indentation relaxation modulus expressions of the integer-type deviatoric models [Vandamme and Ulm
2007]:

Maxwell: M(t)= M −
E

2(1+ ν)
(1− e−

E
2(1+ν)ηM

t
)−

E
2(1− ν)

(
1− exp

(
−

E
6(1− ν)ηM

t
))
, (74)

Zener: M(t)= M −
E2

2(1+ ν)(E + 2G(1+ ν))

(
1− exp

(
−
(E + 2G(1+ ν))t

2ηV (1+ ν)

))
(75)

−
E2

2(1− ν)(E + 6G(1− ν))

(
1− exp

(
−
(E + 6G(1− ν))t

6ηV (1− ν)

))
.

The indentation relaxation modulus functions can be used to study the time-dependent force relaxation
history F(t) for any prescribed monotonically increasing indentation displacement history h1+1/n(t)=
h1+1/n

max G(t), in both Laplace and time domain [Vandamme and Ulm 2007]:

F̂(s)

φh1+1/n
max

= s M̂(s)Ĝ(s) H⇒
F(t)

φh1+1/n
max

=

∫ t

−∞

M(t − τ)
d

dτ
G(τ )dτ, (76)

where Ĝ(s) is the Laplace transform of G(t)= h1+1/n(t)/h1+1/n
max , the normalized displacement loading

history, which satisfies (dG/dt)(t)≥ 0.

5. Application

In this section, we illustrate the application of the above theoretical derivations in indentation analysis
of the fractional and viscous parameters of polystyrene (Dupont, Wilmington, DE) under a creep test.
Depth-sensing indentation experiment was performed with a Nanotest 600 nanoindenter (MicroMaterials
Ltd., Wrexham) with a Berkovich indenter. As is common practice in indentation analysis, the Berkovich
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Maximum force [mN] 500 Thermal drift [nm/sec] < 0.1
Load resolution [nN] 2–3 Machine compliance [nm/mN] 0.3–0.4
Load noise floor [nN] 100 Specimen clamping [nm/mN] ∼ 0.01
Maximum depth [µm] 15 Feedback control Open loop
Displacement resolution [nm] 0.05–0.06 Drift correction No

Table 2. Specifications of Nanotest 600 nanoindenter (values provided by the manufac-
turer and pretesting calibration). See also [Micromaterials 2002; Constantinides 2006].

Fmax [mN] 31.45 hmax [nm] 2579
S [mN/nm] 0.0696 τL [sec] 3.12
M [GPa] 4.83 τH [sec] 29.99
H [GPa] 0.19 τU [sec] 4.14

Table 3. Indentation data for the Nanotest run.

indenter is assimilated to a cone of half-opening angle θ = 70.32◦. Table 2 provides more specifications
on the nanoindenter device.

The load function is a prescribed trapezoidal force history:

F(t)= Fmax F(t), F(t)=


t/τL 0≤ t ≤ τL ,

1 τL ≤ t ≤ τL+τH ,

1−t/τU τL+τH ≤ t ≤ τL+τH+τU .

(77)

The load was increased linearly up to Fmax, held constant during the creep phase and then decreased
to zero linearly. In (77), τL , τH , and τU are, respectively, loading, holding, and unloading time which
are given in Table 3. By monitoring force-indentation depth data (Figure 6), we get M and H from (1).
Indentation parameters and moduli are summarized in Table 3.
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Figure 6. Load versus indentation depth for polystyrene.
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Theoretical derivations throughout this paper are based on pure viscoelastic deformation. However, the
monitored indentation depth is a mixture of elastic and plastic deformations, particular around the tip of
the nanoindenter where there is a high stress concentration. Thus, in what follows, we first approximate
the elastic indentation depth by removing the plastic indentation. Next, we fit the elastic experimental
data to the theoretical creep compliance to identify the fractional model parameters.

5.1. Correcting for plasticity. Extensive works on plastic analysis of nanoindentation are available in
the literature (see [Cheng and Cheng 2004], for example). Here we use the method proposed by Sakai
in [Sakai 1999] and [Shimizu et al. 1999] to approximate the plastic deformations. In this method, the
quadratic load-depth relations are experimentally observed through the relation

F = k1h2. (78)

Here k1 is a parameter related to hardness H in (1)1 and the true hardness HT . For loading, k1 reads

k1 =
gH
γ 2 . (79)

In this equation, γ is a geometrical factor which relates the total penetration depth h and the contact depth
hc through h = γ hc (we approximate γ ≈ 1), and g is the geometrical factor of the indenter that relates to
the contact area Ac by g = Ac/h2

c . For a Berkovich indenter, g = 24.5. Sakai’s analysis for elastoplastic
indentation deformation is based on a Maxwell model in which F = Fe = Fp and h = he+ h p (indices
e and p refer to elastic and plastic, respectively). This model consists of a perfectly elastic component
with an elastic modulus M (as opposed to E) connected in series to a perfectly plastic component with
true hardness HT given by

HT =
k1(√

g−
√

2 cot θ
√

k1/M
)2 . (80)

Plastic indentation can be computed from the quadratic relation between Fp = F and h p by

h p(t)=

√
F(t)
gHT

. (81)

Finally, he(t), based on Sakai’s procedure, is straightforward:

he(t)= h(t)− h p(t). (82)

During a creep test (constant load), h p(t) simplifies to a constant. By having indentation moduli in Table
3 and following (79) to (81), the plastic indentation depth during the holding phase is approximated to
be h p = 1380 nm. In fact, it is implicitly assumed that there is no further plasticity during the creep test.

5.2. Viscoelastic fitting procedure. Now we consider fitting the approximated elastic data obtained ex-
perimentally to the viscoelastic model creep compliance. Direct fitting of the analytical solutions, (59)
or (60), to the elastic experimental data in the time domain is a complicated task (because the analytical
solutions require parametrically finding the roots of a rational function, Equation (58), with fractional
exponents; see the Appendix). However, once the fractional and viscous parameters are known, Equa-
tions (59) and (60) are handy to use. In order to find the fractional and viscous parameters, we proceed
in the following way, which leads to a curve-fitting in the Laplace domain:
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Figure 7. Time-dependent compliance L(t) for polystyrene. The large window indi-
cates Lexp(t) for the loading and holding phases (0 < t < τL + τH ) where recorded
experimental depth h(t) is used; The small window shows Lexp

e (t) for the holding phase
(τL < t < τL + τH ), where an elastic indentation depth he(t) is used.

(i) From the recorded indentation depth h(t), determine the experimental indentation creep compliance
function Lexp for the equivalent cone representing the Berkovich indenter (n = 1, B = cot θ , see Table
1):

Lexp(t)=
φh1+1/n(t)

Fmax
=

2 tan θ
πFmax

h2(t). (83)

Lexp(t) is shown in the large window in Figure 7 and consists of the loading and the holding phases.

(ii) Focus on the creep response and consider the holding phase t > τL = 3.12 sec where the load is
constant. Determine elastic indentation depth he(t) by using (79)–(82), and replace h(t) by he(t) in
(83) to get the elastic compliance function Lexp

e (t). This is shown in the small window of Figure 7, and
Lexp

e (t) reads

Lexp
e (t)=

φh1+1/n(t)
Fmax

=
2 tan θ
πFmax

h2
e(t). (84)

(iii) Transfer the time-dependent Lexp
e (t) to the Laplace domain. One can do this either numerically

using a Finite Laplace Transform method, or by fitting a continuous function to Lexp
e (t) and then analyt-

ically transforming the fitted function to the Laplace space. We choose the latter procedure. By using
a nonlinear optimization algorithm (for example, the lsqnonlin function in Matlab v7.4), it turns out
that the best fitted function is a power function of the form

Lexp
e (t)= atb

+ c, (85)
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Figure 8. Left: curve-fitting in the Laplace domain for the compliance. Blue squares

represent Laplace transform of experimental compliance L̂exp
e (s) while the red line rep-

resents the Laplace of the theoretical model compliance L̂(s). Right: validation of
the curve-fitting in the time domain. Blue squares represent experimental compliance
Lexp

e (t) and the red line represent theoretical model compliance L(t) which perfectly
coincides with Lexp

e (t).

where, for the test data in (84), a = 0.0102, b = 0.318, and c = 0.052. The parameter b is dimensionless,
but [a] = L M−1T 2−b and [c] = L M−1T 2. The Laplace transform of (85) is

L̂exp
e (s)=

0.01020(1+ 0.318)
s1.318 +

0.052
s

. (86)

(iv) In Laplace space, fit the transformed elastic compliance response L̂exp
e (s), given by (86), to the

transformed model response L̂(s) in (56), involving fractional exponents and parameters. In view of the
considered models in Figure 4, this is equivalent to determining 10 independent unknown parameters in
L̂(s), namely α, Q0, Q1, Q2, τv for the bulk and β, q0, q1, q2, τd for the shear behavior. For the purpose
of fitting in the complex plane, we refer to the Identity Theorem in complex analysis (for example,
[Carrier et al. 1966; Marsden and Hoffman 1999]) and consider s as a real variable on the positive real
axis. This fitting in the Laplace space does not require any a priori assumption of the particular model
(double Maxwell, double Zener, etc.). Therefore, we minimize the quadratic error between the elastic
compliance function, (86), and the model function (56) by

min
α,β :α<β,

Q0,Q1,Q2,τv
q0,q1,q2,τd

n+1∑
i=1

(
L̂exp

e (si )−
D̂F (si )

2si D̂h(si )

)2

, (87)

where the linear constraint α < β renders an account of the fact that the indentation test is more of a
shear test, for which reason the effect of shear at the constitutive model is more influential. The result of
this minimization yields the following values for the 10 parameters:

α = 0.257, Q0 = 3.37 GPa, Q1 = 30.85 GPa, Q2 = 58.01 GPa, τv = 3.92 sec

β = 0.374, q0 = 0.84 GPa, q1 = 13.99 GPa, q2 = 59.46 GPa, τd = 4.47 sec.
(88)
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Since all parameters in (88) are nonzero, it is recognized that the tested material, polystyrene, follows
best the double fractional Zener model with the sum of quadratic errors being 0.22× 10−9. By reducing
the unknown parameters down to 8 for the double Maxwell models, this error becomes 3.1× 10−9. For
validation, after identifying the model parameters of L̂(s), the inverse Laplace transform of L(s) must
match with Lexp

e (t), (84), in the time domain. This is numerically confirmed in Figure 8 by using the
Talbot algorithm [Abate and Valkó 2004]) for Laplace inversion.

Remark 1. Since s is, in general, a complex number, one may expect that both real and imaginary parts
of s are required for the purpose of curve-fitting in the Laplace domain. But The Identity Theorem
for single-valued analytic functions states that if two single-valued functions are analytic in a common
region and coincide identically in a subset of that region (for instance, on a segment of a curve) then
the two functions coincide identically throughout their common region of analyticity; see, for example,
[Carrier et al. 1966; Marsden and Hoffman 1999]. A continuous function is analytic in a region of the
complex plane if it is free of singularities in that region. Given that for any linear stable physical system,

such as creep in indentation, L̂(s) and L̂exp
e (s) are free of singularities in the right-half of the complex

plane where Re(s) > 0 (see the Appendix), then if L̂(s)= L̂exp(s) on the positive real axis of s (which

is a subset of the complex plane in which L̂(s) and L̂exp
e (s) are analytic), then directly from the Identity

Theorem, L̂(s) = L̂exp
e (s) throughout all regions of their analyticity in the complex plane. Hence, for

fitting L̂(s) and L̂exp
e (s) on the complex plane, as long as these functions coincide in a region where s

lies on the positive real axis, there is no need for the imaginary parts of s to be taken into account. Here
we used a relatively large interval up to s = 1000 sec−1 (since the exponent of est is dimensionless, the
dimension of s is 1/time which indicates that large s refers to small times and small s to large times).

Increasing this interval is practically insignificant because L̂exp
e (s) approaches zero at around s = 4 sec−1

(Figure 8).

Remark 2. The optimization problem (87) defined in the Laplace domain involves a ten-dimensional
shallow hypersurface for the ten unknown parameters (α, Q0, Q1, Q2, τv, β, q0, q1, q2, τd), in which
there are many local minima. To approach the global minimum, we use ten nested loops over initial
parameter guesses, each loop covering the given range of that parameter (we consider 0< α, β < 1 and
0 < τv, τd < 10 sec, 0 < Q0, Q1, Q2, q0, q1, q2 < 70 GPa). We then regularly discretize the range of
each parameter and repeat the optimization as many times as different combinations of initial parameter
guesses exist through the ten nested loops.

Remark 3. The optimization algorithm starts from different points within the hypersurface and each
time finds a closest local minimum by calling the ’lsqnonlin’ subroutine in Matlab v7.4, which uses a
subspace trust region method for each set of initial parameter guesses. This subroutine is based on the
interior-reflective Newton method [Coleman and Li 1994; 1996], and is set to a maximum of 20,000
iterations and function evaluations. Each iteration in this subroutine involves the approximate solution
of the large linear system using the method of preconditioned conjugate gradients (PCG). Over all initial
parameter guesses, the criterion for the best fit (or the global minimum among these local minima) will
be the one that has the least quadratic error. For a double Zener model, the run time for finding the global
minimum was 2 days, and the mean and standard deviation of the minima are 1.8× 10−5 and 2.9× 10−4,
respectively.
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Given that the quadratic error function for the global minimum is orders of magnitude less than the
mean of the minima, the objective function must be highly sensitive to the model parameters. To clarify
this dependence we perform a sensitivity analysis.

5.3. Sensitivity analysis of the model parameters. Once the model parameters are identified, one can
perform a sensitivity analysis to determine the quality of the employed models and the parameters that
contribute most to the output variability, which in this case is the objective function (88). Sensitivity
analysis also enables us to study the optimal– or instability– regions within the space of each parameter
for which the objective function is guaranteed not to jump from the global minimum to the next lowest
local minimum. Let’s use the symbol 2 to indicate the objective function (88). We numerically disturb a
model parameter, say α, from its optimum value while keeping all the other model parameters unchanged.
Next, by monitoring the change in 2 to a defined tolerance 12, we can measure the sensitivity of 2 with
respect to each model parameter. Then, one can simply repeat this procedure for each model parameter
and find a tolerance in which 2 is assured not to exceed the allowable drift. Here, for a double Zener
model, we set 12 = (0.59− 0.22)× 10−9

= 0.37× 10−9, which is the difference between the global
minimum 2 and its next lowest local minimum. For this case, we obtain

1α =±0.0001, 1Q0 =±0.7 MPa, 1Q1 =±2.1 MPa, 1Q2 =±5.6 MPa, 1τv =±0.0015 sec,

1β =±0.00004, 1q0 =±0.2 MPa, 1q1 =±0.3 MPa, 1q2 =±3.6 MPa, 1τd =±0.0007 sec.
(89)

In view of (89), the following observations are in order:

1. All parameters on the second line of (89) which are related to the deviatoric Zener model, are
less than their counterpart on the first line, which are related to the volumetric Zener model. This
suggests that the creep phenomenon during indentation is more sensitive to the deviatoric (shear)
behavior. In other words, the time-dependent response of the shear behavior is more pronounced
than that of the bulk behavior.

2. For each of the deviatoric and volumetric Zener models, the fractional parameters α and β, with the
least tolerance, are the most sensitive parameters in the quadratic error function, or, alternatively,
the most dominant parameters in the time-dependent response function.

3. Among all the parameters of the two models, the β parameter in the deviatoric model is the most
sensitive factor in the error function (equivalently, the most dominant factor for the time-dependent
response function), followed by α, which is the second most dominant (second least sensitive)
parameter in the response function.

The results of the sensitivity analysis are in agreement with the observation that the effect of β (or
shear) dominates over the effect of α. In fact, 2 is a nonlinear rational function of the independent
variable s, the model parameters (α, Q0, Q1, Q2, τv) for bulk and (β, q0, q1, q2, τd) for shear behavior.
Among these parameters, the fractional parameters α, β have significant influence in determining 2. This
is because α, β appear as the exponents of s in 2. For instance, in the case of shear behavior, in view of
(28)1 and (33), it is readily seen that the other four viscous model parameters appear only as coefficients
of s,and thus their variations are not as critical as β. Then, between α and β, β, with greater exponent,
is clearly the dominant parameter.
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6. Conclusions

The fractional viscoelastic model offers new possibilities for the characterization of materials whose time-
dependent response may be poorly captured by classical integer-type viscoelastic models. The analysis
and method developed in this paper aims at determining the fractional properties from indentation anal-
ysis. The following conclusions can be drawn:

(i) The derived constitutive differential equations governing the indentation response show that the
differential order of the constitutive differential equations of the indentation response is higher than
the one governing the material level. This difference in differential order between the material scale
and indentation scale holds for both fractional and integer-type viscoelastic models, the latter being
recognized as a subset of the more general fractional modeling framework. The found difference is more
pronounced for the viscoelastic shear response than for the viscoelastic bulk response. This is explicitly
shown with higher order derivatives in β than in α for fractional viscoelastic materials. This observation
is in agreement with the sensitivity analysis performed on the error function, and it translates into the
well-known fact that an indentation test is rather a shear test than a hydrostatic test.

(ii) The general constitutive differential equations are readily employed to derive indentation creep and
relaxation functions, which, analogously to uniaxial creep compliance and relaxation functions, can be
used in fractional indentation analysis for any monotonically increasing force- or depth-load histories
applied in indentation testing. On this basis, explicit solutions for specific fractional creep models can be
derived, as illustrated for the double Zener, double Maxwell, and deviatoric Maxwell and Zener models.

(iii) In order to translate time-dependent indentation data into fractional material model properties, we
suggest fitting the experimental response to the model response in the Laplace domain. This reduces
the mathematical complexity of obtaining properties from indentation data without compromising the
accuracy of the fit in the time domain. Our optimization method has two important features: the optimum
model parameters do not depend on the initial parameter guesses; and in our curve-fitting on the complex
plane, all functions are treated as real functions by making use of the Identity Theorem.

Appendix

The fractional expression D̂(s) can be converted into a polynomial of integer order by

D̂(s)=
∑

j

b j s j/m
=

∑
j

b j u j
= X (u), (90)

where u j
= s j/m , and m > 0 is the smallest common denominator of the fractional parameters α and β.

Some of the coefficients b j are clearly zero, while any non-zero b j corresponds to the coefficient of s
in D̂(s) whose exponent becomes equal to j/m. The inverse transform of a function, f̂ (s), exists and
is real, continuous, and causal when (i) f̂ (s) is analytic for Re(s) > 0, (ii) f̂ (s) is real for s real and
positive, (iii) f̂ (s) is of order s−γ , where γ > 1, for |s| large in the right half s plane [Churchill 1958].
One can simply show that L̂(s) in (56) satisfies all three conditions. By definition, the inverse Laplace
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Figure 9. Integration contour on the complex s-plane for the calculation of (91).

transform of (56) is then

L(t)=
1

2π i

∫ γ+i∞

γ−i∞
est D̂F (s)

2s D̂h(s)
ds. (91)

One can evaluate this line integral by extending it into a closed contour integration, as in Figure 9.
Recall that the residue theorem states that the integral along any closed contour, divided by 2π i , is equal
to the sum of the residues of poles of the integrand within that contour. The contour in Figure 9, is
divided into six segments with arrows which indicate the direction of integration. (Segments 3, 4, 5 are
needed since the branch cut of s1/m lies along the negative real axis.) We thus can write

1
2π i

∫
C1

est D̂F (s)

2s D̂h(s)
ds+

1
2π i

6∑
k=2

∫
Ck

est D̂F (s)

2s D̂h(s)
ds =

∑
j

b j , (92)

where b j are the residues. Equation (91) is the first term in (92) when its limits are extended to infinity
in the negative and positive imaginary directions of the s plane. The radii of the segments 2 and 6
are increased infinitely to ensure the continuity of the closed contour. Similarly, segments 3 and 5 are
stretched to infinity on the negative real axis. When the radius approaches infinity, it can be shown that
the integrals along the contours 2 and 6 are zero. By using the following lemma [MacRobert 1962] one
can obtain the contour integral along the segment 4,

Lemma. If lim(s − a) f (s) = k as s→ a, where k is a constant, then lim
∫

f (s)ds = i(θ2 − θ1)k, the
integral being taken for s→ a and r→ 0 around an arc from θ1 to θ2 of the circle |s− a| = r .

It follows that since (θ2− θ1)= 0, ∫
4

est D̂F (s)

2s D̂h(s)
ds = 0. (93)

One can also show that∫
3

est D̂F (s)

2s D̂h(s)
ds+

∫
5

est D̂F (s)

2s D̂h(s)
ds =−2i Im

∫
∞

0
e−r t

̂DF (re−iπ )

2s ̂Dh(re−iπ )
dr. (94)
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Finally, using the conventional technique, the residues are calculated as

b j = lim
s→λm

j

(s− λm
j )

D̂F (s)

2s D̂h(s)
est . (95)

Here, λ j refers to the j -th root of the integer polynomial X (u). In view of equations (90) and (56), the
roots of X (u) correspond to the poles of L(t). Lastly, by substituting (93), (94), and (95) into (92), one
can find the general solution in the time domain. For specific solutions, we need to consider different
models. For a double Zener models, since all the c and l coefficients in (42) are nonzero, s = 0 in (56) is a
simple pole, and because its exponent is one and an integer number, this pole is on the s-plane. Thus, its
residue via (95) is simply the first term in (59). Other poles of (56) λi (those that make D̂h(s)= 0) were
found in the s1/m plane. Since the Laplace transform is performed in the s-plane, the poles λi should be
transformed into λm

i to be on the s-plane. However, that transformation maps some of the original poles
onto Riemann surfaces out of the closed contour of integration in the s−plane. Thus, according to the
residue theorem, the residues of such poles do not contribute to the solution. Hence, the summation over
the index j in (59) (and through all equations in this paper) pertains only to those poles that remain in
the closed contour’s plane after the transformation. This indicates that, for a linear physical system, λm

i
must have a negative real part in order for the system to be stable.

For double Maxwell models, c0 = l0 = l1 = l2 = 0, and (56) simplifies to

L̂(s)=
D̂F (s)

2s D̂h(s)
=

c1sα + c2sβ + c3sα+β + c4sα+2β
+ c5s2β

2s(l3sα+β + l4sα+2β + l5s2β)
. (96)

In the case of α ≤ β, after cancelling out sα, (96) yields

L̂(s)=
c1+ c2sβ−α + c3sβ + c4s2β

+ c5s2β−α

2s1+β(l3+ l4sβ + l5sβ−α)
. (97)

Clearly, s = 0 in (97) is not a simple pole, rather, it is a pole of fractional order 1 + β. Consider
this fractional number to be k/m, where k and m are two integer numbers. By using the following
transformation:

s1+β
= (s1/m)k = uk, (98)

one can convert (97) into quotient of two polynomials as

L̂(u)=
c1+ c2um(β−α)

+ c3umβ
+ c4u2mβ

+ c5um(2β−α)

2uk(l3+ l4umβ + l5um(β−α))
. (99)

Now, u = 0 in (99) is a multiple pole of order k. In order to find its residue, we use the fact that the
residue of a function f (s)= Q(s)/(s− a)n+1 at a multiple pole a of order n+ 1 is given by

F(s, t)=
1
n!
∂n

∂ns
[Q(s)est

]s=a.

(see [Churchill 1958], for example). Applying this to (99) leads to (61)1. Similarly, in the case of α > β,
after cancelling out sβ , one can find (61)2. The residue theorem in conjunction with fractional-order
derivatives has been used in [Bagley and Torvik 1983] and [Ostoja-Starzewski and Shahsavari 2008] in
a slightly different way.
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