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Simple closed-form analytic solutions have been obtained for the effect of initial residual stress on the
bending stiffness of a symmetric trilayer plate/beam and for the combined effect of surface elasticity and
initial surface stress on the bending stiffness of a nanofilm/nanobeam. The relative effect of the initial
residual stress is generally limited to the range of the material yield strain. For nanofilms and nanobeams,
the effect of the surface elasticity reduces with an increase in the thickness, but the initial surface stress
effect can be retained at a constant level of up to the limit of elastic strain if it can be controlled, for
example by the application of an electrical potential.

1. Introduction

Multilayer plate structures are widely used in applications at different size scales ranging from macro civil
and mechanical structures down to microelectromechanical systems (MEMS) and nanoelectromechanical
systems (NEMS). Elastic and thermal mismatch of individual materials can result in significant internal
residual stresses in multilayer systems. As internal residual stresses can influence the overall mechanical
properties (such as the stiffness and the natural frequency) and hence the dynamic and stability charac-
teristics of multilayer systems, their determination has long interested material scientists and engineers
[Stoney 1909; Freund 2000; Hui et al. 2000; Klein 2000; Dodin et al. 2001; Freund and Johnson 2001;
Thompson and Clyne 2001; Donadon et al. 2002; Xu and Zhang 2003; Malzbender 2004; Huang and
Zhang 2006; Huang and Zhang 2007]. Both the experimental measurement of internal stresses and the
optimal design of multilayer systems rely heavily on the accuracy of the involved correlations. To the
best of our knowledge, there is no reliable closed-form solution for the effect of initial residual stress on
the bending stiffness of a symmetric trilayer plate structure (Figure 1).

The demand for smaller and faster devices has encouraged technological advances in the production
of systems at micro- and nanoscales. While MEMS technology is now a well established area, nanoelec-
tromechanical systems (NEMS) have been attracting more interest lately [Bunch et al. 2007; Masmanidis
et al. 2007], as have the mechanical properties of nanomaterials and nanostructures. It has been well
recognized that the effect of surface elasticity on the stiffness of nanostructures is size-dependent [He
et al. 2004; Lim and He 2004; Cuenot et al. 2004; Zhou and Huang 2004; Duan et al. [2005a; 2005b;
2006]; Chen et al. 2006; Wang et al. 2006; Zhu and Karihaloo 2008]. As the surface to volume ratio
is large, the stiffness and deformation of a nanostructure greatly depend on the surface stress, while the
latter depends on the electric charge which in turn depends on the applied electric potential [Haiss et al.
1998; Weissmüller et al. 2003; Kramer et al. 2004]. Therefore the deformation of a nanostructure can
be controlled by adjusting the applied electric potential [Kramer et al. 2004]. Miller and Shenoy [2000]
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Figure 1. Schematic diagram of a prestressed trilayer plate. Left: materials and initial
residual stresses. Right: dimensions and coordinate system.

showed that the relative contribution of the surface elastic modulus to the bending stiffness of a nanoplate
is 6S/(Eh), where S is the surface elastic modulus, E is the Young’s modulus of the bulk material and
h is the thickness of the nanoplate.

However, the effect of the initial residual stresses on the bending stiffness of a nanoplate (or nanobeam)
has not yet been considered. Zhu [2008] has considered the combined effects of surface elasticity and
initial stresses on the bending stiffness of a core-shell nanowire with a circular cross-section. In this
paper we consider the effect of initial stress on the bending stiffness of a symmetric trilayer plate/beam
and the combined effects of surface elasticity and the initial stresses on the bending stiffness of a
nanoplate/nanobeam with a rectangular or square cross-section.

2. Pure bending of a prestressed symmetric trilayer plate/beam

Figure 1 shows the cross-sectional geometry of a trilayer plate. The middle layer of thickness h is made of
material 1 with Young’s modulus E1 and Poisson’s ratio ν1. Both the top and bottom layers of thickness
t are made of material 2 with Young’s modulus E2 and Poisson’s ratio ν2. The width direction is denoted
as z, which is normal to the xy-plane. The trilayer plate is initially flat and there is no initial residual
stress in the thickness direction (that is, the y direction). The initial residual stresses in both the x and
the z directions within the middle and the surface layers are σ01 and σ02, respectively. Obviously, they
satisfy the equilibrium condition

hσ01+ 2tσ02 = 0. (1)

When the symmetric trilayer plate is bent by a pure moment M , the radius of the neutral surface is
assumed to be R. To obtain a simple closed-form analytic solution for this problem, the following two
assumptions are made: i) the materials are linear elastic and the deformation is very small; ii) the plate
thickness does not change and R is much larger than the plate thickness. When a pure bending moment
is applied to the initially flat symmetric trilayer plate, the deformed trilayer plate obviously becomes a
cylinder but the initial cross-sectional planes remain plane after bending (as there is no net shear force in
cross-sectional planes). As the superposition principle applies to this elastic small deformation problem,
all the stresses and strains in the analysis of this paper, unless otherwise mentioned, are their changes
from the initial prestressed state resulting from the application of the pure bending moment M .
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When a wide trilayer plate is subjected to pure bending, the change of the strain in the z direction
(which is normal to the xy-plane of Figure 1) εz is a constant through the thickness of the three layers
and is to be determined. To simplify the analysis, we assume that thickness of the three layers does not
change after bending and the neutral surface is always in the middle of the middle layer as the bending
deformation is very small. This assumption will be subsequently validated.

We look at the deformation of the top layer first. Hooke’s law requires

σ z
2 (y)= E2εz + ν2σ

x
2 (y)+ ν2σ

y
2 (y) (h/2≤ y ≤ h/2+ t), (2)

where σ z
2 , σ x

2 , σ y
2 are the stress changes in the z, x and y directions, respectively and the subscript

2 refers to material 2 of the outer layers (Figure 1, left). All the stress changes are functions of the
coordinate y (Figure 1, right). The equilibrium equation in the radial direction of the bent plate, namely
dσ r/dr = (σ θ − σ r )/r , requires that

d(rσ r
2 )= σ

θ
2 dr,

where σ θ2 = σ
x
2 + σ02 and σ r

2 = σ
y
2 . Integrating both sides and making use of the boundary condition

(rσ r
2 )|r=R+t+h/2 = 0, we get for constant initial residual stress σ02 in the outer layers∫ R+t+h/2

R+y
d(rσ r

2 ) = −(R+ y)σ y
2 =

∫ R+t+h/2

R+y
σ θ2 dr =

∫ t+h/2

y
(σ x

2 + σ02)dy.

Since the thickness of the trilayer plate is far less than R (that is, |y| � R), this can be rewritten as

σ
y
2 (y) = −

1
R+ y

∫ t+h/2

y
(σ x

2 + σ02)dy ≈ −
1
R

∫ t+h/2

y
(σ x

2 + σ02)dy. (3)

Substituting (2) and (3) into Hooke’s law

εx
2 (y)=

y
R
=

1
E2
(σ x

2 − ν2σ
z
2 − ν2σ

y
2 ),

gives
yE2

R
= (1− ν2

2)σ
x
2 (y)− ν2 E2εz +

ν2(1+ ν2)

R

∫ t+h/2

y

(
σ x

2 (y)+ σ02
)
dy. (4)

Differentiating both sides with respect to y leads to

(1− ν2
2)

dσ x
2 (y)
dy

−
ν2(1+ ν2)

R

(
σ x

2 (y)+ σ02
)
−

E2

R
= 0. (5)

It should be mentioned that in (3), R is used to approximate r ; otherwise, there is an additional term
of −ν2(1+ ν2)r−2

∫ t+h/2
y

(
σ x

2 (y)+ σ02
)
dy on the left hand side of (5). As 1/r2

≈ 1/R2 is a higher
order small number, the term is ignored in the differential equation (5). The solution of the first order
differential equation (5) is

σ x
2 (y)= A exp ν2 y

(1−ν2)R
−

E2

ν2(1+ ν2)
− σ02 (h/2≤ y ≤ h/2+ t), (6)
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where A is a constant of integration to be determined by substituting (6) into (4):

A =
(
ν2 E2εz

1− ν2
2
+ σ02+

E2

ν2(1+ ν2)
+
(h+ 2t)E2

2R(1− ν2
2)

)
exp

(
−
(h+2t)ν2
2(1−ν2)R

)

≈
ν2 E2εz

1− ν2
2
−

ν2
2 E2εz(h+ 2t)

2(1− ν2)(1− ν2
2)R
+ σ02+

E2

ν2(1+ ν2)
−
(h+ 2t)ν2σ02

2(1− ν2)R
.

(7)

The exponential function has been expanded into a polynomial and the terms of order higher than 1/R
have been ignored in (7), since 1/R is very small.

It is easy to see that (5) is also the governing differential equation for the stress change in the x
direction within the bottom layer. The solution is therefore

σ x
2 (y)= B exp ν2 y

(1−ν2)R
−

E2

ν2(1+ ν2)
− σ02 (−h/2− t ≤ y ≤−h/2), (8)

where,

B =
(
ν2 E2εz

1− ν2
2
+ σ02+

E2

ν2(1+ ν2)
−
(h+ 2t)E2

2R(1− ν2
2)

)
exp

(
(h+2t)ν2
2(1−ν2)R

)

≈ σ02+
E2

ν2(1+ ν2)
+
(h+ 2t)ν2σ02

2(1− ν2)R
+
ν2 E2εz

1− ν2
2
+

ν2
2 E2εz(h+ 2t)

2(1− ν2)(1− ν2
2)R

.

(9)

In a similar manner, the governing differential equation for the stress change in the x direction within
the middle layer can be obtained as

(1− ν2
1)

dσ x
1 (y)
dy

−
ν1(1+ ν1)

R

(
σ x

1 (y)+ σ01
)
−

E1

R
= 0 (−h/2≤ y ≤ h/2), (10)

where the subscript 1 refers to material 1 of the middle layer. The solution of (10) is

σ x
1 (y)= C exp ν1 y

(1−ν1)R
−

E1

ν1(1+ ν1)
− σ01 (−h/2≤ y ≤ h/2), (11)

where the constant of integration is given by

C =
(
ν1 E1εz

1−ν2
1
+σ01+

E1

ν1(1+ν1)
−

tν1

(1−ν1)R
A+

t E2ν1

ν2(1+ν2)(1−ν1)R
+

hE1

2(1−ν2
1)R

)
exp

(
−

ν1h
2(1−ν1)R

)
for 0≤ y ≤ h/2 and by

C =
(
ν1 E1εz

1−ν2
1
+σ01+

E1

ν1(1+ν1)
+

tν1

(1−ν1)R
B−

t E2ν1

ν2(1+ν2)(1−ν1)R
−

hE1

2(1−ν2
1)R

)
exp

(
−

ν1h
2(1−ν1)R

)
for −h/2≤ y ≤ 0; in either case, we have

C ≈
ν1 E1εz

1− ν2
1
+

ν2
1 E1εzh

2(1− ν1)(1− ν2
1)R
+ σ01+

E1

ν1(1+ ν1)
(−h/2≤ y ≤ h/2).

(Here we have used (1), (7), (9) and the relationships σ z
1 (y) = E1εz + ν1σ

x
1 (y)+ ν1σ

y
1 (y) (valid for

−h/2≤ y ≤ h/2) and εx
1 (y)= y/R = (1/E1)(σ

x
1 − ν1σ

z
1 − ν1σ

y
1 ).)
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Therefore, the change of the stress in the x direction within the symmetric trilayer plate after the
application of the external pure bending moment M is

σ x(y)=



A exp
ν2 y

(1− ν2)R
−

E2

ν2(1+ ν2)
− σ02 (h/2≤ y ≤ t + h/2),

C exp
ν1 y

(1− ν1)R
−

E1

ν1(1+ ν1)
− σ01 (−h/2≤ y ≤ h/2),

B exp
ν2 y

(1− ν2)R
−

E2

ν2(1+ ν2)
− σ02 (−t − h/2≤ y ≤−h/2),

(12)

which can be rewritten as

σ x(y)=
ν2 E2εz

1− ν2
2
−

ν2
2 E2εz(h+ 2t)

2(1− ν2)(1− ν2
2)R
+

ν2
2 E2εz y

(1− ν2)(1− ν2
2)R
−

ν2σ02

(1− ν2)R

(h
2
+ t − y

)
+

E2 y
(1− ν2

2)R

for h/2≤ y ≤ t + h/2,

σ x(y)=
ν1 E1εz

1− ν2
1
+

ν2
1 E1εzh

2(1− ν1)(1− ν2
1)R
+

ν2
1 E1εz y

(1− ν1)(1− ν2
1)R
+

ν1σ01

(1− ν1)R
y+

E1 y
(1− ν2

1)R

for −h/2≤ y ≤ h/2, and

σ x(y)=
ν2 E2εz

1− ν2
2
+

ν2
2 E2εz(h+ 2t)

2(1− ν2)(1− ν2
2)R
+

ν2
2 E2εz y

(1− ν2)(1− ν2
2)R
+

ν2σ02

(1− ν2)R

(h
2
+ t + y

)
+

E2 y
(1− ν2

2)R

for −t − h/2≤ y ≤−h/2.
Now we look at the amplitude of the strain change in the z direction εz . The cylindrical bending

condition requires a zero resultant force in the z direction

Fz =

∫ R+t+h/2

R−t−h/2
rσ zdr = 0. (13)

Substituting (2), (12) and σ z
1 (y)= E1εz + ν1σ

x
1 (y)+ ν1σ

y
1 (y) into (13), one has

Fz =

∫ R+t+h/2

R−t−h/2
rσ z dr

= 2t E2εz R+ hE1εz R+ ν2

∫ R+t+h/2

R−t−h/2
(σ x
+ σ y)r dr + (ν1− ν2)

∫ R+h/2

R−h/2
(σ x

1 + σ
y
1 )r dr.

(14)

Here r = R+ y. It is easy to verify that

ν2

∫ R+t+h/2

R−t−h/2
(σ x
+ σ y)r dr = ν2r2σ y

∣∣∣∣y=t+h/t

y=−t−h/2
= 0, (15)

as there is no traction on the outside surface of the top and the bottom layers, and

(ν1− ν2)

∫ R+h/2

R−h/2
(σ x

1 + σ
y
1 )r dr =

ν1− ν2

2
r2σ y

∣∣∣∣y=h/2

y=−h/2
. (16)
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Substituting (14)–(16) into (13) and ignoring the terms of order higher than 1/R, one has

εz =

ν2(ν1−ν2)(1+2t/h)
1−ν2

σ02t
E2 R

8t/h+ 4E1
E2
−

2ν2(1−ν2)t
(1−ν2

2)R
+

2(ν1−ν2)ν
2
2(1+2t/h)t

(1−ν2)(1−ν2
2)R

≈
ν2(ν1− ν2)(1+ 2t/h)

(8t/h+ 4E1/E2)(1− ν2)2
·

t
R
ε02, (17)

where ε02 = σ02(1− ν2)/E2 is the initial elastic residual strain in the top or bottom layer before the
application of the bending moment M . Equation (17) shows clearly that εz is zero if ν1 = ν2. As t/R is
very small, |εz| � |ε02| when ν1 6= ν2, it will be set equal to zero to simplify the analysis that follows.

The total stress in the x direction within the symmetric trilayer plate after the application of the external
pure bending moment M is given by superposition

6x(y)= σ x(y)+


σ02

σ01

σ02

=



σ02−
ν2σ02

(1− ν2)R

(h
2
+ t − y

)
+

E2 y
(1− ν2

2)R
(h/2≤ y ≤ t + h/2),

σ01+
ν1σ01

(1− ν1)R
y+

E1 y
(1− ν2

1)R
(−h/2≤ y ≤ h/2),

σ02+
ν2σ02

(1− ν2)R

(h
2
+ t + y

)
+

E2 y
(1− ν2

2)R
(−t − h/2≤ y ≤−h/2).

(18)

It is easy to verify the following facts:

• There is no net resultant axial force in the trilayer plate in the x direction: Nx =

∫ t+h/2

−t−h/2
6x(y)dy = 0.

• The stress in the radial direction (the y direction in Figure 1), given by

σ y(y)=−
1
R

∫ t+h/2

y
6x(y)dy

(the equilibrium condition in the y direction), satisfies the stress continuity condition across the neutral
surface and the interfaces between the middle and the surface layers.

• There is no traction in the y direction on both the top and bottom surfaces; that is, σ y
2 (t + h/2) =

σ
y
2 (−t − h/2)= 0.

For a given bending curvature 1/R, we are now in a position to compute the amplitude of the applied
bending moment

M =
∫ t+h/2

−t−h/2
6x(y) y dy. (19)

Substituting (18) into (19), the bending stiffness of the prestressed symmetric trilayer plate can be ob-
tained as

D = M/(1/R)=
E2
(
(h+ 2t)3− h3

)
12(1− ν2

2)
+

E1h3

12(1− ν2
1)
+

ν1σ01h3

12(1− ν1)
−
ν2σ02t2(3h+ 2t)

6(1− ν2)
. (20)
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When the initial residual stresses σ02 and σ01 are absent, the bending stiffness of the symmetric trilayer
plate is denoted by

D0 =
E2
(
(h+ 2t)3− h3

)
12(1− ν2

2)
+

E1h3

12(1− ν2
1)
. (21)

From equations (20) and (21), the contribution of the initial residual stresses to the bending stiffness of
a symmetric trilayer plate is therefore

D− D0 =
σ01

12

(
ν1h3

1− ν1
+
ν2th(3h+ 2t)

1− ν2

)
=

E1ε01

12(1− ν1)

(
ν1h3

1− ν1
+
ν2th(3h+ 2t)

1− ν2

)

=−
σ02

6

(
ν1th2

1− ν1
+
ν2t2(3h+ 2t)

1− ν2

)
=−

E2ε02

6(1− ν2)

(
ν1th2

1− ν1
+
ν2t2(3h+ 2t)

1− ν2

)
.

(22)

Equation (1) has been used in obtaining (22), where ε01 = (1− ν1)σ01/E1 and ε02 = (1− ν2)σ02/E2

are the initial residual strains within the middle and extreme layers. Equation (22) shows clearly that an
initial tensile residual stress or strain (that is, ε01 > 0) in the middle layer increases the bending stiffness
of a trilayer plate. If the plate is made of a metallic material, the initial effective residual stresses should
be smaller than the yield strength of the metal. According to the von Mises yield criterion, one has

|ε01| = (1− ν1)|σ01|/E1 ≤ (1− ν1)σy1/E1 = (1− ν1)εy1 (23a)

and likewise
|ε02| ≤ (1− ν1)εy2. (23b)

Equations (22) and (18) can be used to optimize the design and to determine experimentally the residual
stresses or material properties for symmetric trilayer structures such as thermal barrier coated engine
blades. Equations (23a) and (23b) give the limits for the possible amplitude of the initial residual elastic
strains in symmetric trilayer structures. However, if a trilayer structure is made of a hyper-elastic material,
such as a polymer or a rubber, the initial linear elastic residual strain could be as large as a few percent.

Now we consider the pure bending of a symmetric trilayer beam with a rectangular cross-section. The
structure, the coordinate system, the initial residual stresses and strains of the unbent symmetric trilayer
beam are the same as those of the unbent symmetric trilayer plate. The only difference is its width
dimension in the z direction of Figure 1. When it is bent by a pure moment, the deformation is assumed
to satisfy the plane stress condition. Following the above analysis procedure, it can be shown that the
total stresses in the x direction within the trilayer beam are

6x(y)=



σ02−
ν2σ02

R

(h
2
+ t − y

)
+

E2 y
R

(h/2≤ y ≤ t + h/2),

σ01+
ν1σ01

R
y+

E1 y
R

(−h/2≤ y ≤ h/2),

σ02+
ν2σ02

R

(h
2
+ t + y

)
+

E2 y
R

(−t − h/2≤ y ≤−h/2).

(24)

The bending stiffness of the prestressed beam is therefore

D =
E2
(
(h+ 2t)3− h3

)
12

+
E1h3

12
+
ν1σ01h3

12
−
ν2σ02t2(3h+ 2t)

6
. (25)
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When the initial residual stresses σ02 and σ01 are absent, the bending stiffness of the symmetric trilayer
beam is denoted as

D0 =
E2
(
(h+ 2t)3− h3

)
12

+
E1h3

12
. (26)

The effect of the initial residual stresses on the bending stiffness is

D− D0 =
ν1σ01h3

12
−
ν2σ02t2(3h+ 2t)

6
. (27)

Obviously, the relative effect of the initial residual stresses on the bending stiffness of a symmetric trilayer
beam is at the same level as on that of a symmetric trilayer plate discussed above.

Following the line of the analysis in this paper or in [Zhu 2007], it is possible to obtain the exact
closed-form analytical solution for large curvature elastic pure bending of the same structure. However,
as the exact solution is a very lengthy function, it is not convenient to use in practice. Although it is easy
to obtain a numerical solution for large curvature elastic bending, it is difficult to see the correlations
between the different parameters such as the structure dimensions, the material properties and the initial
residual stresses (or strains). That is why we have simplified the analysis above to obtain a simple
closed-form solution for small curvature.

The simplified closed-form solution is valid not only for macro civil structures, but also for micro-
and nanostructures. The schematic symmetric trilayer structure shown in Figure 1 is one of the most
typical structures of microactuators. For example, a typical conducting polymeric actuator consists of
a polymer membrane (usually, Nafion, Flemion or Aciplex) covered on both faces by a noble metal,
generally platinum or gold [Nemat-Nasser 2002; Alici et al. 2005]. When the actuator is stimulated by
the application of a small (1–3 V) alternating potential, it undergoes flexural vibrations [Nemat-Nasser
2002]. The precision, resolution and reliability of such a MEMS system mainly depend on its mechanical
structure. The outcome of this paper provides an enhanced degree of understanding and predictability in
quantifying the actuator’s performance and hence paves the way towards the optimal design and precise
experimental measurement of such structures.

3. Pure bending of a nanoplate/nanobeam

For nanostructures, as the surface to volume ratio is large, the surface elasticity, in addition to any residual
surface stresses, plays a very important role in the deformation process [Cuenot et al. 2004; Duan et al.
2005a; 2005b; 2006; Chen et al. 2006; Wang et al. 2006; Zhu and Karihaloo 2008]. In continuum
models, nanoplates are usually treated as “sandwich structures” consisting of the bulk material and very
thin facets [He et al. 2004; Lim and He 2004; Miller and Shenoy 2000; Lu et al. 2006]. The linear
constitutive relation of the surface can be written as [Miller and Shenoy 2000; Cammarata and Sieradzki
1994]

τi j = τ
0
i j + Si jklεkl, (28)

where τi j is the surface stress after deformation , τ 0
i j is the initial stress before deformation, Si jkl is the

surface modulus tensor and εkl is the surface strain. The surface stress and surface elastic constants
have reduced dimensionality. It has been found that the effect of surface elastic modulus on the stiffness
of nanostructures is size-dependent. The effect of surface elasticity on the mechanical properties of
materials and structures has been extensively studied [Miller and Shenoy 2000; Lu et al. 2006; Gurtin
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and Murdoch 1975], and the relative contribution of the surface elasticity to the bending stiffness of
a nanoplate has been found to be 6S/(Eh), where S is the surface elastic modulus, E is the Young’s
modulus of the bulk material and h is the thickness of the nanoplate [Miller and Shenoy 2000]. This
contribution does not include the effect of any initial surface stress.

For a nanoplate, the surfaces are notionally assumed so only in a mathematical sense, whose thickness
t is much smaller than the thickness h of the core of the plate. In this case, we still use Figure 1 as the
structural model and the stresses are assumed not to change through thickness of the top and the bottom
surfaces. Similarly to the macroplate, we assume that when the nanoplate is bent to a very small curvature
1/R (R is much larger the plate thickness h) by a pure bending moment, both the “surface” and the bulk
material are linear elastic; and the thickness of the nanoplate remains unchanged. Obviously the original
cross-sectional planes remain plane as there is no net shear force in the cross-sectional planes. It is easy
to verify that the neutral surface is still in the middle of the bulk plate. Therefore, the stresses in the x
direction in the top and bottom surfaces are respectively

τ x
t = τ0+

S
1− ν2

2

h
2R

(N/m) and τ x
b = τ0−

S
1− ν2

2

h
2R

(N/m), (29)

where τ0 is the initial surface stress, S is the surface elastic modulus and ν2 is the Poisson ratio of the
surfaces.

The stresses in the y direction on the top and bottom interfaces of bent bulk plate are respectively

σ
y
1

∣∣
y=h/2 =−

τ x
t

R
≈−

τ0

R
and σ

y
1

∣∣
y=−h/2 =

τ x
b

R
≈
τ0

R
. (30)

In the similar manner, it is easy to verify that (10) is still the governing differential equation for the stress
change in the x direction within the bulk plate. The solution to the stress change in the x direction within
the bulk plate is the same as (11), but the constant of integration C is determined by making use of the
stress continuity conditions (30) in the radial direction across the top and bottom interfaces,

C = σ01+
E1

ν1(1+ ν1)
(−h/2< y < h/2). (31)

As before, the exponential function has been replaced by a polynomial function with the terms of order
higher than 1/R ignored, and the equilibrium condition σ01 =−

2τ0
h has been used in deriving the solution.

Therefore the total stress in the x direction within the bulk plate after the application of the external pure
bending moment M is given by superposition

6x(y)=−
2τ0

h
−

2ν1τ0

(1− ν1)h
y
R
+

E1 y
(1− ν2

1)R
(−h/2< y < h/2). (32)

On the top and the bottom surfaces, the surface stresses are given in (29).
The applied pure bending moment can be calculated as

M =
Sh2

2(1− ν2
2)R
+

∫ h/2

−h/2
6x(y) y dy
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and the bending stiffness of a nanoplate is therefore

D =
Sh2

2(1− ν2
2)
+

E1h3

12(1− ν2
1)
−

ν1τ0h2

6(1− ν1)
. (33)

Since D0 =
1
12 E1h3/(1− ν2

1) is conventionally taken as the bending stiffness of a nanoplate when the
surface effect is absent, the relative contribution of the initial residual surface stress τ0 and the surface
elasticity to the elastic bending capacity is therefore

D− D0

D0
=

6S(1− ν2
1)

(1− ν2
2)E1h

−
2τ0ν1(1+ ν1)

E1h
=

6(1− ν2
1)

(1− ν2
2)
·
`n

h
+
ν1(1+ ν1)

1− ν1
ε01, (34)

where

ε01 =
(1− ν1)σ01

E1
=−

2(1− ν1)τ0

E1h
is the initial elastic residual strain within the core of the nanoplate and `n = S/E1 is an intrinsic length
scale. Since the plate is in an elastic state, according to the Mises yield criterion, (23a) gives the limit
for the possible maximum elastic residual strain ε01 for the plate bulk material. This is because first, the
surface stress of a nanoelement depends on the applied electric potential [Haiss et al. 1998]; second, the
deformation (hence the bending stiffness) can be controlled by adjusting the applied electric potential
[Weissmüller et al. 2003; Kramer et al. 2004]; third, the maximum residual elastic strain (or the maximum
residual elastic stress) is limited by the yield strength [Diao et al. 2006].

Equation (34) gives a linear scaling law for the normalized bending stiffness (D/D0) of a nanoplate.
Similar scaling has been previously observed in many physical properties at the nanoscale [Wang et al.
2006]. It shows that the thinner a nanoplate is, the larger its normalized bending stiffness will be. The
first term of (34) is the relative effect of surface elasticity on the bending stiffness of a nanoplate. If
the Poisson ratio of the surface is the same as that of the bulk material (that is, ν2 = ν1), this term is
identical to Miller and Shenoy’s analytical result for a nanoplate [Miller and Shenoy 2000]. The second
term quantifies the relative effect of the initial surface stress on the bending stiffness of a nanoplate.

Equation (34) can be rewritten as

D− D0

D0
=

6S(1− ν2
1)

(1− ν2
2)E1h

−
τ0

E1h
F(ν1),

where
F(ν1)= 2ν1(1+ ν1). (35)

For normal metallic nanoplates, the initial surface stress τ0 is of the same order of the surface modulus
S [Cammarata and Sieradzki 1994]. Atomistic simulations show that the surface modulus and the initial
surface stress of a nanofilm can be either positive or negative [Miller and Shenoy 2000; Gurtin et al.
1976]. Equation (34) shows that an initial tensile surface stress tends to reduce the bending stiffness of
a nanoplate.

Based on continuum elasticity, supplemented by surface elasticity [Miller and Shenoy 2000; Gurtin
and Murdoch 1975] we have performed a number of numerical simulations on the pure bending of
a nanoplate to validate the analytical predictions obtained in this paper. Firstly, we have numerically
confirmed that when the initial surface stress is absent the analytical result of (34) (or Miller and Shenoy’s
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Figure 2. Comparison of the simplified analytical prediction with numerical simula-
tions: F versus nondimensional bending curvature 1/R (left), and versus the Poisson’s
ratio ν1 (right).

analytical result [Miller and Shenoy 2000]) provides exact predictions. Secondly, when the surface
elasticity is ignored (that is, S = 0) and the Poisson ratio of the core material is fixed (ν1 > 0), the relative
effect of the initial surface stress on the bending stiffness of a nanoplate is proportional to τ0/(E1h), as
predicted by (34). Thirdly, when the value of τ0/(E1h) is fixed, the relative effect of the initial surface
stress τ0 on the bending stiffness of a nanoplate is a function of the Poisson ratio of the core material
ν1, as shown is in Figure 2. The left half of the figure shows that F(ν1) is almost a constant over
the normalized bending curvatures ranging from 0.0005 to 0.05 for a fixed value of ν1 (the normalized
bending curvature is h/R). We see on the right that the numerical result F(ν1) is nearly identical to that
of analytical prediction in (35). Although the analytical results obtained in this paper are derived from
the small deformation theory, the numerical tests (Figure 2) provide us with sufficient confidence that
the analytical results can be used in optimal design or experimental measurements for deformations up
to a normalized bending curvature of 0.1 (that is, h/R = 0.1). Beyond this value of curvature, deviations
occur as a result of the plate thickness reduction [Zhu 2007]. Note that the analytical results obtained in
this section can be mathematically deduced from the analysis of the previous section (see Equation (20))
when the thickness t of the top and the bottom layers tends to zero. However, we have not been tempted
by this limiting process as it would require us to relate the bulk elastic constant E to the surface modulus
S, whereas there is no reason why such a relationship should exist.

For a nanobeam with a rectangular cross-section of thickness h and width b, as shown in Figure 3, left,
the initial axial residual stress is σ x

0 =−2τ0/h− 2τ0/b, where τ0 is the initial surface stress. When this
nanobeam is bent by a pure moment, a plain stress deformation mode is created. Following the above
analysis procedure, the total stress within the bulk material of the nanobeam in the axial direction can
be calculated as

6x(y)=
E1

R
y−

ν1τ0

R
−
ν1σ

x
0

2R
(h− 2y)+ σ x

0 (36)
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Figure 3. Left: a rectangular cross-section with the neutral axis z parallel to the sides.
Right: a square cross-section with the neutral axis z coincided to the diagonal.

and the total surface stress in the x direction can be obtained as

τ x(y, z)=


τ0+ Sh/(2R) (y = h/2 and 0< z < b),

τ0+
Sy
R
−
ν1τ0h

2R
−
ν1τ0

R
y (−h/2≤ y ≤ h/2 and z = 0 or b),

τ0− Sh/(2R) (y =−h/2 and 0< z < b),

(37)

where the Poisson ratio of the surface is assumed to be the same as that of the bulk material.
The elastic bending capacity is

M =
Sbh2

2R
+

∫ h/2

−h/2
2
(

S
R

y−
ν1τ0

R
y
)

y dy+
∫ h/2

−h/2
6x(y) by dy

=
Sbh2

2R
+

Sh3

6R
−
ν1τ0h3

6R
+

E1bh3

12R
+
ν1σ

x
0

12R
bh3.

(38)

Therefore the bending stiffness of the nanobeam is

D = M/(1/R)=
Sbh2

2R
+

Sh3

6R
−
ν1τ0h3

6R
+

E1bh3

12
+
ν1σ

x
0

12
bh3. (39)

As the bending stiffness of the bulk beam is D0 = E1bh3/12, the relative effect of the initial surface
stress and the surface elasticity is

D− D0

D0
=

6S
E1h
+

2S
E1b
+
ν1σ

x
0

E1
−

2ν1τ0

E1b

=
6ln

h
+

2ln

b
−

4ν1τ0

E1b
−

2ν1τ0

E1h
=

6ln

h
+

2ln

b
+

(2h+ b)ν1

(b+ h)(1− ν1)
εx

0 ,

(40)

where, as before the internal length parameter `n = S/E1, and

εx
0 =

1
E1
(σ x

0 − ν1σ
y
0 − ν1σ

z
0 )=−

2τ0

E1bh
(b+ h)(1− ν1) (41)
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is the initial residual elastic strain in the bulk nanobeam in the x direction. According to the Mises yield
criterion,

|εx
0 | ≤

(b+ h)(1− ν1)
√

b2+ h2− bh
εy, (42)

where εy is the uniaxial yield strain of the beam bulk material.
For a nanobeam with a square cross-section (that is, b = h), Equation (40) reduces to

D− D0

D0
=

8ln

h
−

6ν1τ0

E1h
=

8ln

h
+

3ν1

2(1− ν1)
εx

0 . (43)

The first term in (43) is identical to Miller and Shenoy’s analytical result (namely (D − D0)/D0 =

8S/(Eh)= 8`n/h) for a nanobeam with a rectangular cross-section in the absence of the initial stress
[Miller and Shenoy 2000]. Metallic nanomaterials can be used to make nanoactuators and the initial sur-
face stress τ0 can be controlled by the application of an electric potential [Haiss et al. 1998; Weissmüller
et al. 2003; Kramer et al. 2004]. Equations (34) and (40) show that the effect of surface elasticity S on
the bending stiffness of a nanoplate or nanobeam vanishes when its thickness h reaches about 100 nm,
while the effect of the initial residual stress is proportional to ε01 which could be retained at a level up to
a few percent by the application of an electric potential even for microplates and beams. Equations (34)
and (40) provide a reliable estimate of the combined effects of surface elasticity S and initial surface
stress τ0 on the bending stiffness (and hence the dynamic characteristics) of nanoplates and nanobeams.
It has important applications both in the optimal design of nanostructures and in the measurement of
their characteristics.

For completeness, we will also give, without details, the effect of initial surface stress and surface
elasticity on the stiffness, if a nanobeam with square section of side length h is bent about a diagonal
plane as shown in Figure 3, right,

D− D0

D0
=

4
√

2ln

h
+
ν1σ

x
0

E1
=

4
√

2ln

h
+

ν1

(1− ν1)
εx

0 . (44)

In this case, the effect of the surface elasticity on the bending stiffness, given by the first term of (44), is
smaller than that given by [Miller and Shenoy 2000].

For either a nanoplate/nanobeam or a macro symmetric trilayer plate/beam, we assume that its bending
stiffness and natural frequency are respectively D0 and ω0 when the initial residual stress and the surface
elasticity (for nanoplate/nanobeam) are absent; and D and ω when the initial residual stress and the
surface elasticity (for nanoplate/nanobeam) are present. The combined effect of the initial residual stress
and the surface elasticity for nanoplate/nanobeam on its natural frequency therefore scales as

ω/ω0 = (D/D0)
1/2. (45)

Lagowski et al. [1975] found experimentally that the normal mode of vibration of thin crystals depends
strongly on the surface preparation. They related this to the initial surface stress effect, which was
treated as an external force. However, Gurtin et al. [1976] argued that the combination of the initial
surface stress and the residual stress in the bulk material would cancel their individual effects. They
attributed the dependence of the normal mode of vibration of thin crystals on surface preparation to
surface elasticity. We have shown conclusively that the dynamic response depends both on the initial
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residual stress in the surfaces and the bulk and on surface elasticity at the nanoscale. Wang and Feng
[2007] have also considered the combined effects of surface elasticity and residual surface tension on the
natural frequency of microbeams. However, as they did not take into account the effect of the residual
stress in the bulk material, their result is suspect.

4. Conclusion

A simple closed-form analytical solution identifying the effect of initial residual stresses (or strains)
on the bending stiffness of a symmetric trilayer structure or a nanoplate/nanobeam has been obtained.
At the macro- and microscales, the relative effect is at the level of the initial elastic residual strain. If
the structure is made of a hyperelastic material (such as a conducting polymer) and the initial elastic
residual stress (or strain) is controllable, the relative effect of the initial stress (or strain) could reach a
few percent. At the nanoscale, if the thickness of the nanoplate/nanobeam is around 10 nm or smaller,
then the surface elasticity rather than the initial surface stress generally has a stronger relative effect on
the bending stiffness. The surface elasticity effect however reduces with an increase in the plate/beam
thickness, but the initial surface stress effect can be retained at a constant level of up to the limit of elastic
strain if it can be controlled, for example by the application of an electrical potential.
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