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The mechanism of rock fragmentation underneath disc cutters is not fully understood although a number
of experimental and numerical investigations have been carried out in this field. Linear elastic fracture
mechanics is widely applied for the analysis of crack problems in rock mechanics. In this study, the
higher order displacement discontinuity method is modified for the analysis of crack problems using the
cubic variations of displacement discontinuities and three special crack tip elements. It is shown how
a new formulation of the indirect boundary element method known as the displacement discontinuity
method (DDM) can be used to determine the stress intensity factors of the cracks produced in rocks
underneath disc cutters of tunnel boring machines (TBMs). Crack initiation angles and propagation paths
in the rock can also be predicted using this numerical procedure and a mixed mode fracture criterion
(for example, the maximum tensile stress criterion). In this numerical approach, three special crack tip
elements are used to increase the accuracy of the displacement discontinuities near the crack tips. This
method has been used to find approximately the effect of the specific disc parameters (except speed) on
the thrust force, the rolling force, and the specific energy. Crack propagation in rocks under disc cutters
is numerically modeled and an optimum ratio of disc spacing to penetration depth of about 10 is obtained,
in good agreement with the theoretical and experimental results in the literature.

1. Introduction

Tunnel boring machines (TBMs) are usually equipped with disc cutters. The most dominant fracture
process involved in cutting by TBMs is due to the subsurface crack propagation and interaction, or
subsurface chipping, between adjacent cutters. The chipping process is due to forces from the multi-
ple disc cutters mounted on the cutting head of the machines on the rock face. Several experimental,
empirical, analytical and semianalytical models have been used for TBM performance prediction, such
as those developed by the Earth Mechanics Institute of the Colorado School of Mines, the University
of Trondheim and the Norwegian Institute of Technology, and the Department of Mining Engineering
at the Technical University of Istanbul [Lislerud 1988; Nilsen and Ozdemir 1993; Rostami et al. 1994;
Johanessen 1995; Bilgin et al. 2000]. Other experimental and theoretical research and work has also been
reported for the investigation of the mechanism of rock fragmentation underneath the disc cutters, but its
true mechanism is not fully understood yet [Roxborough and Phillips 1975; Howarth and Roxborough
1982; Snowdon et al. 1982; Tan et al. 1996].

Keywords: crack analysis, cubic elements, semi-infinite problems, displacement discontinuity method, crack tip elements, disc
cutters.
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Several attempts have been made to use fracture mechanics principles via boundary element methods
(especially the displacement discontinuity method), for the simulation of rock fracture mechanics prob-
lems [Guo et al. 1992; Whittaker et al. 1992; Shen and Stephansson 1994; Alehossein et al. 2000; Bobet
2001]. In this study, fracture mechanics principles are implemented in the higher order (third order)
displacement discontinuity method modified for crack problems. The cubic variations of displacement
discontinuity and three special crack tip elements for each crack tip are used for the discretization of the
boundary of the problem. The rock breakage mechanism under disc cutters of tunnel boring machines
(TBMs) is modeled and studied by the proposed method. The displacement discontinuity solution based
on three special crack tip elements is thoroughly explained and the required formulations are derived and
given in the text.

Fundamentally, there are three mixed mode fracture criteria: the maximum tangential stress fracture
criterion (or σ -criterion), the maximum strain energy release rate fracture criterion (or G-criterion), and
the minimum strain energy density fracture criterion (or S-criterion) [Erdogan and Sih 1963; Ingraffea
1983; Huang and Wang 1985; Ouchterlony 1988; Broek 1989]. The recent fracture codes, such as
FRACOD, which is based on the two-dimensional displacement discontinuity method, uses the modified
version of Griffith’s G-criterion (the F-criterion) to describe the fracture propagation processes [Shen
and Stephansson 1994]. All of the mixed mode fracture criteria can be implemented in the proposed
higher order displacement discontinuity method. However, the fracture propagation process predicted
using the σ -criterion lies between those processes predicted using the other two classic criteria [Ingraffea
1983; Whittaker et al. 1992]: the G-criterion is more conservative and the S-criterion is less. (Note that
the K I C predicted by the S-criterion depends on the material parameter of the Poisson’s ratio ν.)

In this paper, crack propagation analysis is accomplished by using a suitable mixed mode fracture
criterion, the maximum tangential stress criterion (or σ -criterion) of [Erdogan and Sih 1963]. This
simple mixed mode criterion, used by several researchers [Ingraffea 1983; Guo et al. 1992; Whittaker
et al. 1992; Bobet 2001], compares the computed Mode I and Mode II stress intensity factors K I and K II

with K I C and K II C , Mode I and Mode II fracture toughness values under plane strain condition [Erdogan
and Sih 1963; Ingraffea 1983; Huang and Wang 1985; Ouchterlony 1988; Broek 1989; Whittaker et al.
1992].

A good deal of research [Stephansson et al. 2001; Stephansson 2002; Backers et al. 2002; 2003; Rao
et al. 2003; Backers 2004; Backers et al. 2004; Shen et al. 2004] has shown that the Mode II fracture
toughness of rock material is usually higher than the Mode I fracture toughness, especially when the
confining pressure increases. It also showed that the rocks are stronger under confining pressure, and
that usually crack propagation occurs in Mode II loading under this condition [Backers 2004]. Backers
et al. 2002 described a new experimental method for determination of Mode II (shear) fracture toughness
of rock, K II C , and compared the outcome to results from Mode I (tensile) fracture toughness, K I C , using
the International Society of Rock Mechanics chevron bend test method.

Fracture toughness describes the resistance of rock to fracturing. This parameter is therefore important
in estimating the failure of rock and rock structures using rock fracture mechanics principles. In this study,
wedge-shaped cracks under mixed mode loading conditions are considered. These cracks are produced
on a free surface of a semi-infinite rock mass by forcing the disc cutters onto the rock. As the confining
pressure near the rock surface is negligible, the cracks will propagate mostly by mixed mode loading.
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The displacement discontinuity solution used in the analysis presented here is of third order, which
gives very accurate results of the displacement discontinuity variations along the general boundary ele-
ments with only two degrees of freedom. Because of the singularities of the displacement discontinuities
at the crack tips, special crack tip elements have been proposed and used in the literature, but in most cases
only one or two crack tip elements have been used. To obtain a more accurate result of the near crack tip
displacement discontinuities, three or more crack tip elements can be used. This increases computation
time, but not to a significant extent for modern computers. Therefore, the displacement discontinuity
solution based on three general special crack tip elements is thoroughly explained and given here.

2. The cubic variation of displacement discontinuity element

A displacement discontinuity element of length 2a along the x-axis (Figure 1, left) is characterized by a
general displacement discontinuity distribution D(ε). By taking Dx and Dy components of the general
displacement discontinuity D(ε) to be constant in the interval (−a,+a) as shown in Figure 1, right, the
constant element displacement discontinuities Dx and Dy are defined as [Crouch 1976]

Dx = ux(x, 0−)− ux(x, 0+),

Dy = u y(x, 0−)− u y(x, 0+),
(1)

where ux(x, 0−), u y(x, 0−), ux(x, 0+), and u y(x, 0+) are the x and y components of displacements in
the negative side of y(y = 0−) and positive side of y(y = 0+), respectively.

The general displacement discontinuity method and its formulation for the constant and the higher
elements (using equal subelements) are explained in the literature [Crouch 1976; Crawford and Curran
1982; Crouch and Starfield 1983; Shou and Crouch 1995; Fatehi Marji et al. 2006]. In the present paper,
the general linear and cubic variations (subelements may or may not be equal) of the displacement
discontinuity method are discussed, and their numerical results are compared with each other.

The linear element displacement discontinuity is based on analytical integration of linear collocation
shape functions over collinear straight-line displacement discontinuity elements. Figure 2, left, shows
the linear displacement discontinuity distribution, which can be written in a general form as

Di (ε)= N1L(ε)D1
i + N2L(ε)D2

i , i = x, y, (2)

where D1
i and D2

i are the linear nodal displacement discontinuities.
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Figure 1. Left: Displacement discontinuity element and the distribution of u(ε). Right:
Constant element displacement discontinuity and positive sign convention.
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Figure 2. Linear (left) and cubic (right) collocations for the higher order displacement
discontinuity variations.

The linear shape functions N1L(ε) and N2L(ε) can be defined as

N1L(ε)=−
ε− a2

a1+ a2
, N2L(ε)=

ε+ a1

a1+ a2
, (3)

which are their linear collocation shape functions. Note that a linear element has two nodes, the centers
of its two subelements.

Similarly, the cubic element displacement discontinuity is based on analytical integration of cubic
collocation shape functions over collinear straight-line displacement discontinuity elements. Figure 2,
right, shows the cubic displacement discontinuity distribution, which can be written as

Di (ε)=

4∑
j=1

N j (ε)D
j
i , i = x, y, (4)

where D1
i , D2

i , D3
i , and D4

i are the cubic nodal displacement discontinuities, and the cubic collocation
shape functions N j (ε) can be defined as

N j (ε)=

4∑
j=1

(
A j + B jε+C jε

2
+ D jε

3), (5)

where the constants A j , B j , C j and D j are successively defined by the following equalities:

A1 = a2 B1− a2
2C1+ a3

2 D1, A2 = 1+ a2 B2− a2
2C2+ a3

2 D2,

A3 = a2 B3− a2
2C3+ a3

2 D3, A4 = a2 B4− a2
2C4+ a3

2 D4,

B1 = (a2−a3)C1−(a2
2−a2a3+a2

3)D1, B2 =−
1

a2+a3
+(a2−a3)C2−(a2

2−a2a3+a2
3)D2,

B3 =
1

a2+a3
+(a2−a3)C3−(a2

2−a2a3+a2
3)D3, B4 = (a2−a3)C4−(a2

2−a2a3+a2
3)D4,

C1 = C20(1+C2D D1), C2 = C20(C22+C2D D2), C3 = C20(C31+C2D D3), C4 = C2D D4,

D1 =
D1N

DD
, D2 =

D2N

DD
, D3 =

D3N

DD
, D4 =

D10

DD
, DD = 1− D10 D1CC10C1D,
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C10 =
1

(2a2+a1)(a1+a2+a3)−a2a3
, C11 =

a2
a2+a3

, C12 =−
2a2+a1
a2+a3

, C13 =
a1+a2
a2+a3

,

C20 =
1

(2a2+a1)2−a2
2−(a1+a2)(a2−a3)

, C22 =−
a1+2a2+a3

a2+a3
, C23 =

a1+a2
a2+a3

,

C1D =−(2a2+ a1)
(
(a2

2 − a2a3+ a2
3)− (2a2+ a1)

2),
C2D = (2a2+ a1)

3
− a3

2 − (a1+ a2)(a2
2 − a2a3+ a2

3),

D1N = D10(D11+D1CC10C11), D2N = D10(D12+D1CC10C12), D3N = D10(D13+D1CC10C13),

D10 =
1

(2a3+ a4)3+ a2a3(a2− a3)− (2a3+ a4)(a2
2 − a2a3+ a2

3)
, D11 =−

a3

a2+ a3
,

D12 =
2a3+ a4

a2+ a3
, D13 =−

a2+ 2a3+ a4

a2+ a3
, D1C = a2a3− (2a3+ a4)(a2+ a3+ a4).

A cubic element has four nodes, the centers of its four subelements (Figure 2). For the special case
a1 = a2 = a3 = a4, the general shape functions given by (5) reduce to [Fatehi Marji et al. 2007]

N1(ε)=−
3a3

1 − a2
1ε− 3a1ε

2
+ ε3

48a3
1

, N2(ε)=
9a3

1 − 9a2
1ε− a1ε

2
+ ε3

16a3
1

,

N3(ε)=
9a3

1 + 9a2
1ε− a1ε

2
− ε3

16a3
1

, N4(ε)=−
3a3

1 + a2
1ε− 3a1ε

2
− ε3

48a3
1

.

(6)

Crouch [1976] expressed the displacements for a line crack in an infinite body along the x-axis in terms
of single harmonic functions g(x, y) and f (x, y) as

ux = 2(1− ν) f,y − y f,xx − (1−2ν)g,x − yg.xy, u y = (1− 2ν) f,x − y f,xy+2(1− ν)g,y − yg.yy, (7)

while the corresponding stresses are

σxx = 2µ
(
2 f,xy + y f,xyy + g,yy + yg,yyy

)
,

σyy = 2µ
(
−y f,xyy + g,yy − yg,yyy

)
,

σxy = 2µ
(
2 f,yy + y f,yyy − yg,xyy

)
.

(8)

Here µ is the shear modulus, ν is Poisson’s ratio, and the subscript comma denotes partial differential
with respect to the following variable(s). These potential functions for the cubic element case can be
found from

f (x, y)=
−1

4π(1− ν)

4∑
j=1

D j
x F j (x, y), g(x, y)=

−1
4π(1− ν)

4∑
j=1

D j
y F j (x, y), (9)

where

F j (x, y)=
∫ a

−a
N j (ε) ln

√
(x − ε)2+ y2 dε. j = 1, 2, 3, 4, (10)
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Using the coefficients in (6), one can write the F j in terms of the integrals

Ik(x, y)=
∫ a

−a
εk ln

√
(x − ε)2+ y2 dε, (11)

whose explicit expressions are, in terms of the auxiliary quantities θ1 = arctan y
x−a

, θ2 = arctan y
x+a

,
r1 =

√
(x − a)2+ y2, and r2 =

√
(x + a)2+ y2, given by

I0(x, y)= y(θ1− θ2)− x ln r1
r2
+ a ln(r1r2)− 2a, (12a)

I1(x, y)= xy(θ1− θ2)+
y2
−x2
+a2

2
ln r1

r2
− ax, (12b)

I2(x, y)= y
3
(3x2
− y2)(θ1− θ2)+

3xy2
−x3

3
ln r1

r2
+

a3

3
ln(r1r2)−

6ax2
−6ay3

+2a3

9
, (12c)

I3(x, y)=−xy(x2
− y2)(θ1− θ2)+

3x4
−6x2 y2

+8a2x2
+a4
−y4

4
ln r1

r2

− 2ax(x2
+ a2) ln(r1r2)+

9ax3
−18axy2

+7a3x
6

. (12d)

As discussed, the boundary and crack of any specified problem are discretized by N elemental finite
line segments. Let D j

s and D j
n be the shear and normal components of the nodal displacement disconti-

nuities given in (4) for each boundary element.
The corresponding nodal stresses are[

σ i
s
σ i

n

]
=

[
Ai j

ss Ai j
sn

Ai j
ns Ai j

nn

][
D j

s

D j
n

]
, (13)

where σ i
n and σ i

s are the normal and stress components at the i-th node, and the matrix entries (Ai j
ss , etc.)

are the influence coefficients obtained by using (8)–(12). Similarly, the displacements are[
ui

s
ui

n

]
=

[
Bi j

ss Bi j
sn

Bi j
ns Bi j

nn

][
D j

s

D j
n

]
, (14)

where ui
n and ui

s are the normal and shear displacement component, at the i-th node, and the matrix entries
(Bi j

ss , etc.) are the influence coefficients obtained by using (7) and (9)–(12). By using the specified values
of the stresses or displacements to the boundaries and crack of the problem, it is possible to find the
required displacement discontinuities D j

s and D j
n at each elemental node.

3. Computation of mixed mode stress intensity factors

Consider a body of arbitrary shape with a crack subjected to mixed mode loading (that is, tensile and
shear loadings). The displacements and stresses near the crack tip of a crack of arbitrary size (in a
body of arbitrary shape) subjected to arbitrary tensile and shear loading are given in [Irwin 1957]. The
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Figure 3. Special three-element crack tip for boundary collocation technique.

displacements are

ux =
K I
4G

√
r

2π

[
(2κ − 1) cos θ

2
− cos 3θ

2

]
+

K II
4G

√
r

2π

[
(2κ + 3) sin θ

2
+ sin 3θ

2

]
,

u y =
K I
4G

√
r

2π

[
(2κ − 1) sin θ

2
− sin 3θ

2

]
−

K II
4G

√
r

2π

[
(2κ − 3) cos θ

2
+ cos 3θ

2

]
,

(15a)

and the stresses are

σx =
K I
√

2πr
cos θ

2

[
1− sin θ

2
sin 3θ

2

]
−

K II
√

2πr
sin θ

2

[
2+ cos θ

2
cos 3θ

2

]
+ · · · ,

σy =
K I
√

2πr
cos θ

2

[
1+ sin θ

2
sin 3θ

2

]
+

K II
√

2πr
sin θ

2
cos θ

2
cos 3θ

2
+ · · · ,

σxy =
K I
√

2πr
sin θ

2
cos θ

2
cos 3θ

2
+

K II
√

2πr
cos θ

2

[
1− sin θ

2
sin 3θ

2

]
+ · · · ,

(15b)

where κ = (3− 4ν) for plane strain and κ = (3− ν)/(1+ ν) for plane stress, K I and K II are the Mode I
and Mode II stress intensity factors, and r and θ are polar coordinates defined as in Figure 3.

The displacement discontinuity method allows crack surfaces to be discretized and computes the nor-
mal displacement discontinuity (crack opening displacement) and the shear displacement discontinuity
(crack sliding displacement) directly as part of the solution for each element. Based on LEFM (linear
elastic fracture mechanics) theory, the Mode I and Mode II stress intensity factors K I and K II can be
written from (1) and (15a) in terms of the normal and shear displacement discontinuities as

K I =
µ

4(1− ν)

√
2π
a

Dy(a), K II =
µ

4(1− ν)

√
2π
a

Dx(a). (16)

In previous work, usually one or two special crack tip elements have been used [Shou and Crouch
1995; Fatehi Marji et al. 2006]. In the present paper, three special crack tip elements are used, to achieve
better accuracy for the displacement discontinuities near the crack ends, and in particular to model the
1/
√

r behavior of (15b), characteristic of the stress field in the near field region of the crack tip.
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!

Figure 4. The three special crack tip element lengths l1 = 2a1 =
2
9 l, l2 = 2a2 =

3
9 l, and

l3 = 2a3 =
4
9 l.

Consider a crack tip of length l = 2a = 2(a1+a2+a3) in an infinite isotropic elastic body, as shown in
Figure 3. Omitting details, which can be found in [Fatehi Marji et al. 2006], the variation of displacement
discontinuities along this crack tip element can be written as

Di (ε)= NC1(ε)D1
i (a)+ NC2(ε)D2

i (a)+ NC3(ε)D3
i (a), (17)

where the functions NC j are given below.
We first consider the subelement lengths l1 = 2a1 =

2
9 l, l2 = 2a2 =

3
9 l, and l3 = 2a3 =

4
9 l, as shown

in Figure 4. The general shape functions NC1(ε), NC2(ε), and NC3(ε) of (17) in this case are

NC1(ε)=
(a22− a33)

(
a22a33ε

1/2
− (a22+ a33)ε

3/2
+ ε5/2

)
a111/2(a11− a22)(a11a22− a11a33− a22a33+ a332)

, (18a)

NC2(ε)=
(a33− a11)

(
a11a33ε

1/2
− (a11+ a33)ε

3/2
+ ε5/2

)
a221/2(a11− a22)(a11a22− a11a33− a22a33+ a332)

, (18b)

NC3(ε)=
a11a33ε

1/2
− (a11+ a33)ε

3/2
+ ε5/2

a331/2(a11a22− a11a33− a22a33+ a332)
, (18c)

where a11 = a1 =
1
9 l, a22 = 2a1+ a2 =

7
18 l, and a33 = 2(a1+ a2)+ a3 =

7
9 l.

If instead we take a1 = a2 = a3, the shape functions NC1(ε), NC2(ε), and NC3(ε) become (see
[Fatehi Marji et al. 2007])

NC1(ε)=

√
ε

a1

(
15
8
−
ε

a1
+
ε2

8a2
1

)
, (19a)

NC2(ε)=−

√
ε

3a1

(
5
4
−

3ε
2a1
+
ε2

4a2
1

)
, (19b)

NC3(ε)=

√
ε

5a1

(
3
8
−

ε

2a1
+
ε2

8a2
1

)
. (19c)

Substituting (18) or (19) into (17), and then substituting these equations into (7) and (8), and working
as in the derivation of the general potential functions F j in (10), we can obtain the general potential
function fC(x, y) for the crack tip element as

fC(x, y)=
−1

4π(1− ν)

3∑
j=1

D j
i

∫ a

−a
N j (ε) ln

√
(x − ε)2+ y2 dε, (20)
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which can conveniently be written in terms of the integrals

ICk(x, y)=
∫ a

−a
εk−1

2 ln
√
(x − ε)2+ y2 dε, k = 1, 2, 3 (21)

using the coefficients of powers of ε given in (18) or (19).
Two degrees of freedom are used for each node at the center of each subelement, as explained in [Shou

and Crouch 1995].

4. Crack initiation and propagation

Based on LEFM principles, a crack will start propagation in the direction of the crack initiation angle
θ = θ0 [Ingraffea 1983]. (See Figure 3 for notation.) Several mixed mode fracture criteria have been
proposed for the estimation of this angle [Ingraffea 1983; Broek 1989; Whittaker et al. 1992], the main
three being the maximum tangential stress criterion or σ -criterion, the maximum strain energy release rate
criterion or G-criterion, and the minimum strain energy density criterion or S-criterion. Modified forms
of these criteria (for example, the F-criterion, which derives from the G-criterion) have also been used in
the fracture mechanics literature [Ingraffea 1983; Broek 1989; Whittaker et al. 1992; Stephansson 2002].

All these criteria have demonstrated that a crack in a plate under a general in-plane load does not initiate
and propagate in its original plane, that is, θ0 6= 0. In brittle substances (like most rocks), although fracture
of Mode II plays an important role under certain loading conditions and Mode I fracture toughness (K I C)

is less than that of Mode II (K II C ), due to weakness (low strength) under tension the rock breaks due
to tensile stress. In most such cases, the influence of K I C prevails over that of K II C under pure tensile,
pure shear, tension-shear, and compression-shear loading conditions [Rao et al. 2003].

To predict the crack initiation angle θ0 and the path of crack propagation, the maximum tangential
stress criterion or σ -criterion, is used here. This is one of the classical mixed mode fracture criteria which
are widely used by several researchers [Ingraffea 1983; Guo et al. 1992]. Based on this criterion, the
crack will start its propagation when the critical maximum tangential tensile stress σθ0 (in the direction
of the crack propagation angle θ0) satisfies the following condition [Ingraffea 1983; Guo et al. 1992;
Whittaker et al. 1992]:

σθ0 =
1
√

2πr
cos

θ0

2

[
K I sin

θ0

2
cos

θ0

2
+ K II

(
1− 3 sin2 θ0

2

)]
= 0. (22)

From this equation, the crack propagation angle θ0 can be estimated as

θ0 = 2 tan−1
(

K I

4K II
±

1
4

√
K 2

I

K 2
II
+ 8

)
for K II 6= 0 and θ0 = 0 for K II = 0. (23)

Finally, the general form of the σ -criterion in term of the Mode I fracture toughness of the material,
(K I C), and the crack propagation angle θ0 can be expressed as

cos
θ0

2

[
K I cos2 θ0

2
−

3
2

K II sin
θ0

2

]
= K I C (or 0.866K II ). (24)

In the present paper, Equations (22), (23), and (24) are used for a given crack length b (or a central
crack length 2b). To predict the crack propagation path, the original crack of length b is extended by
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Figure 5. Variation of effective stress intensity with crack length [Ingraffea 1983].

an amount 1b so that a new crack length b+1b is obtained, and again (22), (23), and (24) are used
to predict the new conditions of crack propagation for this new crack. This procedure is repeated until
the crack stops its propagation or the material breaks away. This procedure can give a propagation path
for a given crack under a certain loading condition. Considering the effective (or normalized) stress
intensity factor K ∗I C = K I /K I C , Figure 5 shows the stress intensity variation with crack length for any
in-plane crack problem. The load level Pi+1 = (K I C/K I+1)Pi can be computed for each crack increment
length, 1b [Ingraffea 1983]. Therefore, a new algorithm is added to the main displacement discontinuity
program to evaluate the effective stress intensity factor K ∗I C = K I /K I C and a new crack propagation
angle θ0 in each iteration.

5. A pressurized center crack in an infinite plane

As an example, the pressurized crack problem shown in Figure 6 is solved numerically by the proposed
method. The numerical results are compared with those results obtained analytically by [Sneddon 1951].
As shown in Figure 6, a center crack of length 2b in an infinite plane is subjected to a uniform pressure
p. The analytical solution for the normal displacement discontinuity Dy along the crack boundary and
the normal stress σy near the crack tip (|x |> b) can be written as

Dy =−
2(1− ν)P

µ

√
b2− x2 if |x |> b and σy =

Px
√

x2− b2
− P if |x |< b. (25)
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Figure 6. A pressurized crack in an infinite plane.
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Dy(a)/b× 103

Number of Distance from Analytical Ordinary One special Three specialelements crack tip solution elements crack tip element crack tip elements

4 0.25 −1.1906 −1.5463 −1.3275 −1.2092
10 0.1 −0.7846 −0.9964 −0.8569 −0.8168
20 0.05 −0.5621 −0.7089 −0.6104 −0.5874
40 0.025 −0.4000 −0.5029 −0.4332 −0.4183

Table 1. Displacement discontinuity Dy(a)/b× 103 at the center x = a of an element
at the crack tip using ordinary elements, one special crack tip element and three special
crack tip elements.

In the following analysis, a pressurized crack problem with half crack length b = 1 m, normal pressure
P =−10 MPa, modulus of elasticity E = 2.2 GPa, and Poisson’s ratio ν = 0.1 is considered.

Table 1 compares the different values of the normalized displacement discontinuity distribution Dy/b
along the surface of the pressurized crack using the constant (ordinary) displacement discontinuity pro-
gram TWODD with three crack tip elements [Crouch and Starfield 1983]. As shown in this table, by
using only one special crack tip element, the percent error of displacement discontinuity Dy at a distance
x = 0.05b from the crack tip is reduced from 26.12% to 8.59%, and by using three special crack tip
elements it is reduced to 4.5%.

If the same problem is solved using 15 cubic elements (60 nodes) with the proposed method, the
percentage error of displacement discontinuity Dy at a distance x = 0.05b from the crack tip will be
5.23% (without the special crack tip elements), and the results obtained by using the constant element
displacement discontinuity method (the TWODD program) with the same number of nodes (60 constant
elements) gives an error of 24.17% [Crouch and Starfield 1983]. Table 2 compares the variation of the
normalized displacement discontinuity Dy/b along the surfaces of a pressurized crack using ordinary
(constant element) and higher order (cubic element) displacement discontinuity methods. The results
given in Tables 1 and 2 demonstrate that although all displacement discontinuity results are very close to
their corresponding analytical values, those using three special crack tip elements are somewhat superior.

6. Edge cracks in a half plane

Edge crack problems in a half plane can also be solved using the cubic element formulation, but a proper
mixed-mode fracture criterion such as that one explained in Section 3 should be implemented in the
program to investigate the crack propagation direction and its propagation path. Figure 7 shows the
oblique edge cracks with different inclination angles β on a traction-free half plane. For the problem
shown in Figure 7, the inclination angle is β = 45◦, the crack length is b= 1 m, and the ratio of the crack
tip element length, l, to crack length, b, is 0.1 (that is, l/b = 0.1). The normalized stress intensity factors
K I /(σ

√
πb) and K II /(σ

√
πb) for this particular problem can be estimated from the results given by

[Bowie 1973] as 0.729 and 0.371, respectively.
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x/b Dy/b× 103

Distance Constant
from the Analytical Elements Error (%) Cubic Error (%)
crack tip Results (TWODD) Elements

0.000 3.980 4.046 1.66 3.985 0.13
0.086 3.946 4.032 2.18 3.957 0.28
0.171 3.901 3.989 2.26 3.914 0.33
0.257 3.827 3.916 2.33 3.839 0.31
0.343 3.720 3.812 2.47 3.736 0.43
0.429 3.578 3.673 2.66 3.589 0.31
0.514 3.396 3.497 2.97 3.407 0.32
0.600 3.168 3.276 3.41 3.182 0.44
0.686 2.882 3.000 4.09 2.897 0.52
0.771 2.520 2.654 5.33 2.536 0.62
0.857 2.040 2.203 7.99 2.073 1.60
0.950 1.237 1.536 24.17 1.289 4.20

Table 2. Comparison of displacement discontinuity Dy/b× 103 along the surface of
a pressurized crack using ordinary (constant) elements and higher order elements for
displacement discontinuity methods without using a special crack tip element.
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Figure 7. Oblique edge cracks in a semi-infinite plane.

The numerical results for the same problem are obtained by using the displacement discontinuity
method for a traction-free half plane with different kind of elements, that is, ordinary elements (constant
elements), quadratic elements, and the new cubic elements presented in this study. Table 3 shows the
effect of the number of elements along the cracks using a constant l/b = 0.1, and taking sufficient
elements (48 nodes) along the boundary of the problem (it should be noted that three special crack tip
elements are used for obtaining these results).
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K I /(σ
√
π b) K II /(σ

√
π b)

Number Constant Error Cubic Error Constant Error Cubic Errorof nodes elements (%) elements (%) elements (%) elements (%)

12 0.775 6.310 0.742 1.783 0.398 7.278 0.379 2.156
24 0.768 5.350 0.736 0.960 0.390 5.121 0.376 1.348
36 0.763 4.664 0.735 0.547 0.388 4.582 0.375 1.078
48 0.760 4.252 0.734 0.410 0.387 4.312 0.374 0.809
60 0.759 4.115 0.734 0.410 0.386 4.043 0.373 0.539

Table 3. Analytical and numerical values of the Mode I and Mode II stress intensity
factors K I /(σ

√
π b) and K II /(σ

√
π b) for the 45 ◦ oblique edge crack using different

number of elements along the crack (l/b = 0.1).

K I /(σ
√
π b) K II /(σ

√
π b)

l/b Constant Error Cubic Error Constant Error Cubic Error
elements (%) elements (%) elements (%) elements (%)

0.05 0.764 4.801 0.732 0.137 0.390 5.121 0.370 −0.270
0.10 0.760 4.252 0.734 0.410 0.388 4.582 0.373 0.540
0.15 0.758 3.978 0.735 0.547 0.386 4.043 0.372 0.270
0.20 0.759 4.115 0.729 −0.274 0.387 4.312 0.374 0.809
0.25 0.760 4.252 0.727 −0.547 0.388 4.582 0.375 1.078

Table 4. Analytical and numerical values of the Mode I and Mode II stress intensity
factors K I /(σ

√
π b) and K II /(σ

√
π b) for the 45 ◦ oblique edge crack using different

l/b ratios.

Table 4 shows the effect of the crack tip element length, l, on the normalized stress intensity factors
K I /(σ

√
πb) and K II /(σ

√
πb). The results given in this table are obtained using a constant number of

nodes (48, 12 cubic elements) along the crack. The results presented in Tables 3 and 4 demonstrate the
accuracy and effectiveness of the proposed method.

7. Crack propagation mechanisms due to disc cutters in a semi-infinite rock mass

Disc cutters over the surface of a continuous rock mass are shown schematically in Figures 10 and 11. It
is assumed that the disc cutters have diameter D, disc edge angle ϕ, penetration depth Pd , and spacing S.
The thrust force Ft is required to maintain the disc at the desired depth of penetration, and the rolling force
Fr is also necessary to keep the disc rolling at this penetration depth. Specific energy ES (in MJ/m3 in
three dimensions or in MPa/m2 in two dimensions) is a measure of the amount of energy that is required
for breaking the rock under the disc cutter. Penetration depth Pd , disc edge angle ϕ, disc diameter D,
spacing S, and speed are the primary variables related to disc cutters. Roxborough and Phillips [1975]
showed that the specific energy ES and rolling force Fr are nearly independent of the disc diameter, but
the thrust force Ft increases with an increase of disc diameter.
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Figure 8. Side view of four equally spaced rows of disc cutters over the surface of a
continuous rock mass.

In this section we use the semi-infinite displacement discontinuity method for crack analysis using
cubic elements (SDDMCAC), with three special crack tip elements at each crack end, to find the ap-
proximate effects of the thrust force Ft , the rolling force Fr , and the specific energy ES , for a constant
disc diameter D (for example, D = 432 mm) on the penetration depth Pd and the disc spacing S. We
consider a typical TBM with a thrust of 250 kN per cutter, with disc cutters of 15 mm width and 432 mm
diameter [Roxborough and Phillips 1975]. The typical rock is Aspo diorite, with K I C = 3.83 MPa m1/2

and K II C = 5.09 MPa m1/2 [Backers 2004]. The other parameters of this rock, as reported in the same
source, are σt = 15 MPa, σC = 220 MPa, E = 68 GPa, and ν = 0.24.

The symmetric problem of four rows of disc cutters is shown in Figure 8. Taking into account the
symmetry of each wedge about a vertical plane, simple trigonometry shows that the normal and shear
forces along each side of the groove equal, respectively, (Ft/2) cos(φ/2) and (Ft/2) sin(φ/2), while the
length b of the side of the cut is b = Pd/ cos(φ/2). Assuming strain conditions, we therefore obtain for
the normal and shear components of stresses along the crack length b

σn = Ft
cos(ϕ/2)

2bl
, σs = Ft

sin(ϕ/2)
2bl

. (26)

The values of the normal and shear stresses along these cracks are determined by fixing the normal
stress at an assumed value and calculating the shear stress from the geometry of the wedge. By changing
the value of normal stress and its corresponding shear stress and checking whether the crack starts its
propagation or not, it is possible to predict the minimum value of the normal and shear stresses at which
the crack propagation begins. Then, the minimum values of the thrust force Ft can be evaluated from
(26) for different disc edge angles ϕ.

The rolling force Fr can be estimated from the thrust force Ft through the formula

Fr =
Ft

√
(D− Pd)/Pd

, (27)

(see [Roxborough and Phillips 1975]), where D is the diameter of the disc cutter, taken here as 432 mm.
The primary crack propagation due to disc cutters, used here to investigate the effect of adjacent disc

cutters on the penetration of cracks and the formation of major chips can be modeled as in Figure 9 [Guo
et al. 1992; Whittaker et al. 1992]. The effect of the penetration depth Pd on the minimum value of the
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Figure 9. Geometry of adjacent disc cutters showing the cutting spacing S and initial
assumed crack length b on a semi-infinite rock mass [Whittaker et al. 1992].

thrust force Ft and the corresponding rolling force Fr (which are needed to start the propagation of the
crack) are obtained numerically for ϕ = 80, 90, and 100 ◦, and disc spacing S = 30 mm.

The numerical results for thrust force Ft and rolling force Fr, for different penetration depths Pd ,
and for three different disc edge angles, ϕ = 80, 90, and 100 ◦ are given in Table 5. The numerical
results obtained here are normalized and verified by those given experimentally in [Bilgin et al. 2000]
for ϕ = 90 ◦ in Figure 10, which shows good agreement between numerical and experimental values.

The specific energy ES for each disc cutter can be estimated numerically from the formula [Howarth
and Roxborough 1982]

Es = Fr/Q, (28)

where Q is the extracted volume (area in two dimensions) of the rock measured in m3. In all of the
analysis here, a constant disc edge angle ϕ = 90 ◦ and penetration depth Pd = 6 mm are considered to
estimate the value of the extracted area Q which is theoretically very difficult to evaluate. The geometry
of the problem considered here is shown in Figure 11, in which each side of the cut (wedge) is considered
to be a separate crack. The four cracks CR1–CR4, from left to right in this figure, are solved numerically
and the crack propagation angle θ0 for each crack has been calculated in five different steps. In each
step the crack length in the direction of θ0 is extended between 1 mm and 4 mm (depending on the S/Pd

ratio).

ϕ = 80◦ ϕ = 90◦ ϕ = 100◦

Pd (mm) Ft (kN) Fr (kN) Ft (kN) Fr (kN) Ft (kN) Fr (kN)

2 74.045 5.005 79.804 6.412 82.540 5.589
4 112.406 10.911 117.123 11.489 130.173 12.853
6 142.878 17.623 152.453 18.231 172.172 20.873
8 171.916 24.025 183.230 25.785 197.281 29.569

10 193.114 30.436 207.987 31.897 224.549 34.754
12 213.986 35.719 231.012 39.125 245.167 41.895

Table 5. The minimum thrust force Ft and rolling force Fr corresponding to different
penetration depths Pd for disc spacing S = 30 mm and different disc edge angles ϕ.
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Figure 10. Comparison of the relation between Ft/Fr and Pd for a disc edge angle of
90 ◦: pink squares, results from Table 5; black triangles, results from [Bilgin et al. 2000].
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Figure 11. Symmetrical 90 ◦ disc cutters. Four cracks CR1–CR4 are shown from left to right.

Step CR1 CR2 CR3 CR4

0 −68.95 51.18 −69.14 51.27
1 −27.89 8.51 −33.37 7.87
2 −23.85 10.13 −9.36 15.17
3 12.48 33.63 −2.15 18.14
4 −18.26 17.65 −8.98 11.79
5 −4.44 22.99 −8.65 13.42

Table 6. Numerical values of crack propagation angle θ0 (in degrees) for S/Pd = 15 for
a 90 ◦ disc cutter. Pd = 6 mm and crack increment 1b = 4 mm (5 increments).
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A ratio of crack tip element length l to crack length b, that is, l/b = 0.1, is used for the analysis of
these cracks. We have taken 10 cubic elements along each original crack length and 2 cubic elements
along each crack increment, and a crack tip element (with three subelements or three special crack tip
elements) is added to the last crack increment. As the S/Pd ratio is one of the most important parameters
in studying the mechanism of rock breaking due to disc cutters, different values of this parameter are
considered here. As an example, the results obtained for S/Pd = 15 showing the crack propagation
angle θ0 are given in Table 6. Approximate values of the extracted area Q are obtained by finding the
area restricted by the crack propagation path. The numerical values of the extracted area Q (mm2) are
estimated from the area under the crack propagation paths, for example, from those shown in Figures 12
and 13. The cracks labeled CR1 and CR2 are related to the inner disc, which represent its breaking
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Figure 12. The crack propagation path for S/Pd = 15, for a 90 ◦ disc cutter, Pd = 6 mm,
and crack increment 1b = 4 mm.
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Figure 13. The crack propagation path for S/Pd = 10, for a 90 ◦ disc cutter, Pd = 6 mm,
and crack increment 1b = 4 mm.
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S/Pd σn (MPa) Ft (kN) Fr (kN) Q (mm2) Es (MJ/m3)

3.33 −56 1344 159.53 176 906.42
5.00 −51 1224 145.29 352 412.76
6.67 −44 1056 125.35 451 277.94
8.33 −35 840 99.71 676 147.50

10.00 −39 936 111.10 903 123.03
11.67 −40 960 113.95 802 142.08
13.33 −41 984 116.80 751 155.53
15.00 −43 1032 122.49 676 181.20

Table 7. Estimated values of thrust force Ft , rolling force Fr , extracted area Q, and
specific energy Es for 1b = 1, 2 and 4 mm, for different S/Pd ratios.

action. Here only the inner disc force and the area associated with this disc are used in estimating the
final extracted area (Figure 14). Assuming a unit thickness for the rock, the specific energy Es can be
evaluated for different values of the ratio S/Pd (Figure 15).

In this analysis, the crack length b is increased incrementally by an amount 1b, and, correspondingly,
the normal stress σn and shear stress σs are also increased to provide the sufficient energy for the crack
to propagate in the direction of θ0. As a result of increasing the stresses at the crack boundaries, the
crack starts its propagation, then a new crack length increment with 2 cubic elements and 3 crack tip
elements is added in the propagation direction θ0, and the procedure is repeated for each crack increment
1b. Some estimated values for the forces Ft and Fr in kN, extracted area Q in mm2, and specific energy
Es in MJ/m3 are tabulated in Tables 5 and 6 and also illustrated in Figures 14 and 15.

Table 7 shows that the thrust force is high for small disc spacing, and after reaching a minimum value
it again increases to a larger value for very large disc spacing. Previous experimental work showed a
steadily increasing thrust force with S/Pd ratio [Roxborough and Phillips 1975]. However, the model
presented here is based on the propagation of existing cracks. These cracks require higher forces to
propagate for smaller disc spacing due to the confinement effect of the adjacent cutters. As a result,
higher forces are required to propagate the cracks for smaller disc spacings.

Figure 14, left, shows that the the thrust force Ft (kN) decreases as the S/Pd reaches about 10, but
after this value it increases slowly. Figure 14, right, illustrates that the maximum extracted area that can
be achieved occurs at S/Pd = 10. As shown in Figure 15, left, the optimum S/Pd ratio is between 8
and 15, which is in good agreement with the experimental results reported in [Roxborough and Phillips
1975; Howarth and Roxborough 1982].

Figure 15, right, illustrates the effect of the angle ϕ on the specific energy Es . These results show that
Es increases with the increase in the angle ϕ (especially for the disc edge angles above 90 ◦).

8. Discussion

The tunnel boring machine (TBM) is a full-face excavator which cuts rock by means of disc cutters
mounted on a circular revolving cutting head. The TBM breaks rock with disc cutters mounted on its
rotating cutter-head in such a pattern that they roll against the rock of the tunnel face in a series of



NUMERICAL MODELING OF CRACK PROPAGATION IN ROCKS UNDER TBM DISC CUTTERS 623

!

"!!

#!!

$!!

%!!

&!!!

&"!!

&#!!

&$!!

! ' &! &' "!

()*+,-./0

1
2
,3
4
.+
50
,6
7
+8
.+
9:
;
<

!

&!!

"!!

=!!

#!!

'!!

$!!

>!!

%!!

?!!

&!!!

" > &" &>

()*+,-./0

@
A
.,
-
6
.7
B
+-
,7
-
+C
+9
D
D
"
<

Figure 14. Estimated values of the thrust force Ft (left) and extracted area Q (right) for
different S/Pd ratios.
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Figure 15. Specific energy Es as a function of S/Pd at a constant Fr (left), and as a
function of the disc edge angle ϕ (right).

concentric circular grooves. The cutting force is produced by powerful hydraulic thrust rams. Each disc
cutter is free to rotate within its mounting manifold. To maintain contact with the rock and to maintain
the optimum spacing between cutting grooves, the machine is held stable by a combination of its great
mass and by hydraulic jacks acting against the side of the tunnel.

It should be noted that there is no single universally accepted theory for the formation of rock chips
by indenter tools. Most of the researches believe that the main cause of rock breakage is the propagation
of tensile fractures, but the mechanism by which these fractures are first initiated is somewhat uncertain.
Actually, rock breakage takes place because a tensile fracture is initiated and propagated. This fracture is
induced as a result of combined loading (or mixed loadings), including the tensile extension of preexisting
flaws along the fracture plane and tensile stresses induced by the crushed zone beneath the wedge. Hood
and Roxborough [1992] describes a model for disc cutters developed by Lindqvist and Ranman [1980]
which assumes that most of the force is directed normally into the rock, similar to the action of a flat-
bottomed punch. Induced tensile stresses generate cracks that run nearly parallel to the rock surface, and
if the spacing between the cutters is sufficiently small, tensile cracks propagating from each groove will
join up to form a rock chip.
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In the analysis proposed here, to simulate the cutting mechanism of the TBM disc cutters, each cutting
groove is chosen as a single original crack and two successive grooves with varying spacing are simulated.
The grooves are assumed to be vertical, although inclined grooves can also be easily modeled. In the
displacement discontinuity method, each side of the crack can be discredited separately, and one of the
crack surfaces can be considered as a fictitious boundary (this is one of the main advantages of the indirect
boundary element methods). The higher order displacement discontinuity used here considers a cubic
variation of the displacement discontinuities along each element on the boundary of the problem and also
along the crack boundaries (except the crack tips) which results in very accurate general displacement
discontinuities . The higher order crack tip elements are also used here to obtain more accurate results of
the mixed mode stress intensity factors near the crack ends, where crack propagation begins. Although
rock breakage theory predicts that tensile fractures are first initiated and then propagated, fractures are
induced as a result of combined loading, where the action of the shear loading should also be taken into
account.

If one only considers the tensile fracture and first mode of loading, propagated cracks may not the-
oretically meet each other or the rock surfaces, a prediction which deviates from experimental results
and the reality of cheap formation processes. Therefore, in the analysis given in this study, one of the
well-known mixed mode fracture criteria (the σ -criterion) has been used. All three fundamental mixed
mode I-II fracture criteria can be used for the analysis. The σ -criterion is used based on the fracture
toughness envelopes given by Whittaker et al. [1992], as shown schematically in Figure 16.

Here, the problem of a crack propagation mechanism under disc cutters is modeled in such a manner
that the various effective parameters such as the thrust force, S/Pd ratio, the specific energy, etc. for
various cases can be obtained. The numerical results are compared with those cited in the literature, and
some good results are gained. For example, the results given in Table 6 show that the thrust force is high
for small disc spacing, and after reaching minimum value, it again increases to a larger value for very
large disc spacing. However, the model presented here is based on the propagation of existing cracks.
These cracks require higher forces to propagate for smaller spacing due to the confinement effect of the
adjacent cutters. As a result, for smaller disc spacing, higher forces are required to propagate the cracks.
We see from Figure 14 that the thrust force Ft (kN) decreases as S/Pd approaches 10, but subsequently
increases slowly.

Figure 14, right, indicates that the maximum achievable extracted area occurs at S/Pd = 10. As shown
in Figure 15, left, the optimum S/Pd ratio ranges from 8 to 15. Figure 15, right, illustrates the effect of
the angle ϕ on specific energy Es . These results show that Es increases with an increase in the angle ϕ
(especially for the disc edge angles above 90 ◦).

9. Conclusion

In this work, crack propagation mechanisms under disc cutters are numerically modeled and studied
using the higher order displacement discontinuity method. To increase the accuracy of displacement
discontinuities near crack tips, three special crack tip elements are used for the treatment of each crack
end. The maximum tangential stress fracture criterion is employed to investigate the crack propagation
and its direction under disc cutters, and some of the computed results are compared with previously
reported experimental results. This comparison shows that in most of the cases, the numerical results
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Figure 16. Fracture toughness envelopes based on various mixed mode fracture crite-
ria [Whittaker et al. 1992]. Plotted experimental points taken [Ingraffea 1983] (open
squares; Westerly granite), [Huang and Wang 1985] (black circles), and [Sun 1990]
(open circles).

are in good agreement with their corresponding experimental values. As a result, for small disc spacing
(S/Pd < 6), higher forces (more energy) are required to propagate cracks for inner discs, and for large
disc spacing (S/Pd > 15), the specific energy Es increases slowly because the extracted area Q tends
to be constant as the spacing is increased. However, the optimum S/Pd ratio is between 8 and 15, as
was expected from comparison to experimental results [Roxborough and Phillips 1975; Howarth and
Roxborough 1982; Lislerud 1988; Nilsen and Ozdemir 1993; Rostami et al. 1994; Johanessen 1995;
Bilgin et al. 2000]. It is also concluded that as the disc edge angle ϕ increases, the specific energy Es

increases.
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