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UNDER CYCLIC LOADING

JAN D. ACHENBACH

An isotropic, homogeneous, elastic layer is subjected to a time-harmonic tensile stress of constant ampli-
tude parallel to the free surfaces. The cyclic stresses are assumed to generate a surface-breaking crack of
length l(t) which propagates normally to the top surface of the layer. The unloading of the crack faces
generates acoustic emission, which is composed of Lamb waves. The elastodynamic reciprocity theorem
for time-harmonic waves is used to determine the amplitudes of the radiated system of time-harmonic
Lamb waves.

1. Introduction

One way of detecting a surface-breaking crack is by measuring the acoustic emission that is generated
by nucleation and growth of the crack. To understand the acoustic emission requires the assistance of a
suitable measurement model, for a proper interpretation of measured data. In this paper we provide such
a model for nucleation, growth, and opening and closing of a surface-breaking crack in a layer which is
subjected to cyclic loading.

The geometry is shown in Figure 1. The layer is homogeneous, isotropic, and linearly elastic. A
two-dimensional geometry of plane strain is considered. Prior to crack nucleation the layer is in a state
of stress defined by

τ11 =1τ sin(ωτ). (1)

A standard way of calculating the acoustic emission from a crack in a stress-field defined by Equation
(1) is to consider a crack whose faces are subjected to a compressive stress just equal and opposite to the
stress given by Equation (1):

x1 = 0±, −h ≤ z ≤−h+ l(t) : τ11 =−1τ sin(ωt), (2a)

τ1z = 0. (2b)

 
 

Figure 1. Surface-breaking crack in an elastic layer.
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If the two stress fields, Equations (1) and (2), are superimposed, the crack faces are rendered free of
tractions. It then follows that the crack-face loading defined by Equations (2a), (2b) can be considered
as the excitation that generates the acoustic emission due to the presence of traction-free crack faces. It
should be noted that the crack length l(t) is a function of time due to growth of the crack, but the effect
of this time dependence is assumed to be of a quasistatic nature.

A loading of the form defined by Equations (2a), (2b) generates time-harmonic wave modes in a
layer, known as Lamb waves. For a given frequency, ω, the dimensionless wave number kh, where h
is the thickness of the layer, can be obtained from the Rayleigh–Lamb frequency equation. For a given
frequency, this frequency equation has real-valued, imaginary and complex roots [Achenbach 1973],
which define specific modes of wave motion. In this paper, we only consider the real-valued roots, since
they define wave modes that are not attenuated, and that thus can be detected at some distance from their
point of excitation.

There are two kinds of wave modes in a layer: modes whose displacements are either symmetric
or antisymmetric with respect to the mid-plane of the layer. For the case at hand both symmetric and
antisymmetric modes are generated. These modes propagate away from the plane of the crack in both
the positive and negative x1 direction.

2. Time-harmonic waves in an elastic layer

In a two-dimensional geometry, relative to the x1z coordinate system of Figure 1, and for the case of plane
strain, the modes of symmetric motion, propagating away from the plane of the crack in a homogeneous,
isotropic, linearly elastic layer may be represented by (see [Achenbach 2003, p. 150])

un
1 =±i AS

n V n
S (z)e

±ikn x1, (3)

un
z = AS

n W n
S (z)e

±ikn x1 . (4)

In these expressions, exp(−iωt) has been omitted. The index n defines the n-th mode, and kn is the
wave number of that mode. The plus or minus sign applies to propagation in the positive or negative
x1-direction, respectively. The mode shapes for the symmetric modes are

V n
S (z)= s1 cos(pz)+ s2 cos(qz), (5)

W n
S (z)= s3 sin(pz)+ s4 sin(qz), (6)

with

s1 = 2 cos(qh), s2 =−
[
(k2

n − q2)/k2
n
]

cos(ph), (7)

s3 =−2(p/kn) cos(qh), s4 =−
[
(k2

n − q2)/qkn
]

cos(ph), (8)

where

p2
=
ω2

c2
L
− k2

n and q2
=
ω2

c2
T
− k2

n . (9)
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Equation (9) shows the dependence of p and q on n. For simplicity of notation, this dependence will not
be explicitly indicated until the next section, when we replace p and q by

p2
n =

ω2

c2
L
− k2

n and q2
n =

ω2

c2
T
− k2

n .

The relevant corresponding stresses are (see [Achenbach 1973, p. 150])

τ n
1z =±i AS

n T Sn
1z (z)e

±ikn x1, (10)

τ n
zz = AS

n T Sn
zz (z)e

±ikn x1, (11)

τ n
11 = AS

n T Sn
11 (z)e

±ikn x1 . (12)

In these expressions

T Sn
1z (z)= µ[s5 sin(pz)+ s6 sin(qz)], (13)

T Sn
zz (z)= µ[s7 cos(pz)+ s8 cos(qz)], (14)

T Sn
11 (z)= µ[s9 cos(pz)+ s10 cos(qz)], (15)

where

s5 = 4p cos(qh), s6 = [(k2
n − q2)2/qk2

n] cos(ph), (16)

s7 = [2(k2
n − q2)/kn] cos(qh), s8 =−[2(k2

n − q2)/kn] cos(ph), (17)

s9 = [2(2p2
− k2

n − q2)/kn] cos(qh), s10 = [2(k2
n − q2)/kn] cos(ph). (18)

The condition that the faces of the layer are free of surface tractions yields the well-known Rayleigh–
Lamb frequency equation for symmetric modes

tan(qh)
tan(ph)

=−
4pqk2

(q2− k2)2
, (19)

which relates kn and ω.
Similarly, for the antisymmetric modes we have

un
1 =±i AA

n V n
A(z)e

±ikn x1, (20)

un
z = AA

n W n
A(z)e

±ikn x1, (21)

τ n
1z =±i AA

n T An
1z (z)e

±ikn x1, (22)

τ n
zz = AA

n T An
zz (z)e

±ikn x1, (23)

τ n
11 = AA

n T An
11 (z)e

±ikn x1 . (24)

The displacement mode shapes are

V n
A(z)= a1 sin(pz)+ a2 sin(qz), (25)

W n
A(z)= a3 cos(pz)+ a4 cos(qz), (26)
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where

a1 = 2 sin(qh), a2 =−[(k2
n − q2)/k2

n] sin(ph), (27)

a3 = 2(p/kn) sin(qh), a4 = [(k2
n − q2)/qkn] sin(ph); (28)

also

T An
1z (z)= µ[a5 cos(pz)+ a6 cos(qz)], (29)

T An
zz (z)= µ[a7 sin(pz)+ a8 sin(qz)], (30)

T An
11 (z)= µ[a9 sin(pz)+ a10 sin(qz)]. (31)

In these expressions

a5 =−4p sin(qh), a6 =−
[
(k2

n − q2)2/qk2
n
]

sin(ph), (32)

a7 =
[
2(k2

n − q2)/kn
]

sin(qh), a8 =−
[
2(k2

n − q2)/kn
]

sin(ph), (33)

a9 =
[
2(2p2

− k2
n − q2)/kn

]
sin(qh), a10 =

[
2(k2

n − q2)/kn
]

sin(ph). (34)

For the antisymmetric modes the Rayleigh–Lamb frequency equation is

tan(qh)
tan(ph)

=−
(q2
− k2)2

4pqk2 . (35)

It was shown in [Achenbach 2003, p. 152] that the following orthogonality relation holds for the
symmetric modes

I S
mn = 0 for m 6= n, (36)

where

I S
mn =

∫ h

−h

[
T Sm

11 (z)V
n
S (z)− T Sn

1z (z)W
m
S (z)

]
dz. (37)

Similarly, for the antisymmetric modes we have

I A
mn = 0 for m 6= n, (38)

where

I A
mn =

∫ h

−h

[
T Am

11 (z)V n
A(z)− T An

1z (z)W
m
A (z)

]
dz. (39)

3. Acoustic emission from a surface-breaking crack

In this section, we will consider the steady part of the response generated by Equation (2). We will
consider a crack-face loading of the form

τ11 =1τe−iωt , (40)

τ1z = 0, (41)
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with the understanding that the imaginary part of the solution applies. The loading defined by Equa-
tions (40)–(41) will generate a system of symmetric and antisymmetric modes. By virtue of the general
forms discussed in the previous section this system of wave modes may be represented by

u A
1 (x1, z)=±i

{ ∞∑
m=0

AS
m V m

S (z)e
±ikS

m x1 +

∞∑
m=0

AA
m V m

A (z)e
±ik A

m x1

}
, (42)

u A
z (x1, z)=

{ ∞∑
m=0

AS
m W m

S (z)e
±ikS

m x1 +

∞∑
m=0

AA
m W m

A (z)e
±ik A

m x1

}
, (43)

where the plus and minus signs are for propagation in the positive and negative x1-directions, that is, for
x1 > 0 and x1 < 0, respectively. The relevant corresponding stresses are

τ A
11(x1, z)=

{ ∞∑
m=0

AS
m T Sm

11 (z)e
±ikS

m x1 +

∞∑
m=0

AA
m T Am

11 (z)e±ik A
m x1

}
, (44)

τ A
1z(x1, z)=±i

{ ∞∑
m=0

AS
m T Sm

1z (z)e
±ikS

m x1 +

∞∑
m=0

AA
m T Am

1z (z)e±ik A
m x1

}
. (45)

In these expressions the terms p and q are redefined as

p2
m =

ω2

c2
L
− k2

m and q2
m =

ω2

c2
T
− k2

m . (46)

4. Application of the reciprocity theorem

Following a method developed in [Achenbach 2003], the Lamb waves generated by acoustic emission
from a surface breaking crack will be obtained by an application of the elastodynamic reciprocity theorem
for time-harmonic wave motion. For a body of region V and surface S this reciprocity theorem (see
[Achenbach 2003, p. 92]) may be written as∫

V
( f A

j u B
j − f B

j u A
j )dV =

∫
S
(τ B

i j u A
j − τ

A
i j u B

j )ni d S, (47)

where ni are the components of the outward normal to S, and f j , u j , and τi j are the components of
body forces, displacements, and stresses. In Equation (47), the superscripts denote two elastodynamic
solutions for the same body, State A and State B, where in the present application State A is the desired
solution of the acoustic emission problem and State B is an auxiliary solution, or in our terminology, a
virtual wave.

The coefficients AS
m and AA

m will be determined by application of the reciprocity theorem. For this
application the contour S, shown in Figure 1 has a loop 6 around the crack. State A is the solution of
the acoustic emission problem defined by Equations (42)–(45). For state B, the virtual wave, we select
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the n-th symmetric mode propagating in the positive x1-direction

u B
1 (x1, z)= i BS

n V n
S (z)e

ikS
n x1, (48)

u B
z (x1, z)= BS

n W n
S (z)e

ikS
n x1, (49)

τ B
11(x1, z)= BS

n T Sn
11 (z)e

ikS
n x1, (50)

τ B
1z(x1, z)= i BS

n T Sn
1z (z)e

ikS
n x1 . (51)

Since there are no body forces in this application of the reciprocity theorem, Equation (47) reduces to∫
S

(
τ B

i j u A
j − τ

A
i j u B

j
)
ni d S = 0. (52)

For the contour shown in Figure 1, there are possible contributions from the line x1 = a, −h ≤ z ≤ h,
which we call J1, from x1 = b, −h ≤ z ≤ h, called J2, and from σ , the contour around the crack, called
J3. There are no contributions from the free surfaces at z =±h.

First let us consider the contribution from x1 = a. Along x1 = a we have

J1 =−

∫ h

−h
FAB(x1, z)

∣∣
x1=a dz, (53)

where
FAB = τ

B
11u A

1 + τ
B
1zu A

z − τ
A

11u B
1 − τ

A
1zu B

z . (54)

Substitution of the summations given by Equations (42)–(45) for State A, and the n-th virtual mode given
by Equations (48)–(51) for State B, in Equation (53) yields after some manipulation

J1 =

∞∑
m=0

i AS
m BS

n
[
I S
mn + I S

nm
]
ei(km−kn)a +

∞∑
m=0

i AA
m BS

n
[
I AS
mn + I AS

nm
]
ei(km−kn)a, (55)

where I S
mn and I S

nm are defined by Equation (37), and I AS
mn is given by

I AS
mn =

∫ h

−h

[
T Am

11 (z)V n
S (z)− T An

1z (z)W
n
S (z)

]
dz, (56)

with an analogous definition for I AS
nm . Inspection of Equations (31), (5), (29), (6) shows that the terms in

Equation (56) are

µ
[
a9 sin(pmz)+ a10 sin(qmz)

][
s1 cos(pnz)+ s2 cos(qnz)

]
(57)

and
µ
[
a5 cos(pnz)+ a6 cos(qnz)

][
s3 sin(pmz)+ s4 sin(qmz)

]
. (58)

These terms are of the general forms

sin(αz) cos(βz)= 1
2

[
sin(α+β)z+ sin(α−β)z

]
.

Such terms when integrated over z from z = −h to z = h yield zero. Hence the second summation in
Equation (55) vanishes. In addition, by virtue of the results given by Equation (36), the first summation
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in Equation (55) only produces a nonzero result when n = m. Consequently we find

J1 = 2i AS
m BS

m I S
mm . (59)

A computation of the contribution from x1 = b leads to

J2 = 0. (60)

This is in agreement with the observation made in [Achenbach 2003, p. 101] that contributions are
obtained only when States A and B are counterpropagating. Across x1 = b the two states both propagate
in the positive x1 direction.

Next we consider the contribution from the integration along 6. Here it should be understood that
the virtual wave defined as State B is for a layer without a surface-breaking crack. State B applies to
a cracked layer if the faces of the crack are subjected to tractions equal to the ones that would exist
in the uncracked layer for State B. This implies that for State B the displacements and the stresses are
continuous across the crack faces.

In terms of the coordinate s, which increases in the counterclockwise direction, the contributions from
the two line elements that make up 6 require careful consideration. Along x1 = 0+, −h ≤ z ≤−h+ l,
where l is the length of the crack, the integration is similar to the one along x1 = a, −h ≤ z < h. We
obtain

J+3 =−
∫
−h+l

−h
FAB(x1, z)

∣∣
x1=0+ dz. (61)

However, along x1 = 0−, −h ≤ z ≤−h+ l, some more care must be exercised. We find

J−
3
=

∫
−h+l

−h
FAB(x1, z)

∣∣
x1=0− dz, (62)

and thus

J3 =

∫
−h+l

−h

{
FAB(x1, z)x1=0− − FAB(x1, z)

∣∣
x1=0+

}
dz. (63)

From the definition of FAB(x1, z) it follows that the integral of Equation (63) is composed of differences
of equivalent quantities on the two crack faces. It can also be noted that the crack opens up symmetrically
and thus u A+

1 = −u A−
1 and u A+

z = u A−
z . Also u B+

1 = u B−
1 and u B+

z = u B−
z . In addition τ B+

11 = τ
B−
11 ,

τ B+
1z = τ

B−
1z , τ A+

11 = τ
A−

11 and τ A−
1z = τ

A+
1z = 0. As a consequence, only the first terms in FAB on both

sides remain, and Equation (63) reduces to

J3 =−

∫
−h+l

−h
τ B

11(0, z)1u1(0, z)dz, (64)

where
1u1(0, z)= u A

1 (0
+, z)− u A

1 (0
−, z)= 2u A

1 (0
+, z). (65)

The quantity 1u1 is called the crack opening displacement (COD).
The expression for J3 can be further simplified by substitution of τ B

11(0, z) from Equation (50). The
result is

J3 =−BS
m

∫
−h+l

−h
T Sm

11 (z)1u1(0, z)dz. (66)
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From the condition that the total contour integral must vanish, the quantity AS
m can then by solved from

J1+ J2+ J3 = 0 and Equations (59) and (66) as

AS
m =

−i
2I S

mm

∫
−h+l

−h
T Sm

11 (z)1u1(0, z)dz. (67)

In Equation (65) u A
1 (0
+, z) is the normal displacement on the crack faces. It should be noted that the

crack-opening displacement 1u1(x1, z) is, as yet, unknown.
By selecting the n-th antisymmetric mode as the virtual wave we obtain in a totally analogous manner

AA
m =

−i
2I A

mm

∫
−h+l

−h
T AM

11 (z)1u1(01z)dz. (68)

5. Crack-opening displacement

The crack-opening displacement, Equation (65), due to loading of the crack faces by a uniform pres-
sure, can be calculated numerically by using, for example, the boundary element method. A quasistatic
approximation to the COD can, however, be computed by using a simple idea from fracture mechanics
based on energy considerations.

The propagation of a crack requires a certain amount of energy, which can be calculated provided that
the stress-intensity factor is known. For a surface-breaking crack of length l in a layer of thickness 2h,
uniformly loaded by uniform pressure 1τ on its crack faces, the stress-intensity factor is of the general
form

K I =1τ(πl)1/2 F(l/h). (69)

The energy required to form this crack can be looked up in a book on fracture mechanics, for example
[Kanninen and Popelar 1985], as

G =
∫ l

0

1− v2

E
K 2

I dl. (70)

The energy that was provided to open the crack is

U = 1
21τ

∫
−h+l

−h
1u1(0, z)dz =

1
2
1τ1u1 l, (71)

where

1u1 =
1
l

∫
−h+l

−h
1u1(0, z)dz. (72)

The integral in Equation (71) is the crack opening volume (COV). The equality of U and G yields an
expression for 1u1 as

1u1 =
G

1
21τ l

. (73)
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By the use of Equation (73) the expressions for AS
m and AA

m can now be written as

AS
m =−i

1u
2I S

mm

∫
−h+l

−h
T Sm

11 (z)dz, (74)

AA
m =−i

1u
2I A

mm

∫
−h+l

−h
T Am

11 (z)dz. (75)

Substitution in Equations (42)–(45) yields expressions whose imaginary parts are the radiated fields of
acoustic emission.

6. Conclusions

The steady state solutions as given by Equations (42)–(45) are indeed obtained in a very simple man-
ner. They represent propagating waves which appear as superpositions on the quasistatic displacement
generated by the externally applied stress field.

The analogous problem for a surface-breaking crack in a half-space under cyclic loading is discussed
in [Achenbach 2008].
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