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VIBRATION CHARACTERISTICS OF CURVED BEAMS

CHONG-SEOK CHANG AND DEWEY H. HODGES

The paper presents a concise framework studying the coupled vibration of curved beams, whether the
curvature is built-in or is caused by loading. The governing equations used are both geometrically exact
and fully intrinsic, with a maximum degree of nonlinearity equal to two. For beams with initial curvature,
the equations of motion are linearized about the reference state. For beams that are curved because of the
loading, the equations of motion are linearized about the equilibrium state. A central difference spatial
discretization scheme is applied, and the resulting linearized ordinary differential equations are cast as an
eigenvalue problem. Numerical examples are presented, including: (1) validation of the analysis for both
in-plane and out-of-plane vibration by comparison with published results, and (2) presentation of results
for vibration of curved beams with free-free, clamped-clamped, and pinned-pinned boundary conditions.
For coupled vibration, the numerical results also exhibit the low-frequency mode transition or veering
phenomenon. Substantial differences are also shown between the natural frequencies of curved beams
and straight beams, and between initially curved and bent beams with the same geometry.

1. Introduction

For decades, the vibration of curved beams, rings, and arches has been extensively investigated by many
researchers. About 400 references, which have covered the in-plane (i.e. in the plane of the undeformed,
initially curved beam), out-of-plane (i.e. out of the plane of the undeformed, initially curved beam),
coupled, and nonlinear vibrations, are summarized in [Chidamparam and Leissa 1993]. While linear
theory is adequate for free-vibration analysis of initially curved beams, when a beam is brought into
a state of high curvature by the loads acting on it, one must linearize the equations of nonlinear theory
about the static equilibrium state. Thus, the behavior of a beam curved under load will differ substantially
from an initially curved beam of identical geometry. The geometrically exact, fully intrinsic theory
of curved and twisted beams [Hodges 2003] provides an excellent framework in which to elegantly
study the coupled vibration characteristics of curved beams, particularly those curved because they are
loaded. This is because of their simplicity. Each term can be intuitively interpreted. There are no
displacement or rotation variables (which is what is meant by intrinsic in this context); as a result there
are no nonlinearities of degree larger than two. Both finite element and finite difference discretization
schemes are easily applied to these equations for numerical computations, and the framework presented
herein is much simpler than that of other nonlinear beam theories. Because of these observations, we
have revisited the topic and broadened the base of cases studied.

This paper provides details of how to make use of the fully intrinsic equations for calculating natural
frequencies for simple engineering problems. One aspect of these calculations that is substantially differ-
ent from the usual approach involves the proper way to enforce boundary conditions. Published results
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for in-plane [Chidamparam and Leissa 1995; Tarnopolskaya et al. 1996; Fung 2004] and out-of-plane
vibration [Irie et al. 1982; Howson and Jemah 1999] will be compared with the results from the present
work. Results for coupled vibration are also presented as part of an investigation of low-frequency mode
transition [Tarnopolskaya et al. 1999], also referred to as veering phenomena [Chen and Ginsberg 1992].

It was shown analytically in [Hodges 1999] that initially curved, isotropic beams possess stretch-
bending elastic coupling, that this coupling is proportional to initial curvature when the beam reference
line is along the locus of cross-sectional centroids, and that this coupling cannot be ignored for calculation
of the equilibrium state of high circular arches. The Variational Asymptotic Beam Sectional (VABS)
analysis [Cesnik and Hodges 1997; Yu et al. 2002; Hodges 2006] can be used to numerically calculate
this coupling term. Based on results obtained from VABS, it is easy to show that there is another term,
which also depends on initial curvature but reflects shear-torsion coupling. This term becomes zero if
the beam reference axis is along the locus of sectional shear centers rather than the locus of sectional
centroids. The location of the sectional shear center depends on the initial curvature, but an analytical
expression for that dependence is unknown. Therefore, without a cross-sectional analysis tool such
as VABS, which provides an accurate cross-sectional stiffness matrix as a function of initial curvature,
certain aspects of the analysis presented herein would be impossible.

2. Intrinsic beam formulation

The geometrically exact, intrinsic governing equations [Hodges 2003] for the dynamics of an initially
curved and twisted, generally anisotropic beam are

F ′B + K̃ B FB + fB = ṖB + �̃B PB,

M ′B + K̃ B MB + (ẽ1+ γ̃ )FB +m B = ḢB + �̃B HB + ṼB PB,

V ′B + K̃ B VB + (ẽ1+ γ̃ )�B = γ̇ ,

�′B + K̃ B�B = κ̇,

(1)

where FB and MB are the internal force and moment measures, PB and HB are the sectional linear and
angular momenta, VB and �B are the velocity and angular velocity measures, γ and κ are the force and
moment strain measures, k contains the initial twist and curvature measures of the beam, K B = k + κ
contains the total curvature measures, and fB and m B are external force and moment measures, where
loads such as gravitational, aerodynamic, and mechanical applied loads are taken into account. All
quantities are expressed in the basis of the deformed beam cross-sectional frame except k which is in the
basis of the undeformed beam cross-sectional frame. The tilde operator as in ãb reflects a matrix form
of the cross product of vectors a× b when both vectors and their cross product are all expressed in a
common basis.

A central difference discretization scheme is applied to the intrinsic governing equations in space to
obtain a numerical solution. The scheme satisfies both of the space-time conservation laws derived in
[Hodges 2003]. This scheme can be viewed as equivalent to a particular finite element discretization,
and the intrinsic governing equations are expressed as element and nodal equations. The n-th element
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equations, which are a spatially discretized form of (1), are
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where dl is the element length. The variables with (̂ ) are nodal variables, and the superscript indicates
the corresponding node where the variable is defined. Nodal variables are defined at both the left and
right of nodes, which are indicated by subscript l and r . The variables with ( ) are element variables.
(The details of discretization are described in [Hodges 2003].)

The equations for node n need to include possible discontinuities caused by a nodal mass, a nodal
force, and slope discontinuity, so that

F̂n
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r P̂n
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(3)

where Ĉlr reflects the slope discontinuity, f̂ n and m̂n are external forces and moments applied at n-th
node, and

V̂ n
l = Ĉn

lr V̂ n
r , �̂n

l = Ĉn
lr �̂

n
r . (4)

One may also include gravitational force in the analysis. When this is done, the formulation needs
additional gravity equations, details of which may be found in [Patil and Hodges 2006].

3. Boundary conditions

Boundary conditions are needed to complete the formulation. Here, we describe boundary conditions for
simple engineering problems, such as pinned-pinned and clamped-clamped conditions. At each end, for
the static case, either natural boundary conditions in terms of F̂ and M̂ or geometric boundary conditions
in terms of u and C i B may be prescribed. Here u is a column matrix of displacement measures ui in the
cross-sectional frame of the undeformed beam. Although these geometric boundary conditions are in
terms of displacement and rotation variables, they are easily expressed in terms of other variables such
as κ, γ , etc., given in (13), keeping the formulation intrinsic.

If displacement and rotation variables appear in the boundary conditions for the free-vibration case,
a numerical Jacobian would become necessary since determination of an analytical expression for it is
intractable. Fortunately, when calculating free-vibration frequencies, one may for convenience replace
boundary conditions on displacement and rotation variables with boundary conditions in terms of gen-
eralized velocities V̂ and �̂. With the use of velocity boundary conditions, however, rigid-body modes
will not be eliminated from the results.
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3.1. Pinned-pinned boundary conditions. A total of 12 boundary conditions is necessary to calculate
free-vibration frequencies, given by

V̂ 1
l = M̂1

l = 0, (5)

V̂ N+1
r = 0 or


eT

1 C i B N+1
F̂ N+1

r = 0,
eT

2 V̂ N+1
r = 0,

eT
3 C i B N+1

V̂ N+1
r = 0,

(6)

M̂ N+1
r = 0, (7)

where C i B N+1
is the rotation matrix of the beam cross-section at the right end. Equation (5) fixes the left

boundary in space but leaves it free to rotate about all three axes. One can apply a geometric boundary
condition of zero displacement at the left end. One may take advantage of the intrinsic formulation
through applying the velocity boundary condition given in (5). The right boundary condition of (6) allows
free movement in the axial direction while holding velocity components in the transverse directions to
zero, as shown in the right part of Figure 1. When there are no applied loads, one can simply make use
of trivial values as the state about which the equations are linearized.

i
1

3i

Figure 1. Schematics of initially curved beams with pinned-pinned boundary conditions.

For a loaded case, however, the state about which the equations are linearized should be the static
equilibrium state. To determine the static equilibrium, six boundary conditions are necessary. (For static
equilibrium, the equations for V and �, namely (2)3 and (2)4, become trivial. That reduces the number
of boundary conditions to 6 from 12.) They are given by M̂1

l = 0 and

uN+1
1 = 0 or eT

1 C i B N+1
F̂ N+1

r = 0,

uN+1
2 = uN+1

3 = 0.
(8)

The right end can be chosen either free to move in the axial direction or to be fixed in space, which is
described in (8). For static equilibrium, one must apply displacement boundary conditions, which appear
in (8).

3.2. Clamped-clamped boundary conditions. The boundary conditions are

V̂ 1
l = �̂

1
l = 0 (9)

i
1

3i

Figure 2. Initially curved beam with clamped-clamped boundary condition.
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and
V̂ N+1

r = �̂N+1
r = 0 (10)

Equations (9) and (10) are for boundaries that are fixed in space and which constrain the rotation about
all three axes to be zero.

Like the pinned-pinned boundary condition, for a loaded case, the boundary conditions for a static
equilibrium are

uN+1
def = 0, (11)

Ĉ i B N+1T

undef Ĉ i B N+1

def =1, (12)

where udef is the column matrix of displacement measures at the right end of the beam, and Ĉ i B N+1

def , Ĉ i B N+1

undef
are the rotation matrices of the beam cross-section at the right end after deformation and in the unde-
formed state, respectively.

The geometric boundary conditions for static equilibrium can be described by the generalized strain-
displacement equations from [Hodges 2003], namely

(r + u)′ = C i B(γ + e1), C Bi ′
=−(̃κ + k̃)C Bi , (13)

where r is the column matrix of position vector measures and u is the column matrix of displacement
measures, both in the undeformed beam cross-sectional basis, and C Bi is the rotation matrix of the beam
cross-sectional reference frame in the deformed configuration. Equations (13) can be discretized as
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Ĉ Bin+1
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2

)
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(14)

4. Linearization

The governing equations in the previous section are linearized about a static equilibrium so that they
reduce to an eigenvalue problem to calculate the vibration frequencies. First,

X = Xeq+ X∗(t) (15)

where X is a state, Xeq is a value of the state at a static equilibrium, and X∗ is a small perturbation about
the static value of the state. The linearized element equations from the intrinsic beam formulation are
then
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The linearized nodal equations are

F̂∗nr − ĈnT

lr F̂∗nl + µ̂
n ĝ∗nr −

˙̂P∗nr = 0, M̂∗nr − ĈnT

lr M̂∗nl + µ̂
n˜̂ξ n

ĝ∗nr −
˙̂H∗nr = 0. (17)

These linearized equations of motion can be expressed in matrix form as A ˙̂X = B X̂ , which is a system
of first-order equations. When X̂ = X̌ exp(λt) is assumed, the system is easily cast as a generalized
eigenvalue problem of the form

B X̌ = AλX̌ . (18)

When B−1 exists, the equation can be rearranged into a standard eigenvalue problem, such that

1
λ

X̌ = B−1 AX̌ , A∗ X̌ = λ∗ X̌ . (19)

When the eigenvalues are pure imaginary, the motion is of simple harmonic type.

5. Validation

A typical cross-sectional model has the form

γ11

2γ12

2γ13

κ1

κ2

κ3


=



R11 R12 R13 S11 S12 S13

R12 R22 R23 S21 S22 S23

R13 R23 R33 S31 S32 S33

S11 S21 S31 T11 T12 T13

S12 S22 S32 T12 T22 T23

S13 S23 S33 T13 T23 T33





F1

F2

F3

M1

M2

M3


,

{
γ

κ

}
=

[
R3×3 S3×3

ST
3×3 T3×3

]{
F
M

}
, (20)

where the 3× 3 submatrices R, S, and T , which make up the cross-sectional flexibility matrix, are
computed by VABS [Cesnik and Hodges 1997; Yu et al. 2002; Hodges 2006] for various initial curvatures.
Though not essential, to make the shear-torsion elastic couplings S21 = S31 = 0, the stiffness matrix may
be recomputed at the cross-sectional shear center.

In-plane and out-of-plane vibrations are separately validated by comparison with results from various
published papers. Either in-plane or out-of-plane vibration can be approximated by setting some of the
components in the submatrices equal to very small values, which minimally affects the results. For
example, for inextensibility, one would simply set R11 to a very small value; for shear indeformability
one would set R22 and R33 to very small values. Likewise, one could set certain elements of the flexibility
matrix equal to very small values to approximate either in-plane or out-of-plane vibrations. Setting these
small numbers equal to zero may result in the problem’s becoming ill-conditioned because, for certain
boundary conditions, a variable cannot be assumed to be zero unless the associated governing equations
and variables are eliminated from the formulation. For the same reason, one should not set certain
components too small for a given boundary condition.

Example: in-plane free-vibration of curved beams with different half-angles. The beam investigated
has length `= 10 m and an initial curvature such that hk2 = h/Rr = 0.01 where ` is the total length of
beam, h is the thickness of the cross-section, Rr = 1/k2 is the radius of the curved beam (or arch), and α
is the half-angle of the arch (`= 2Rrα). For beams of constant length, α is clearly a measure of the initial
curvature. Values associated with α = 10◦ and 30◦ are selectively given in Table 1. For h/Rr = 0.01 and
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`= 10 m, the nondimensional frequencies of an arch having a rectangular cross-section are calculated
for both pinned-pinned and clamped-clamped boundary conditions. Results obtained are given in Tables
2 and 3. For the pinned-pinned boundary, both ends are fixed in space but free to rotate about an axis
perpendicular to the plane of the undeformed beam, which is the left case of Figure 1. The results agree
well with those of [Chidamparam and Leissa 1995] for both extensible and inextensible cases.

Example 1: in-plane
extensible inextensible

α 10◦ 30◦ 10◦ 30◦

R11 1.7407e-10 1.5667e-09 1.7407e-15 1.5667e-14
R22 5.7624e-15 5.1862e-14 5.7624e-15 5.1862e-14
R33 5.7623e-15 5.1861e-14 5.7623e-15 5.1861e-14
S12 1.4477e-11 3.9088e-10 1.4477e-16 3.9088e-15
S21 1.7517e-19 4.6425e-18 1.7517e-19 4.6425e-18
T11 4.1277e-13 3.3435e-11 4.1277e-13 3.3435e-11
T22 2.5451e-08 2.0616e-06 2.5451e-08 2.0616e-06
T33 2.5451e-13 2.0616e-11 2.5451e-13 2.0616e-11

Rr 28.648 9.5493 28.648 9.5493
h = b 2.8648e-01 9.5493e-02 2.8648e-01 9.5493e-02
ξ3 2.5092e-04 8.3638e-05 2.5092e-04 8.3638e-05

Example 2: out-of-plane
σ2 = σ3 = 20 σ2 = σ3 = 100

α 30◦ 60◦ 90◦ 30◦ 60◦ 90◦

R11 2.1039e-11 8.4156e-11 1.8935e-10 5.2235e-10 2.0894e-09 4.7012e-09
R22 6.9672e-11 2.7869e-10 6.2705e-10 1.7292e-09 6.9166e-09 1.5563e-08
R33 6.9327e-16 2.7731e-15 6.2394e-15 1.7289e-14 6.9153e-14 1.5560e-13
S12 1.0467e-16 8.3736e-16 2.8260e-15 2.6082e-15 2.0864e-14 7.0451e-14
S21 3.9071e-14 3.1195e-13 1.0694e-12 3.6632e-14 3.2723e-13 −4.2443e-12
T11 5.8829e-10 9.4127e-09 4.7652e-08 3.7136e-07 5.9415e-06 3.0081e-05
T22 3.6587e-15 5.8539e-14 2.9635e-13 2.2905e-12 3.6646e-11 1.8553e-10
T33 3.6465e-10 5.8344e-09 2.9537e-08 2.2902e-07 3.6642e-06 1.8551e-05

Rr 4.7746 2.3873 1.5915 4.7746 2.3873 1.5915
h = b 8.2699e-01 4.1349e-01 2.7566e-01 1.6539e-01 8.2699e-02 5.5133e-02
ξ3 1.2655e-02 6.3274e-03 4.2183e-03 5.0199e-04 2.5100e-04 1.6733e-04

Table 1. Nonzero cross-sectional constants used for validation of in-plane and out-of
plane free-vibration results (flexibility submatrices Ri j , Si j , Ti j , radius of curvature Rr ,
thickness of cross-section h, width of cross-section b, shear center location ξ3)
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extensible case
[Chidamparam and Leissa 1995] Current approach

α mode 1 mode 2 mode 3 mode 4 mode 1 mode 2 mode 3 mode 4

5◦ 449.38 1293.4 2916.1 5179.0 448.26 1293.9 2917.8 5185.3
10◦ 318.10 321.49 736.39 1293.5 317.77 321.60 736.59 1294.7
20◦ 78.552 167.74 321.48 331.25 78.580 167.91 321.85 331.15
30◦ 33.623 74.838 141.56 216.39 33.636 74.897 141.72 216.79
40◦ 17.963 41.425 78.631 122.18 17.969 41.455 78.720 122.40

inextensible case
[Chidamparam and Leissa 1995] Current approach

α mode 1 mode 2 mode 3 mode 4 mode 1 mode 2 mode 3 mode 4

5◦ 1293.5 2765.6 5181.5 7957.4 1293.9 2766.5 5186.9 7962.1
10◦ 321.51 690.04 1293.5 1987.9 321.60 690.43 1294.9 1991.1
20◦ 78.558 171.15 321.53 495.61 78.579 171.26 321.87 496.41
30◦ 33.626 75.080 141.58 219.26 33.635 75.125 141.73 219.61
40◦ 17.964 41.467 78.641 122.54 17.969 41.492 78.724 122.74

Table 2. Nondimensional free-vibration frequencies λ= ωR2
r
√

m/E I of pinned-pinned
circular arches.

In Table 2, the dominant types of motion are identified for each mode. For α = 5◦ and 10◦ for the
extensible case, the dominant motion in modes 1–4 are first symmetric bending, first antisymmetric
bending, second symmetric bending, and second antisymmetric bending motions, respectively. For both
the extensible case with α ≥ 20◦ and the inextensible case, the dominant types of motion in modes 1–4
are first antisymmetric bending, second symmetric bending, second antisymmetric bending motions, and
third symmetric bending, respectively. Only the extensible cases have unique frequencies of 448.26 and
317.77 for mode 1, which are identified as first symmetric bending modes.

The following discussion explains further about what contributes to the disappearance of the first
symmetric bending for both extensible case with α ≥ 20◦ and inextensible case. First, consider the free-
vibration frequencies of α ≥ 20◦ for both extensible and inextensible cases. Note that both frequencies
are close to each other, especially as α increases. This is because of the low-frequency mode transition.
By holding the beam’s total length constant, a beam with a larger α has higher initial curvature. Be-
cause of this high initial curvature, the frequencies of certain modes change from one value to another
while simultaneously the corresponding dominant type of motion for that mode is changing. (The next
section has a more detailed explanation for this phenomenon.) Second, the first symmetric bending will
be coupled strongly to the stretching mode. This explains why the mode is absent when the beam is
inextensible.

The convergence of numerical solutions for a circular arch with α = 20◦ is tested as the number
of elements increases. Figure 3 shows that the four lowest frequencies decrease monotonically as the
number of elements increases. The relative difference between the results of N = 80 and 160 is less than
1%, and all the results presented here are for N = 160 elements.
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extensible case
[Chidamparam and Leissa 1995] Current approach

α mode 1 mode 2 mode 3 mode 4 mode 1 mode 2 mode 3 mode 4

5◦ 788.17 2021.7 3969.3 6226.8 788.34 2022.8 3972.3 6226.5
10◦ 388.56 503.49 999.44 1636.6 338.60 503.72 1000.3 1638.8
20◦ 123.96 209.32 338.91 406.99 124.02 209.45 339.03 407.54
30◦ 53.735 98.426 179.31 250.07 53.760 98.505 179.56 250.47
40◦ 29.215 55.020 99.680 145.38 29.228 55.066 99.818 145.67

inextensible case
[Chidamparam and Leissa 1995] Current approach

α mode 1 mode 2 mode 3 mode 4 mode 1 mode 2 mode 3 mode 4

5◦ 2021.9 3641.9 6557.9 9500.9 2022.8 3635.4 6566.8 9466.0
10◦ 503.54 909.14 1637.2 2373.7 503.76 909.86 1639.4 2378.4
20◦ 123.97 225.96 407.11 592.01 124.03 226.14 407.65 593.16
30◦ 53.740 99.458 179.36 262.06 53.762 99.536 179.60 262.57
40◦ 29.217 55.194 99.705 146.58 29.230 55.238 99.837 146.87

Table 3. Nondimensional free-vibration frequencies λ = ωR2
r
√

m/E I of clamped-
clamped circular arches.
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Figure 3. Relative differences of nondimensional free-vibration frequencies λ =
ωR2

r
√

m/E I for N = 10, 20, 40, and 80 with respect to N = 160 of pinned-pinned
circular arches with α = 20◦.
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σ2 = σ3 = 20
[Irie et al. 1982] [Howson and Jemah 1999] present

α m1 m2 m3 m4 m1 m2 m3 m4 m1 m2 m3 m4

30◦ 16.74 36.92∗ 40.45 69.92 16.743 36.921∗ 40.449 69.618 16.579 36.398 40.232 68.711
60◦ 4.282 11.69 22.05∗ 22.38 4.2836 11.768 22.045∗ 22.379 4.2606 11.644 21.875∗ 22.329
90◦ 1.776 4.982 10.13 16.76 1.7764 4.9814 10.133 16.762 1.7687 4.9584 10.111 16.778

σ2 = σ3 = 100
[Irie et al. 1982] [Howson and Jemah 1999] present

α m1 m2 m3 m4 m1 m2 m3 m4 m1 m2 m3 m4

30◦ 19.40 54.03 105.6 172.8 19.401 54.029 105.65 172.77 19.385 54.049 105.88 173.52
60◦ 4.451 12.83 25.99 43.57 4.4512 12.826 25.988 43.570 4.4444 12.810 25.990 43.630
90◦ 1.804 5.198 10.92 18.72 1.8042 5.1975 10.917 18.725 1.7998 5.1857 10.905 18.727

Table 4. Nondimensional free-vibration frequencies λ = ωR2
r
√

m/(E I )3 of clamped-
clamped circular arches (∗ represents modes in which torsion is dominant; m1 stands for
mode 1, etc.)

Example: out-of-plane free-vibration of a curved beam with different half-angles. The out-of-plane
free-vibration frequencies of a clamped-clamped arch with square cross-section are shown in Table 4 for
two different slenderness ratios (σ2 = σ3 = 20 and 100). The slenderness ratio σ 2

2 = AR2
r /I2 is expressed

in terms of the cross-sectional area A, the radius of curvature Rr , and the second moment of area I2;
similar relations apply to σ3. The beam length is 5 m. The out-of-plane free-vibration frequencies are
shown in Table 4 with the ones from [Irie et al. 1982; Howson and Jemah 1999] and they are very close
to each other. The material properties and cross-sectional constants for each case are listed in Table 1. It
should be noted that these results include shear deformation and rotary inertia; particularly for smaller
values of σ2 and σ3, results are more accurate when these phenomena are included in the calculations.
The present results are based on section constants from VABS, values of which may differ slightly from
the approximations used in [Irie et al. 1982; Howson and Jemah 1999].

6. Coupled free-vibration frequencies for initially curved beams

In this section the coupled free-vibration characteristics of beams with various values of initial curvature
k2 are examined. No external forces and moments are applied to beams. The free-vibration frequencies
of beams with free-free, clamped-clamped, and pinned-pinned boundary conditions are shown in Figure
4 and Table 5 for various values of initial curvature k2. The length of the beam is 10 m; the width
and height are 0.1 m. The material properties are taken to be those of aluminum: E = 7× 1010 N/m2,
G = 2.55× 1010 N/m2, and ρ = 2700 kg/m3.

The eight lowest-frequency modes of beams with various levels of initial curvature are identified, and
the frequencies are plotted in Figure 4 and given in Table 5. For the cases of low initial curvatures, modes
1, 2, 3, 4, . . . , correspond to the modes for which the dominant motions are first symmetric out-of-plane
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Figure 4. Vibration frequency versus initial curvature k2 for initially curved beams with
different boundary conditions.

bending (1OB), first symmetric in-plane bending (1IB), first antisymmetric out-of-plane bending (1AOB),
first antisymmetric in-plane bending (1AIB), etc., respectively. The plots show that for the free-free case,
the frequency of mode 1 departs from the one for zero initial curvature and approaches the one for mode
5. The dominant type of motion also changes from 1OB to 2OB as the initial curvature increases. The
four lowest mode shapes for a beam with initial curvature k2 = 0.10 are shown in Figure 5. The dominant
motion of mode 1 transitions from 1OB to 2OB when the initial curvature becomes larger.

On the other hand, for both clamped-clamped and pinned-pinned boundaries, the frequency of mode
2 changes from the one for zero initial curvature and approaches to the one for mode 6. Its dominant
motion changes from 1IB to 2IB. Figure 6 shows the mode transition of mode 2 from dominant 1IB to
dominant 2IB as the initial curvature k2 increases for the pinned-pinned case. This phenomenon, which
is often referred to as veering [Chen and Ginsberg 1992] or frequency mode transition [Tarnopolskaya
et al. 1996; Tarnopolskaya et al. 1999], results from the nature of the eigenvalues of a general self-adjoint
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Free-free boundary condition

k2 mode 1 mode 2 mode 3 mode 4 mode 5 mode 6 mode 7 mode 8

0.00 32.885 32.885 90.629 90.629 177.61 177.61 293.45 293.45
0.02 67.530 32.836 90.407 90.564 179.66 177.54 293.18 293.38
0.04 115.64 32.694 89.746 90.368 189.71 177.32 292.37 293.15
0.06 144.23 32.462 88.668 90.042 221.34 176.96 291.06 292.78
0.08 152.93 32.151 87.208 89.591 271.52 176.47 289.29 292.26
0.10 155.13 31.772 85.408 89.018 323.39 175.83 287.11 291.58

Clamped-clamped boundary condition

k2 mode 1 mode 2 mode 3 mode 4 mode 5 mode 6 mode 7 mode 8

0.00 32.882 32.882 90.660 90.660 177.81 177.81 294.14 294.14
0.02 32.810 88.424 90.472 90.398 177.31 182.21 292.91 292.82
0.04 32.639 141.65 90.235 89.940 177.05 214.22 292.63 292.29
0.06 32.365 155.10 89.844 89.188 176.62 284.85 292.18 291.41
0.08 32.003 157.82 89.304 88.156 176.01 354.19 291.55 290.20
0.10 31.571 158.24 88.622 86.863 175.25 393.53 290.73 288.68

Pinned-pinned boundary condition

k2 mode 1 mode 2 mode 3 mode 4 mode 5 mode 6 mode 7 mode 8

0.00 14.506 14.506 58.011 58.011 130.48 130.48 231.85 231.85
0.02 14.307 57.811 57.865 88.397 130.28 136.74 231.65 231.70
0.04 13.739 57.234 57.428 119.21 129.70 199.11 231.07 231.26
0.06 12.880 56.331 56.712 121.43 128.79 230.16 230.53 284.68
0.08 11.825 55.167 55.732 121.40 127.62 228.99 229.54 336.91
0.10 10.665 53.794 54.509 120.75 126.21 227.58 228.28 346.84

Table 5. Vibration frequencies versus initial curvature k2 for free-free, clamped-
clamped, and pinned-pinned boundary conditions.

system when a certain parameter changes in the system. In the present study, it is the initial curvature k2

that changes.

7. Coupled vibration of initially curved beams under end moments

Now the vibration characteristics of curved beams are considered, including beams both with curvature
that is built-in and curvature that occurs because the beam is loaded with end moments. The section
properties vary according to the initial curvature. Sample results are given in Table 6 on page 688.
(Material properties are the same as those given in the previous section.) In the general case we consider
an beam with various initial curvatures k2, loaded under various equal and opposite values of applied
moments at the ends giving rise to a constant value of bending moment M2. To facilitate this parametric
study, the total static equilibrium value of curvature K 2 is divided into two parts: the initial curvature k2
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Figure 5. Four lowest modes of an initially curved free-free beam (k2 = 0.10).

and the curvature caused by the applied end moments M2/E I2. The total curvature is then

K 2 = k2+
M2

E I2
(21)

where E I2 is the vertical bending stiffness for bending in the plane of the initially curved beam. A
nondimensional curvature ratio β is then introduced as the ratio of the initial curvature to the final total
curvature and defined as

β =
k2

K 2
(K 2 6= 0) (22)

For example, if β = 0, the beam has a zero initial curvature. If β = 1, the beam’s initial curvature is
the total curvature, which means that no end moments will be applied. If β = −1, the beam has an
opposite initial curvature to the final configuration. Figure 7 shows initial configurations of beam with
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Figure 6. Mode transition of initially curved pinned-pinned beams (mode 2).

Rr 1/0.1 1/0.07 1/0.04 1/0.01

R11 1.4286e-09 1.4286e-09 1.4286e-09 1.4286e-09
R22 4.7292e-09 4.7291e-09 4.7291e-09 4.7291e-09
R33 4.7291e-09 4.7291e-09 4.7291e-09 4.7291e-09
S12 3.4133e-10 2.3790e-10 1.3619e-10 3.4476e-11
S21 −1.1431e-12 8.6327e-13 9.5232e-14 −6.7113e-13
T11 2.7802e-06 2.7803e-06 2.7803e-06 2.7803e-06
T22 1.7143e-06 1.7143e-06 1.7143e-06 1.7143e-06
T33 1.7143e-06 1.7143e-06 1.7143e-06 1.7143e-06
ξ3 8.7588e-05 6.1310e-05 3.5034e-05 8.7585e-06

Table 6. Nonzero cross-sectional constants used for calculation of coupled free-
vibration frequencies for initially curved beams (flexibility submatrices Ri j , Si j , Ti j ,
radius of curvature Rr , and shear center location ξ3).



VIBRATION CHARACTERISTICS OF CURVED BEAMS 689

−2
0

2
4

6
8

10
12

−2

−1

0

1

2
−1

−0.5

0

0.5

1

1.5

2

xy

z

−2
0

2
4

6
8

10
12

−2

−1

0

1

2
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

xy
z

β =−1 β = 0

−2
0

2
4

6
8

10
12

−2

−1

0

1

2
−2

−1.5

−1

−0.5

0

0.5

1

xy

z

β = 1

Figure 7. Initial configurations of beams with different β.

β mode 1 mode 2 mode 3 mode 4 mode 5 mode 6

0 31.842 32.548 89.567 90.630 177.94 179.13
0.1 31.842 96.606 89.567 90.209 177.94 185.45
0.2 31.842 125.16 89.567 89.776 177.94 199.11
0.3 31.842 140.08 89.332 89.568 177.94 211.83
0.4 31.842 147.61 88.878 89.568 177.94 229.92
0.5 31.842 151.58 88.412 89.568 177.95 248.30

Table 7. Vibration frequencies versus curvature ratio β for initially curved free-free beams.
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Figure 9. Vibration frequencies versus curvature ratio β for beams under end moments.

β =−1, 0, 1. (One can picture intermediate configurations of different β.) End moments are applied to
deform the beam with various β so that K 2 =−0.10 as shown in Figure 8. A rectangular cross-section
is chosen to determine beam properties. The ratio r of height h to width b can be defined as

r =
h
b

(23)

Table 7 on the previous page and Figure 9 show the vibration frequencies for various β. It is noticeable
that frequencies for modes 2 and 6 change depending on β, which here indicates the value of initial
curvature k2. The frequency of mode 2, in which the dominant motion is the first out-of-plane bending
motion, decreases as β decreases, becoming zero when β = −0.0117, indicating a lateral-torsional



VIBRATION CHARACTERISTICS OF CURVED BEAMS 691

buckling instability. As the initial curvature approaches close to that of the opposite sign of the final
total curvature K =−0.10 (i.e. β becomes a larger negative value), the larger end moments apply. For β
lower than the critical value βcr, the eigenvalues for mode 2 become pure real, which indicates that the
mode is unstable.

8. Conclusion

The paper describes numerical procedures used to investigate the coupled free-vibration of curved beams,
both initially curved and curved because of loading. Present results agree well with those from published
papers. The governing equations of the present approach do not require displacement and rotation vari-
ables. Even in cases where displacement and rotation variables appear in the boundary conditions, this
does not prohibit the use of the formulation. The reason is that these variables can be easily recovered
from the formulation (i.e. they are secondary variables and can be expressed in terms of the primary
variables). This feature makes the whole analysis quite concise.

The analysis provides the spectrum of free-vibration frequencies for given arbitrary configurations.
The corresponding vibration mode shapes are easily visualized in order to observe which types of motion
are dominant and which others are associated with the mode. The numerical examples show that it is
necessary to include extensibility for beams with small initial curvature. Otherwise, one cannot observe
those modes that are coupled to stretching motion. Note that low-frequency mode transition exists for
beams with high initial curvatures.

The coupled free-vibration shows that the behaviors of simple engineering beam free-vibration prob-
lems are significantly different when beams are initially curved. The variation depends on the values
of initial curvature and the types of boundary conditions. For certain regions of initial curvatures, the
frequency and dominant motion of certain modes transition from the ones for zero initial curvature to
those for the next higher mode. The shear center and neutral axis locations, as is true for the cross-
sectional elastic constants, change as functions of initial curvature.

The case of end-loaded beams is also considered. In particular, when the geometries of an initially
curved beam and an end-loaded beam are the same, results obtained demonstrate significant differences
in behavior. Loading an initially curved beam affects the vibration characteristics and may lead to
lateral-torsional buckling instability. Additional work should be done to address the instabilities of such
configurations.
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