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UNDER END MOMENT AND SHEAR LOADING

S. K. DEB NATH AND S. REAZ AHMED

The elastic behavior of an orthotropic composite panel is analyzed under the influence of an end moment
as well as shear loading. The panel is rigidly fixed at one of its ends, and the fibers are assumed to be
directed along its length. An efficient finite difference computational scheme, based on the displacement
potential formulation, is used to analyze the present mixed boundary value elastic problem. The effects of
several important issues, for example, the panel aspect ratio, edge stiffening, and fiber reinforcement, on
the elastic field are investigated. Solutions are presented mainly in the form of graphs and the predicted
deformed shape. Finally, the reliability and superiority of the present computational scheme is discussed
in comparison to the corresponding finite element predictions.

A list of symbols can be found on page 1003.

1. Introduction

The strength-to-weight ratio of a fiber reinforced composite material is usually higher than that of the
corresponding isotropic material. The use of composite materials is increasing day by day, particularly
to satisfy the demand for lightweight structures. The use of composite panels in the construction of
engineering structures, for example, aircraft, is quite extensive. It is known that the mechanical properties,
such as strength and toughness of a fiber reinforced composite, differ significantly from those of an
isotropic material and eventually play an important role in defining the state of stress and deformation
of the structural component under loading.

Stress analysis has now become a classical subject in the field of solid mechanics. However, stress
analysis problems are still being examined with improved sophistication with respect to the methods
of analysis [Conway et al. 1951; Chow et al. 1953; Krishna Murty 1984; Suzuki 1986; Durelli and
Ranganayakamma 1989; Hardy and Pipelzadeh 1991]. Elasticity problems are usually formulated either
in terms of deformation parameters or stress parameters. Among the existing mathematical models of
plane boundary value stress problems, the stress function approach and the displacement formulation are
notable [Timoshenko and Goodier 1979]. Application of the stress function formulation in conjunction
with the finite difference technique has been reported for the solution for plane elastic problems in which
all boundary conditions are described in terms of stresses only [Chow et al. 1953; Chapel and Smith
1968]. Further, Conway [1953] extended the stress function formulation in the form of Fourier integrals
to the case in which the material was orthotropic, and obtained analytical solutions for a number of ideal
problems. The shortcomings of the stress function approach are that it accepts boundary conditions only
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in terms of loadings. Boundary restraints that are specified in terms of displacement components cannot
be satisfactorily imposed on the stress function. Because most practical problems of elasticity are of
mixed boundary value type, the stress function approach fails to provide an explicit understanding of the
state of stresses at the critical support and stiffener components. Here, a ‘mixed boundary value problem’
refers to one in which the displacement components are described over part of the boundary surface and
the stress components over the remainder of the boundary surface. The boundary conditions may also be
specified as a mixture of boundary restraints and boundary loadings, as realized in the cases of stiffeners,
guided edges, etc.

Reliable and accurate prediction of stresses, especially at the surfaces of engineering structures, is of
great importance with respect to reliability, safety, and economic design. The uncertainties associated
with the prediction of surface stresses by standard computational approaches (for example, the finite
element method, FEM) have been pointed out by several researchers [Richards and Daniels 1987; Smart
1987; Dow et al. 1990]. On the other hand, introducing a new boundary modeling approach for finite
difference applications of the displacement formulation of solid mechanics [Dow et al. 1990] solved
the problem of a uniformly loaded cantilever beam and reported that the accuracy of the finite differ-
ence method (FDM), with respect to reproducing the state of stresses along the bounding surfaces, was
much higher than the accuracy of FE analysis. However, the computational efforts of the FD analysis,
under the new boundary modeling approach, were somewhat greater than the efforts required for FE
analysis. Recently, Ranzi et al. [2006] reported a comparative study of the performances of available
modeling approaches for the analysis of composite beams with partial shear interactions. Comparing the
performances with exact analytical solutions, the FDM was determined to be an adequate numerical tool
for describing the composite behavior of beams, and the corresponding FD solutions were shown to be
more accurate when compared with the usual eight degree-of-freedom FEM solutions, even when finer
discretization was used for the FEM solutions.

The recent research and the developments with respect to using the displacement potential approach
[Ahmed et al. 1996; 1998; 2005b; Akanda et al. 2002] have generated renewed interest in the fields of
both analytical and numerical solutions for practical stress problems. In this boundary modeling approach,
the plane elastic problem is formulated in terms of a potential function of space variables, defined in terms
of two displacement components that must satisfy a single differential equation of equilibrium. Moreover,
the present computational approach permits the reduction of the number of dependent variables that must
be evaluated at each nodal point to one. This is an advantage over the standard solution methods, which
use at least two unknowns at each nodal point for solving plane problems. As a result, the total number of
simultaneous equations that must be solved in the present approach is reduced to half of those required
in usual approaches, which eventually leads to a drastic reduction in computational effort as well as
increased overall accuracy of the solution [Ahmed et al. 2005a]. The present modeling approach also
enables us to very efficiently manage the mixed mode of boundary conditions as well as their zones of
transition. Recently, Ahmed et al. [2005a] proposed a general displacement potential formulation for the
solution for anisotropic composite structures. Further, Nath et al. extended the use of the formulation to
the problems of orthotropic composite materials, and obtained analytical solutions for a number of com-
posite structures under various types of loading and supporting conditions [Nath et al. 2006; 2007; 2009].

A new analysis of the elastic field of composite panels subjected to an end moment as well as a
shear loading is the subject of the present paper. The panels are assumed to be rigidly fixed at one end,
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and the fibers are situated along the longitudinal axis of the panel. The solutions are obtained using
the displacement potential formulation in conjunction with FDM, and the corresponding distributions of
stress and displacements are presented mainly in the form of graphs as well as the predicted deformed
shape. Some of the issues of interest, for example, the effects of the aspect ratio, edge stiffening, and
fiber reinforcement, etc. on the elastic field are also investigated. Finally, a comprehensive comparative
analysis is presented in an attempt to check the appropriateness as well as superiority of the present
numerical solutions. More specifically, the reliable prediction of stresses at the critical sections of the
panel, especially at the regions of transition between physical conditions, is discussed in comparison to
the stresses predicted by standard FEM.

2. Displacement potential formulation

The two differential equations for equilibrium in plane stress problems describing orthotropic elastic
bodies of Hookean materials, with respect to a rectangular coordinate system, in the absence of body
forces, and in terms of the displacement components, are as follows [Jones 1975; Timoshenko and
Goodier 1979]: (
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where E1 and E2 are the elastic moduli of the material in the x- and y-directions, respectively, ν12 is the
major Poisson’s ratio, and G12 is the in-plane shear modulus. Instead of solving the above two elliptic
partial differential equations simultaneously, the existence of a new potential function of space variables
is investigated in an attempt to reduce the problem to the determination of a single variable from a single
differential equation of equilibrium. In the present approach, a new potential function ψ(x, y) is thus
defined in terms of the two displacement components as follows [Ahmed et al. 2005a]:
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Here, the αs are unknown material constants. For a unidirectional orthotropic composite lamina, in which
the fibers are directed along the x-axis, the values of these constants are

α1 = α3 = α5 = 0, α2 = 1, α4 =−
E2
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(see [Ahmed et al. 2005a]), where
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Substitution of (3) into the first equilibrium condition, (1), shows that the latter is automatically satis-
fied. Therefore, ψ must satisfy the second equilibrium condition, (2), only. Expressing (2) in terms of
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the potential function ψ , for the case of orthotropic plane stress problems, ψ must satisfy the condition

E1G12
∂4ψ

∂x4 + E2
(
E1− 2ν12G12

) ∂4ψ

∂x2∂y2 + E2G12
∂4ψ

∂y4 = 0; (5)

see [Ahmed et al. 2005a; Nath et al. 2007].
Because the present approach considers a single dependent variable for solving the panel problem, all

of the equations associated with the normal and the tangential components of stress and displacement
are expressed in terms of the function ψ . The expressions for the displacement components for the plane
stress orthotropic composite materials are restated here:
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The differential equations associated with the stress components are obtained by substituting Equa-
tions (6) and (7) into the stress–displacement relations of plane stress problems. The resulting expressions
for the stress components in terms of the function ψ are as follows [Ahmed et al. 2005a]:
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3. Geometries and loadings of the panel

Two cases of an orthotropic panel are considered (Figure 1). Case I is a composite panel with a rectangular
cross section that is supported at its left lateral end (x/b = 0) and subjected to a bending moment at its
right lateral end (x/b = 1). The normal stress on the right lateral end, causing the bending moment,
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Figure 1. Model of orthotropic composite panels subjected to an end moment (Case I)
or to shear loading (Case II).
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is distributed according to a simple linear relationship given by σn = P[1− 2(y/a)], where P is the
maximum intensity of the stress.

Case II is also a panel with a rectangular cross section that is supported at its left lateral end and is
subjected to a uniform shear loading (intensity σ 0

xy) at the right lateral end. The supporting ends of the
panels are considered to be rigidly fixed, and the fibers are assumed to be situated along the panel length.
In both cases, b/a ratios of 1, 2, and 3 are considered.

4. Numerical solution to the problem

The FDM is used to discretize the governing differential equation (5) as well as the differential equations
associated with the boundary conditions (6)–(10). The discrete values of the potential function ψ(x, y),
at the mesh points of the domain concerned, are solved from the system of linear algebraic equations
resulting from the application of the governing equation and the boundary conditions by the use of a
direct method of solution.

Discretization of the domain. The region of interest is divided into the desired number of mesh points,
and the values of the dependent function ψ(x, y) are sought only at these points. Depending upon the
type of differential equations involved and on the geometry of the panel, a uniform rectangular mesh
network is used. The error of the computational approach is of the order h2, and a mesh network of
around 450 nodal points would be sufficient for an accurate and stable numerical solution [Akanda et al.
2000]. The discretization scheme of the panel is schematically illustrated in Figure 2. The governing
differential equation, which is used to evaluate the function ψ(x, y) only at the internal mesh points, is
expressed in difference form using central difference operators as
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Here h, k are the mesh lengths in the x- and y-directions, respectively.
The corresponding grid structure of the difference equation, Equation (11), for any internal mesh point

(i, j) is shown in Figure 2. The pivotal point (i, j) in the grid structure is the point of application of the
governing equation. As far as the present central-difference grid structure of the governing equation is
concerned, when the point of application (i, j) becomes an immediate neighbor to the physical boundary,
it will involve mesh points both interior and exterior to the physical boundary of the panel. Thus, an
imaginary boundary, exterior to the physical boundary, as shown in Figure 2, is introduced such that the
application of the governing equation (11), especially to the points in the immediate neighborhood of the
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Figure 2. Finite-difference mesh network used to describe the panel, and the application
of FD stencils of the governing equation and boundary conditions.

physical boundary, involves no points exterior to the model boundary (imaginary one), thereby causing
no difficulties in developing a straightforward program.

Management of boundary conditions. The physical conditions at any point on a boundary are usually
visualized in terms of normal and tangential components of displacement and stress. The expressions
for the normal and tangential components of displacement in terms of the function ψ are

un(x, y)= lux(x, y)+mu y(x, y), ut(x, y)= lu y(x, y)−mux(x, y), (12)

where l and m are the direction cosines of a point on the boundary. Similarly, the expressions for the
normal and tangential components of stress for points on the body are

σn(x, y)= l2σxx(x, y)+ 2lmσxy(x, y)+m2σyy(x, y), (13)

σt(x, y)= (l2
−m2)σxy(x, y)+ lm[σyy(x, y)− σxx(x, y)]. (14)

Expressions (12)–(14) can be found in [Akanda et al. 2002].
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Because the differential equations associated with the boundary conditions contain second and third
order derivatives of the function ψ , the use of central difference expressions is not practical because most
of the time it leads to the inclusion of points exterior to the imaginary boundary. The derivatives of the
boundary expressions are thus replaced by their corresponding backward or forward difference formulas,
keeping the order of the local truncation error the same, O(h2). In order to avoid the inclusion of points
exterior to the imaginary boundary, four different sets of finite difference expressions for each of the
boundary conditions are developed for the points at different regions of the boundary. These four sets of
algebraic equations are derived by adopting different combinations of forward and backward difference
schemes. The choice of the appropriate set of expressions for a point on the boundary is determined by
the point’s position on the boundary, which avoids the introduction of additional mesh points external
to the imaginary boundary. Some of the difference equations derived for the boundary conditions are
shown below.

For example, the finite difference form of the normal or tangential component of displacement (i-
forward, j-forward) for the bottom left boundary is expressed as follows:

un(i, j)= S1ψ(i, j)+ S2ψ(i, j + 1)+ S3ψ(i, j + 2)

+ S4ψ(i + 1, j)+ S5ψ(i + 1, j + 1)+ S6ψ(i + 1, j + 2)+ S7ψ(i + 2, j)

+ S8ψ(i + 2, j + 1)+ S9ψ(i + 2, j + 2)+ S10ψ(i, j − 1)+ S11ψ(i − 1, j). (15)

Similarly, the finite difference form of the normal or tangential component of stress (i-backward,
j-forward) for the bottom right boundary is expressed as follows:

σn(i, j)=U1ψ(i, j)+U2ψ(i − 1, j)+U3ψ(i − 2, j)+U4ψ(i − 3, j)+U5ψ(i, j + 1)

+U6ψ(i − 1, j + 1)+U7ψ(i − 2, j + 1)+U8ψ(i, j + 2)+U9ψ(i − 1, j + 2)

+U10ψ(i, j + 3)+U11ψ(i, j − 1)+U12ψ(i − 1, j − 1)+U13ψ(i − 2, j − 1)

+U14ψ(i + 1, j)+U15ψ(i + 1, j + 1)+U16ψ(i + 1, j + 2), (16)

where the coefficients Si and Ui are functions of elastic constants, direction cosines, and mesh lengths.
The corresponding FD grid structures of the difference equations, (15) and (16), are also shown in Figure
2. The structures of the normal and tangential components are found to be identical in form, but they
differ in the sense of the nodal coefficients.

Placement of boundary conditions and evaluation of stresses and displacements. There are two condi-
tions to be satisfied at a point on the physical boundary of the rectangular panel, therefore, two difference
equations corresponding to the respective boundary conditions are applied to the same point on the bound-
ary. Of these two equations, one is used to evaluate the function ψ at the physical boundary point, and the
remaining equation is used to evaluate ψ at the corresponding point on the imaginary boundary. Special
treatments are adopted for the four corner mesh points, which are generally the points of transition for the
boundary conditions. The program is organized in such a fashion that it will satisfy three out of the avail-
able four boundary conditions for each corner point. As a result, the outer corner points of the imaginary
boundary are not taken into consideration for the present solution, as illustrated in the FD mesh network
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of Figure 2. Therefore, the application of the governing equation as well as the necessary boundary con-
ditions ensures that every mesh point of the computational domain will have a single algebraic equation
in terms of the function ψ for its evaluation. Finally, in order to evaluate the stress and displacement
components, four sets of finite difference expressions for each of the displacement and stress components
(6)–(10) are developed in a fashion similar to that adopted in the case of the boundary conditions. Because
all of the stress and displacement components are expressed in terms of the function ψ , the parameters
of interest are readily calculated from the ψ values obtained at the mesh points of the domain.

In the present computational approach, the number of algebraic equations is equal to the number
of field nodal points, and for each nodal point, there is only one unknown. Thus an (n × n) matrix
of coefficients is generated for a total of n active field nodal points. It was shown that the present
displacement potential-based FDM can save a tremendous amount of computational effort (approximately
87%) for the solution for a two-dimensional problem in comparison with the effort required for the usual
computational approaches [Ahmed et al. 2005a].

5. Results and discussion

The results of the finite difference solution for the composite panel subjected to two different types of
loading, as described in Section 3, are presented in this section. The results are presented mainly in
the form of the calculated deformed shape and the distribution of the various stress and displacement
components of interest. In all cases, displacements are normalized with respect to panel width (a), and
stresses are normalized with respect to the maximum intensity of the applied loading (P and σ 0

xy , see
Figure 1). The details of the boundary conditions used to obtain the FD solutions, as they relate to
the bounding edges, are given in Table 1, while Table 2 presents the boundary conditions associated
with the corner points. For most of the results, the panel material is considered to be a boron/epoxy
composite for which the effective mechanical properties, together with the properties of glass/epoxy and
graphite/epoxy, are listed in Table 3. For the panel subjected to the end moment (Case I), solutions are
obtained for different panel aspect ratios (b/a). The solutions for the elastic field of the panel (Case II)
are presented mainly in a comparative fashion with the corresponding FEM solutions. The magnitude of

correspondence between mesh points
and given boundary conditions

mesh point on the mesh point on the
boundary given boundary physical boundary imaginary boundary
segment conditions conditions conditions

AB (un, ut) un = 0 ut = 0
BC (σn, σt) σn = 0 σt = 0
DA (σn, σt) σn = 0 σt = 0

CD (Case I) (σn, σt) σn = P[1− 2(y/a)] σt = 0
CD (Case II) (σn, σt) σt = σ

0
xy σn = 0

Table 1. Boundary conditions used for different boundary segments of the panels, Case
I and Case II (see Figure 1).
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correspondence between mesh points
and given boundary conditions

mesh point on mesh point on
given used the physical the imaginary

corner boundary boundary boundary boundary
points conditions conditions conditions conditions

A [(un, ut), (σn, σt)] [un, ut , σn] σn = 0 un = 0, ut = 0
B [(un, ut), (σn, σt)] [un, ut , σn] σn = 0 un = 0, ut = 0

C (Case II) [(σn, σt), (σn, σt)] [σn, σt , σn] σt = σ
0
xy σn = 0, σt = 0

C (Case I) [(σn, σt), (σn, σt)] [σn, σt , σn] σn = P σn = 0, σt = 0
D (Case II) [(σn, σt), (σn, σt)] [σn, σt , σn] σt = σ

0
xy σn = 0, σt = 0

D (Case I) [(σn, σt), (σn, σt)] [σn, σt , σn] σn =−P σn = 0, σt = 0

Table 2. Boundary conditions used for corner points of the panels, Case I and Case II
(see Figure 1).

material property boron/epoxy graphite/epoxy glass/epoxy

V f 0.50 0.70 0.45
E1 (106 psi) 29.59 26.25 5.60

composite E2 (106 psi) 2.68 1.49 1.20
G12 (106 psi) 0.81 1.04 0.60

ν12 0.23 0.28 0.26

epoxy E (106 psi) 0.50
ν 0.35

Table 3. Mechanical properties of composites used.

the maximum intensity of loading per unit area for the two cases of the panel (P and σ 0
xy , respectively)

is arbitrarily assumed to be 6000 psi (41.4 MPa). The FD mesh network used to model the panels with
different aspect ratios contains nodal points (24–56× 19) in the direction of x and y, respectively.

5.1. Orthotropic panel under application of an end moment (Case I). The numerical results obtained
for the relevant displacement and stress components at different sections of the panel under the end
moment are analyzed and presented in this section. Figure 3, top, shows the predicted deformed shape
of the boron/epoxy panel with b/a = 2, in which the displacements are magnified by a factor of 100.
The overall deformation pattern of the panel is found to be in good agreement with the physical model of
the panel. From the distribution of axial displacement components (ux) at different longitudinal sections
of a panel, it is observed that the displacement varies linearly and antisymmetrically with respect to the
panel width. At the right lateral end, the displacement takes its highest value and decreases gradually
towards the supporting end. For a particular longitudinal section, the lateral displacement (u y) is found to
remain constant over the panel width, the magnitude of which, however, gradually decreases as we move
towards the supporting end. Furthermore, the displacement field of the orthotropic panel is analyzed in
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Figure 3. Deformed shape (top) and distributions of axial (bottom left) and lateral (bot-
tom right) displacements at section y/a = 0 of boron/epoxy panels (Case I).

the perspective of panel aspect ratio. The axial and lateral displacements along the lower longitudinal
edge (y/a = 0) of the panel are presented with respect to the normalized axial position, as a function of
aspect ratio, in Figure 3, bottom. The axial displacement varies linearly with respect to the panel length,
whereas the lateral displacement varies nonlinearly. As far as the magnitude is concerned, the lateral
displacements are found to take much higher values than the axial displacements.

Figure 4 illustrates the distribution of axial stress components at different sections of the orthotropic

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

"#$%!&!'#()*#+,)#-.!-/!01#02!()*3((!4-56-.3.)!0)!7#//3*3.)!

(34)#-.(!-/!)83!+-*-.936-1:!60.32!;<0(3=>?!!"#$@!AB!

C1#02!()*3((?!!%%9&

=D%E =D%F =F%E F%F F%E D%F D%E

G
-
*5
02
#H
37
!6
-
(#
)#
-
.
?!
'"
#

F%F

F%A

F%&

F%I

F%J

D%F

%"!@F%F

%"!@F%A&

%"!@F%EF

%"!@F%KI

%"!@D%F

!

!

!

!

!

!

!

!

!

! LD

Jan 22 2009 02:55:06 PST
Version 2 - Submitted to JoMMS

Figure 4. Distribution of the axial stress component at different sections of the
boron/epoxy panel (Case I, b/a = 2).
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panel, b/a = 2. It is observed from the solution that the distribution of axial stress is identical for all
longitudinal sections of the panel, and varies linearly from its maximum to minimum value with respect
to panel width. The maximum and minimum values of the normalized axial stress are found to occur at
the two opposing edges, the magnitudes of which are 1 and −1. As far as the applied moment loading is
concerned, the FD solution for the axial stress component is completely in agreement with the expected
solution, both in terms of magnitude and nature of variation. The axial stress distributions are found to
be independent of the panel aspect ratio, that is, at a particular section of x/b, the distribution remains
identical for different b/a ratios both in terms of magnitude and shape. Other components of stress are
found to be insignificant when their magnitudes are compared with the magnitude of the axial stress.

5.2. Orthotropic panel subjected to shear loading (Case II). In this section, the FD solutions for the
composite panel (Case II) are presented mainly in the form of a comparison with the corresponding
solutions from the FEM. Note that no reliable theoretical solution for the present composite panel problem
is available in the literature. The reliability and accuracy of the present numerical solutions is, therefore,
verified by comparison with a numerical solution that is based on a completely different philosophy.
Therefore, the same panel problem was solved by FEM using the standard commercial software ANSYS
with two different aspect ratios, b/a = 2 and 3. Considering the rectangular shape of the panel, four-
noded rectangular plane elements (orthotropic) are used to construct the corresponding mesh network.
All elements have the same aspect ratio, and their distribution is kept uniform all over the domain. The
total number of finite elements used to discretize the panel is 800 (40× 20). The convergence as well as
accuracy of the solution is verified by varying the element mesh density.

Figure 5 presents the distributions of displacement components at the mid-longitudinal section of the
composite panels having different aspect ratios. For this particular loading on the panel, the lateral stress
distributions at the mid-longitudinal section are found to be straight vertical lines when analyzed from
the perspective of the panel width. The corresponding FE predictions of displacements are also included
in the same graphs. In general, the two solutions for displacements are very close to each other. A critical
comparison of the axial displacements reveals that the discrepancy between the two solutions is almost
negligible for panels with higher aspect ratios, but for shorter panels, FEM predicts slightly higher dis-
placements, especially in the regions near the two opposing longitudinal edges. Unlike the constant lateral
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Figure 5. Distributions of (a) axial and (b) lateral displacements at section x/b = 0.5 of
boron/epoxy panels (Case II).
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displacements predicted by the present numerical approach, FEM predicts a nonlinear distribution of the
displacement component, in which the case of axial displacement similarly shows a slight increase in lat-
eral displacement in the neighborhood of the opposing longitudinal edges. As far as the physical charac-
teristics of the panel are concerned, it may be difficult to verify that the FEM solution is reliable, especially
around the two opposing longitudinal edges where the displacements are found to assume higher values
than those at the interior region of the same section, x/b = 0.5. Results also show that the aspect ratio
has a significant influence on the displacement field of an orthotropic panel subjected to a shear loading.

Figure 6 presents the axial stress distributions at the support, x/b = 0 and at section x/b = 0.1 of the
panels for which b/a = 2 and 3. Along with the present FD solutions, the results of FEM are included
for the convenience of direct comparison. Sections near the supporting end have been chosen here for
consideration because the fixed end of the panel is identified to be the most critical section in terms of
stresses. For both panels, the two numerical solutions for axial stress are in excellent agreement. Slight
discrepancies between the solutions are observed, particularly at the corner points of the supporting end.
For the corner points of the supporting end, which are, in fact, the points of singularity by design, FE
results show higher nonlinearity, and, thus, a higher value of the axial stress compared to the nonlinearity
of FD solutions. The FD predictions at the section x/b = 0.1 are found to be identical to those of FE
solutions both at the edges and in the interior region. In general, the stress level is found to increase with
increased aspect ratio, and the nonlinearity of the distribution decreases as the panel becomes longer.
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Figure 6. Distributions of the axial stress component at the supporting end (top row)
and at the section x/b = 0.1 (bottom row) of boron/epoxy panels under shear loading
(Case II).
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Figure 7. Distributions of the shear stress component at the supporting end (top row)
and at the section x/b = 0.1 (bottom row) of boron/epoxy panels under shear loading
(Case II).

The nonlinear distribution of the stress at the support is found to approach linearity as the section under
consideration is moved away from the supporting end.

The distributions of shear stress along the panel width, particularly for sections x/b = 0 and 0.1, are
shown in Figure 7 for the panels with b/a = 2 and 3. The corresponding FE predictions of shear stress
are also included in the same figures. The top row of Figure 7 compares the two solutions for the shear
stress at the supporting edges of the two panels b/a = 2 and 3. The two solutions for the shear stress
at the fixed support are found to differ quite substantially in terms of both magnitude and shape. The
present ψ-formulation predicts a constant shear stress at the supporting end, the associated magnitude
of which is found to be identical to that applied at the right lateral end. In addition, for the present
orthotropic panel under shear loading, the shear stress at the support is found to be independent of panel
aspect ratio. However, the FEM predicts a highly nonlinear distribution for the shear stress at the support.
The maximum stress is observed at the upper and lower corners of the support, whereas the mid-region
experiences the minimum stress. This particular shape of the distribution is found to be the reverse of
the distributions obtained for the remaining longitudinal sections of the panel, in which the maximum
stress is observed at the mid-region and the stress vanishes at the upper and lower edges. The effect
of the singularity at the two corner points of the support is clearly reflected in the solutions from the
FDM, because the stresses predicted at the two corner points are found to be higher than those at the
remaining points of the support. Because the modeling of the boundary conditions for the corner points
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in standard FE simulations does not take into account the effect of the singularity, the predictions near
the corner regions may be unreliable. On the other hand, the transition of the boundary conditions in
our FD modeling is handled in a more efficient way; for example, for each of the corner points of the
panel, a total of three conditions out of the available four are satisfied appropriately (see Table 2). As
a result, the present solutions are claimed to be closer to the actual states of the stresses. Note that the
effect of the singularity in our FD solution is found to be highly localized, because the uniformity of the
shear stress distribution at the supporting end remains unaffected except for the two corner points; see
Figure 7, top. For sections away from the support, the shear stress distributions are significantly different
from the distributions at the support, where the maximum stress at a particular section develops at the
mid-width position, and the stress vanishes at the opposing longitudinal edges. The solutions at section
x/b = 0.1 are presented in the bottom row of Figure 7. The two numerical solutions are found to be
almost identical except for the small discrepancies at the two longitudinal surfaces. More specifically,
the comparison of solutions in these two graphs shows that the FEM predictions of shear stress at the
upper and lower surfaces are not reliable, even though the section concerned is free from singularities.
The present FDM is, however, found to be free from the drawbacks of standard computational methods,
and is able to predict the actual state of stresses at the surfaces.

Figure 8 shows the distribution of the lateral stress σyy at the sections x/b = 0 and 0.1 of the panel
with different aspect ratios. Figure 8, top left, shows the solutions from the FDM at the supporting end
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Figure 8. Distributions of the lateral stress component at the supporting end (top row)
and at the section x/b = 0.1 (bottom row) of boron/epoxy panels under shear loading
(Case II).
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of the panels having b/a = 1, 2, and 3. Stresses at the support are found to increase with increasing
panel aspect ratio, although the magnitude of the stress is lowest, compared to the magnitudes of shear
and axial stresses, at the support. Stresses at the two corner points of the supporting end are found to be
zero, which agrees with the physical conditions of the panels (see Table 2). Figure 8, top right, compares
the solutions for the stress at the support obtained by FDM and FEM. As shown in the figure, the two
solutions differ quite significantly from each other. The maximum normal stress at the support of the
panel, b/a = 3, predicted by FEM, is found to be around 15 times higher than that predicted by FDM,
which is in contrast with the stresses predicted for other sections of the panel. The bottom row of Figure
8 compares the solutions at section x/b = 0.1 for the two panels. From the figure, the two solutions at
section x/b = 0.1 are found to be comparable with minor deviations, especially in the regions of the top
and bottom surfaces. The FE solution for σyy does not reflect the physical characteristics of the panel,
because the stresses do not vanish on the top and bottom surfaces, even when the section concerned is free
from singularities. This inaccuracy of the FEM solution is found to be more pronounced as we approach
the section containing the points of singularity, calling into question the reliability of the solution at the
supporting end. The FD solution for the lateral stress σyy conforms appropriately to the physical model
of the panel for all regions of interest at or away from the surfaces.

The superiority of the present FDM in reproducing the stresses at the bounding surfaces is further
illustrated in Figure 9. The figure describes the distributions of axial stresses obtained by FDM and FEM
at the right lateral end of the panel with b/a = 2, subjected to a uniform shear loading only. The boundary
is basically free from any normal loading, and the corresponding state of stress is modeled exactly by the
present method. However, the FEM solution is found to assume a peculiar antisymmetric distribution
of the axial stress at the right end, which is highly unlikely. The effect of the singularity on the FEM
solution is very prominent; quantitative analysis shows that the region over which the effect of singularity
is prominent is more than 20% of the width, from both surfaces y/a = 0 and 1. On the other hand, the
present computational method allows one to exactly satisfy the condition that σn = 0 at the corner points
of the right end (see Table 2), and, additionally, the condition is reflected appropriately in the solution.

The present computational scheme is extended to investigate the effects of stiffeners on the elastic field
of the orthotropic panels. A maximum in the panel’s axial stress (Case II) develops at the fixed support
(y/a = 0) when the panel is free from the stiffeners. However, the stress at the support is found to vanish
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Figure 9. Comparison of two solutions for the axial stress distribution at the right lateral
end of boron/epoxy panel (b/a = 2) under shear loading (Case II).
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Figure 10. Distributions of the shear stress component along the stiffened edge, y/a = 0,
of the boron/epoxy panel (b/a = 3) under shear loading (Case II).

when both opposing longitudinal edges (y/a = 0 and 1) are stiffened. We note that the physical condition
of the stiffeners is modeled here by restraining the tangential displacements (ux) of the longitudinal
edges, while they are kept free from normal loading [Nath and Ahmed 2009]. The greatest impact of
the stiffeners on the elastic field is realized in the shearing stress that develops along the stiffened edges,
which is presented comparatively in Figure 10. The figure shows results for two cases of stiffened panels:
(a) one of the longitudinal edges (y/a = 0) is stiffened; and (b) both longitudinal edges (y/a = 0 and 1)
are stiffened. When the two opposing edges are stiffened, a uniform shearing stress develops along the
stiffened edges, which is, with respect to magnitude, identical to the magnitude of the applied loading, σ 0

xy .
However, when only the edge, y/a = 0, is stiffened, a gradually increasing shearing stress is observed
along the edge, the magnitude of which varies approximately within 1.0≤ (σxy/σ

0
xy) < 1.5 (see Figure

10). Similar to the previous cases, the FDM and FEM solutions are found to be nearly identical for almost
all regions, except for the two extreme regions of the longitudinal edge. The maximum shearing stress
predicted by the present FDM at the stiffened edge is [σxy]max ≈ 2.6σ 0

xy , which is found on the stiffened
edge immediately adjacent to the bottom-right corner; the corresponding FEM prediction is only 1.23
times the applied stress, σ 0

xy , which is found at the bottom-right corner of the stiffened edge. Because the
point of maximum stress, identified by the present FDM, is free from singularities, and, additionally, the
method reproduces the stress at the bottom corner point of the right lateral end exactly, the FD prediction
of the maximum shear stress appears to be highly reliable, even though it is not supported by FEM.
Moreover, the stress predicted by FEM near the left corner region of the stiffened edge is questionable,
because it assumes a value less than that of the applied one, σ 0

xy .
Figure 11 presents the distribution of the lateral stress component at the fixed support of a panel

composed of different composites. The distribution, therefore, describes the effect of fiber reinforcement
in epoxy resin on the elastic field that develops under shear loading (Case II). The analysis presented
shows that the effect of fiber reinforcement on the lateral stress, especially at the supporting end, is quite
significant, whereas the effect on the axial and shearing stresses is not significant. Figure 11 reveals that
the highest lateral stress develops when the epoxy resin is free from fibers, that is, the panel is composed
of an isotropic epoxy resin. The stress level is found to decrease significantly as the longitudinal fibers
are inserted into the resin. Among the composites, the maximum lateral stress at the support is found for
the case of glass/epoxy. The general trend of the results suggests that at the supporting end of the shear
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Figure 11. Effect of fiber reinforcement on the lateral stress at the supporting end of the
boron/epoxy panel (b/a = 3) under shear loading (Case II).

loaded panel, where displacements in both directions are restrained, the magnitude of the lateral stress
decreases with increased elastic moduli of the panel material (see Table 3).

6. Conclusions

The elastic behavior of an orthotropic composite panel with mixed boundary conditions is analyzed using
an efficient numerical method. The special advantages of the method over existing approaches are its
ability to satisfy and reproduce the boundary conditions appropriately, whether they are specified in
terms of loading, restraints, or any combination thereof. Moreover, the present displacement potential-
based computational method requires less computational effort to solve a problem compared to the effort
required by standard computational approaches. Results of the present analysis show that critical stresses
at the panel support are significantly influenced by the aspect ratio as well as edge stiffening, particularly
when the panel is subjected to shear loading. Comparative analysis to the standard finite element method
verifies the superiority of the present displacement potential formulation in conjunction with the finite
difference method for predicting accurate and reliable stresses at any critical section of the panel, specially
at the regions of transition of boundary conditions.

Index of notation

E1 Elastic modulus of the material in x-direction σxx , σyy Axial and lateral stress components
E2 Elastic modulus of the material in y-direction σxy Shearing stress component in the xy plane
ν12, ν21 Major and minor Poisson’s ratios un, ut Normal and tangential displacement
G12 In-plane shear modulus in the 1-2 plane σn,σt Normal and tangential stress
E Elastic modulus of isotropic material ψ Displacement potential function
G Shear modulus of isotropic material a, b Dimensions of the panel in x- and y-directions
l,m Direction cosines of the normal to a boundary P Maximum intensity of normal stress in Case I
ux , u y Displacement components σ 0

xy Intensity of applied shear stress in Case II
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