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JAMES M. KELLY AND DIMITRIOS KONSTANTINIDIS

Solutions are given for the tensile stresses in the steel reinforcing shims of elastomeric isolators. The
method makes use of generalized plane stress and uses a stress function approach, treating the shim as a
thin plate with body forces generated by surface shears on the top and bottom of the plate. It is shown that
the pressure in the rubber acts as a potential for these body forces. The solutions are applicable to low
and moderate shape factor bearings where it is acceptable to assume that the elastomer is incompressible,
and also to the more common current situation when the shape factor is so large that the compressibility
of the rubber must be included. The stress state in the steel reinforcing plates is calculated for both pure
compression of the bearing and for when the bearing is loaded by a bending moment. These two cases,
separately and in combination, are the typical situation in current practice. While a solution for the stress
state in the shims of a circular isolator, assuming incompressibility and under pure compression, has
been available using an analogy with the stresses in a rotating circular plate, the use of the stress function
method is new and suggests a method to extend the solutions to other shapes of isolator other than
circular. The solutions for pure compression, including compressibility of the rubber, and the solutions
for bending, both incompressible and compressible, are entirely new.

1. Introduction

The essential characteristic of the elastomeric isolator is the very large ratio of the vertical stiffness
relative to the horizontal stiffness. This is produced by the reinforcing plates, which in current industry
standard are thin steel plates. These plates prevent lateral bulging of the rubber but allow the rubber
to shear freely. The vertical stiffness can be several hundred times the horizontal stiffness. The steel
reinforcement has the effect of generating shear stresses in the rubber in the isolator, and these stresses
act on the steel plates to cause tension stresses which, if they were to become large enough, could result
in failure of the steel shims through yielding or fracture. The external pressure on the isolator at which
this might happen is an important design quantity for an isolator, and it is therefore necessary to be able
to estimate these tensile stresses under the applied external load. An analysis is given for the stresses in a
circular isolator under the assumption that the rubber is incompressible, generally in the low to moderate
shape factor case. The analysis is also extended to the large shape factor case where the assumption of
incompressibility cannot be made, and the effect of the bulk modulus of the rubber must be included. In
current practise, most seismic isolation bearings use very large shape factors, where bulk compressibility
must be included. These analyses make use of a stress function based on the observation that the pressure
in the rubber acts as a potential for the internal stresses in the steel plates. Solutions are given for pure
compression loading on the bearing and for bending in the bearing. Both compression and bending are
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important in this analysis since, in use, the lateral displacement of a bearing superposes on the bearing
a bending moment that can add to or reduce the stresses due to compression, and could in principle
generate increased tension stresses or, if large enough, cause compression stresses in the thin plates and
lead to their failure due to buckling.

The basis for the requirements for the steel shim stresses in all the codes governing the design of
elastomeric bearings for bridges or for vibration isolation is a very simplistic formula [Spitz 1978; Stanton
and Roeder 1982] in which the rubber is assumed to be a liquid under pressure and only equilibrium
is used. The geometry of the bearing is a thin strip, and the shim is inextensible. This result is almost
certainly wrong and clearly cannot be applied to circular shims with holes or external loading other
than pure compression. Finite element analysis has been used to verify the accuracy of the approximate
solution for the pressure distribution in the rubber, for example by Billings [1992] and Imbimbo and
De Luca [1998], and in principle could be used to compute the stresses in the shims for a specific design
under a variety of loading conditions, but this does not appear to have been done; and, in any case, finite
element analysis is unlikely to be a useful design tool for these fairly low-cost items. The method given
in this paper, based on the use of a stress function approach, can be extended to different cross-sectional
shapes and other types of external loading.

2. Compression and bending of a rubber pad within incompressibility theory

2.1. Pure compression. A linear elastic theory is the most common method used to predict the compres-
sion stiffness of a thin elastomeric pad. The first analysis of the compression stiffness was done using an
energy approach by Rocard [1937]; further developments were made by Gent and Lindley [1959] and
Gent and Meinecke [1970]. An approximate strength-of-materials-type theory, applicable to bearings
with low to moderate shape factors, was developed in [Kelly 1996], based on the assumption that the
material is incompressible. The solutions that are the starting point for the present analysis are developed
in detail there and will only be given here in their final form.

The analysis is based on the kinematic assumptions that points on a vertical line before deformation
lie on a parabola after loading, and that horizontal planes remain horizontal. We consider an arbitrarily
shaped pad of thickness t and locate a rectangular Cartesian coordinate system, (x, y, z), in the middle
surface of the pad, as shown in Figure 1, left. The right half of the same figure shows the displacement
pattern under the kinematic assumptions above. This displacement field satisfies the constraint that the
top and bottom surfaces of the pad are bonded to rigid substrates, and takes the form

A
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Z, w

(a)

A

D/2
D/2

t

Z, w

X, uD/2
D/2

Figure 1. Constrained rubber pad and coordinate system.
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u(x, y, z)= u0(x, y)
(

1−
4z2

t2

)
, v(x, y, z)= v0(x, y)

(
1−

4z2

t2

)
, w(x, y, z)= w(z). (1)

The assumption of incompressibility produces a further constraint on the three components of strain,
εxx , εyy , εzz , in the form

εxx + εyy + εzz = 0, (2)

which leads to

(u0,x + v0,y)
(

1−
4z2

t2

)
+w,z = 0,

where the commas imply partial differentiation with respect to the indicated coordinate. Integration
through the thickness provides the two-dimensional form of the incompressibility constraint as

u0,x + v0,y =
3εc

2
, (3)

where the compression strain εc is defined by

εc =−
w(t/2)−w(−t/2)

t
=
1

t
(εc > 0 in compression).

The stress state is assumed to be dominated by the internal pressure, p, such that the normal stress
components, σxx , σyy , σzz , can be equated to −p. The shear stress components, τxz and τyz , generated
by the constraints at the top and bottom of the pad, are included, but the in-plane shear stress, τxy , is
neglected. The equations of equilibrium for the stresses reduce under these assumptions to

τxz,z = p,x , τyz,z = p,y . (4)

We assume that the material is linearly elastic and that the shear stresses τxz and τyz are related to the
shear strains by G, the shear modulus of the material. The equation for the pressure from which it and
all other quantities can be derived is

p,xx + p,yy =∇
2 p =−

12G1
t3 =−

12G
t2 εc, (5)

where εc = 1/t is the compression strain. The boundary condition, p = 0, on the edge of the pad
completes the system for p(x, y).

The vertical stiffness of a rubber bearing is given by the formula

KV =
Ec A

tr
, (6)

where A is the area of the bearing, tr is the total thickness of rubber in the bearing, and Ec is the
instantaneous compression modulus of the rubber-steel composite under the specified level of vertical
load. The value of Ec for a single rubber layer is controlled by the shape factor, S, defined as

S =
loaded area

free area
,
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Z
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X

Figure 2. Coordinate system for a circular pad of radius R.

which is a dimensionless measure of the aspect ratio of the single layer of the elastomer. For example,
for a circular pad of radius R and thickness t ,

S =
R
2t
. (7)

To determine the compression modulus, Ec, we solve for p from (5), and integrate over the area to
determine the resultant normal load, P , from which Ec is given by

Ec =
P

Aεc
. (8)

For example for a circular pad of radius R, as shown in Figure 2, Equation (5) reduces to

∇
2 p =

d2 p
dr2 +

1
r

dp
dr
=−

12G
t2 εc; r =

√
x2+ y2. (9)

The solution is

p = A ln r + B−
3G
t2 r2εc,

where A and B are constants of integration; because p must be bounded at r = 0 and p = 0 at r = R,
the solution becomes

p =
3G
t2 (R

2
− r2)εc. (10)

It follows that

P = 2π
∫ R

0
p(r)r dr =

3GπR4

2t2 εc,

and with S = R/(2t) and A = πR2, we have Ec = 6GS2.

2.2. Pure bending. The bending stiffness of a single pad is computed using a similar approach. The
displaced configuration is obtained in two stages. First visualize the deformation that would occur if the
bending conformed to elementary beam theory (shown dotted in Figure 3). Because this cannot satisfy
the incompressibility constraint, a further pure shear deformation is superimposed. The displacement
field is given by

u(x, y, z)= u0(x, y)
(

1−
4z2

t2

)
−α

z2

2t
, v(x, y, z)= v0(x, y)

(
1−

4z2

t2

)
, w(x, y, z)=

αzx
t
. (11)
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Here, α is the angle between the rigid plates in the deformed configuration, and the bending is about the
y-axis. The radius of the curvature, ρ, generated by the deformation, is related to α by 1/ρ = α/t which,
with the incompressibility condition, leads to

p,xx + p,yy =
12Gα

t3 x, (12)

with p = 0 on the edges.
The solution technique is to solve (12) for p and to compute the bending moment, M , from

M =−
∫
A

p(x, y)x dA,

and use an analogy with beam theory, where M = E I (1/ρ), to compute the effective bending stiffness
E Ieff = M/(α/t).

For a circular pad of radius R (Figure 2), the equation to be solved, using polar coordinates r and θ ,
is

p,rr +
1
r

p,r +
1
r2 p,θθ =

α

t
12G

t2 r cos θ. (13)

The solution is

p(r, θ)=
(

Ar + B
1
r
+Cr3

)
cos θ,

where C = (α/t)(3G)/(2t2). For the complete circle, 0 ≤ r ≤ R, for p to be bounded at r = 0 means
B = 0, and using the boundary condition p = 0 at r = R, gives

p =
3G
2t2

α

t
(r2
− R2)r cos θ (14)

and

M =
Gα
8t3 πR6. (15)

The effective moment of inertia in this case, taking E = Ec = 6GS2, is πR4/12, or one third of the
conventional moment of inertia for the bending of a circular cross section.

Z, w

X, u

) a/2

) a/2

M

M

Figure 3. Pad between rigid constraint layers in pure bending.
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It is useful to define a bending strain εb analogous to the compression strain εc through

εb =
α

t
R =

M
E Ieff

R, (16)

in terms of which we have

∇
2 p = p,rr +

1
r

p,r +
1
r2 p,θθ =

12G
t2 R

εbr cos θ (17)

and

p =
3Gεb

2Rt2 (r
2
− R2)r cos θ. (18)

3. Steel stresses in circular bearings with incompressible rubber

The state of stress in a rubber layer, within a multilayer bearing under compression or bending, or a
combination of the two, is assumed to be a state of pressure that would induce a bulging of the rubber
were it not restrained by the thin steel reinforcing plates (often referred to as shims) that are bonded to the
rubber. The restraint of the rubber by the steel causes shear stresses in the rubber which act on each side
of the steel plate to induce tensile or compression stresses in the plane of the plate. It is possible to solve
for these in-plane stresses using two-dimensional elasticity theory, assuming that the plate is in a state of
generalized plane stress and that the surface shear stresses are equivalent to in-plane body forces. While
it is possible to formulate the plane stress problem for an arbitrarily shaped plate, we consider only the
circular bearing, and we will also use the notations for stresses and stress functions from [Timoshenko
and Goodier 1970].

In polar coordinates (r, θ), the equations of equilibrium for the stresses in the rubber are, using the
Timoshenko notation,

∂σr

∂r
+

1
r
∂τrθ

∂θ
+
∂τr z

∂z
+
σr − σθ

r
= 0,

∂τrθ

∂r
+

1
r
∂σθ

∂θ
+
∂τθ z

∂z
+

2τrθ

r
= 0,

∂τr z

∂r
+

1
r
∂τθ z

∂θ
+
∂σz

∂z
+
τr z

r
= 0.

(19)

It is assumed that σr = σθ =−p, and are independent of z; and also that the in-plane shear stress τrθ is
negligible. Hence the first of these equations yields

∂τr z

∂z
=
∂p
∂r
, (20)

and the second
∂τθ z

∂z
=

1
r
∂p
∂θ
. (21)

Inserting these equilibrium equations into the third equation in (19), differentiating with respect to z
and interchanging the order of differentiation changes it to

p,rr +
1
r

p,r +
1
r2 p,θθ +

∂2σz

∂z2 = 0.
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Figure 4. Shear stresses producing equivalent body forces in the plate.

This equation, with substitution from either (20) or (21), allow us, if necessary, to calculate the distribu-
tion of σz through the thickness of the pad. Within the stress assumptions above we have p = p(r, θ)
which means that we can write

τr z =
∂p
∂r

z, τθ z =
1
r
∂p
∂θ

z. (22)

The shear stresses at the bottom of the rubber layer τr z|z=−t/2 and τθ z|z=−t/2 become the shear stresses
on the top surface of the plate, and the shear stresses at the top of the rubber layer τr z|z=t/2 and τθ z|z=t/2

are the shear stresses on the lower surface of the plate (Figure 4).
The internal stresses in the steel shims satisfy the equilibrium equations

∂σr

∂r
+

1
r
∂τrθ

∂θ
+
σr − σθ

r
+ R = 0,

∂τrθ

∂r
+

1
r
∂σθ

∂θ
+

2τrθ

r
+ S = 0, (23)

where R, S are the equivalent body forces per unit volume created by the surface shear stresses and are
given by

tp R = τr z
∣∣
z=−t/2− τr z

∣∣
z=t/2, tp S = τθ z

∣∣
z=−t/2− τθ z

∣∣
z=t/2,

where tp is the thickness of the steel shim, leading to

R =−
∂p
∂r

t
tp
, S =−

1
r
∂p
∂θ

t
tp
. (24)

It follows that the pressure plays the role of a potential, V (r, θ), for the body forces in the form
V = (t/tp)p(r, θ) with R =−∂V/∂r and S =−(1/r)∂V/∂θ . The equations of equilibrium for the plate
then become

∂(σr − V )
∂r

+
1
r
∂τrθ

∂θ
+
(σr − V )− (σθ − V )

r
= 0,

∂τrθ

∂r
+

1
r
∂(σθ − V )

∂θ
+

2τrθ

r
= 0. (25)

These equations are satisfied by a stress function 8(r, θ) for the stresses, such that

σr − V =
1
r
∂8

∂r
+

1
r2

∂28

∂θ2 , σθ − V =
∂28

∂r2 , τrθ =−
∂

∂r

(1
r
∂8

∂θ

)
; (26)
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and under the assumption of plane stress the equation for 8 is

∇
2
∇

28+ (1− ν)∇2V = 0, (27)

where ν is the Poisson ratio of the steel. In the case of pure compression the pressure satisfies (4):

∇
2 p =−

12G
t2 εc, (28)

and, for bending, (12):

∇
2 p =

12Gr cos θ
t2 R

εb. (29)

3.1. Stress function solution for pure compression. The stress function8 for pure compression is given
by the solution of

∇
2
∇

28+C = 0, (30)

where C is a constant having the value

C =−(1− ν)
t
tp

12G
t2 εc. (31)

In this case the stress function depends only on r , and we look for a solution of that form. The result is
[Timoshenko and Goodier 1970]

8= A ln r + Br2 ln r +Cr2
+ D−

Cr4

64
.

The resulting stresses are given by

σr −
t
tp

p(r)=
A
r2 + B(1+ 2 ln r)+ 2C −

Cr2

16
, σθ −

t
tp

p(r)=−
A
r2 + B(3+ 2 ln r)+ 2C −

3
16

Cr2.

It is clear that both A and B must vanish for the completely circular plate, and using σr (R)= 0 and the
fact that the pressure is also zero at r = R, we have 2C = C R2/16. Using the pressure from (10) and C
from (31), the solution for the tensile stresses becomes

σr =
3G
ttp

3+ ν
4

(R2
− r2)εc = 3GS2εc

t
tp
(3+ ν)

(
1−

r2

R2

)
,

σθ =
3
4

Gεc

t tp

(
(3+ ν)R2

− (1+ 3ν)r2)
= 3GS2εc

t
tp

(
3+ ν− (1+ 3ν)

r2

R2

)
.

(32)

The distribution of the stresses in the plate under pure compression is shown in Figure 5.
At the center of the plate we have

σmax = σr = σθ =
6GS2

2
t
tp
εc(3+ ν). (33)

By expressing the maximum value of the stresses in terms of the average pressure over the plate, pave,
given by

pave = Ecεc = 6GS2εc, (34)
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Figure 5. Plate stresses in compression, assuming incompressibility.

then
σmax

pave
=

3+ ν
2

t
tp
, (35)

which can be used to determine the maximum pressure needed to cause yield in the shim at the center.
This shows why, under normal circumstances, the stresses in the shims due to the pressure is not consid-
ered important. For example, if we have steel shims 3.0 mm thick and rubber layers 15.0 mm thick, the
stresses in the steel due to a pressure of 7.0 MPa (which is standard) are only 58 MPa, well below the
yield level of the plate material. If the tension stress at the center is in fact at the level of the yield stress
of the material, σo, then the average pressure to initiate yield is pave = 2σo(tp/t)/(3+ ν). This is only
the start of yield, but the plate will experience further yielding as the pressure increases. The zone of
yielding will spread from the center to the outer radius so that the pressure can increase further until the
entire plate has yielded, that is, until the region 0≤ r ≤ R is fully plastic.

Note that the problem in this case is the same as that for the stresses in a thin disk due to centrifugal
forces. That solution is given in Timoshenko and Goodier [1970] using an entirely different approach
based on displacements, and, except for constants, is identical to this. The same reference also provides
the solution for a circular plate of radius b with a central hole of radius a, which for a ≤ r ≤ b is

σr =
3
4

Gεc

t tp
(3+ ν)

(
b2
+ a2
−

a2b2

r2 − r2
)
, σθ =

3
4

Gεc

t tp
(3+ ν)

(
b2
+ a2
+

a2b2

r2 −
1+ 3ν
3+ ν

r2
)
. (36)

The maximum radial stress is at R =
√

ab, where

σr =
3
4

Gεc

t tp
(3+ ν)(b− a)2, (37)

and the maximum tangential stress is at the inner boundary, where

σθ =
3
4

Gεc

t tp
(3+ ν)

(
b2
+

1− ν
3+ ν

a2
)
. (38)
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This is always larger than the maximum radial stress. When the radius a of the hole becomes very small,
the maximum tangential stress approaches a value twice as large as that for the complete circular plate.
This another example of a stress concentration at a small hole.

3.2. Stress function solution for pure bending. For the case of pure bending on the pad, the equation
for the stress function takes the form

∇
2
∇

28+Cr cos θ = 0, (39)

where now

C = (1− ν)
12G
ttp R

εb. (40)

We look for a solution of the form
8(r, θ)= f (r) cos θ.

From [Timoshenko and Goodier 1970], the ordinary differential equation for f is

d4 f
dr4 +

2
r

d3 f
dr3 −

3
r2

d2 f
dr2 +

3
r3

d f
dr
−

3
r4 f +Cr = 0. (41)

The solution is

f (r)= Ar3
+

B
r
+Cr + Dr ln r −

Cr5

192
. (42)

The resulting stresses are

σr −
t
tp

p =
(

2Ar − 2B
r3 +

D
r

)
cos θ + R,

σθ −
t
tp

p =
(

6Ar + 2B
r3 +

D
r

)
cos θ + S,

τrθ =

(
2Ar − 2B

r3 +
D
r

)
sin θ + T ,

where

R =
(1

r
∂
∂r
+

1
r2
∂2

∂θ2

)(
−

Cr5

192
cos θ

)
=−

Cr3

48
cos θ,

S = ∂2

∂r2

(
−

Cr5

192
cos θ

)
=−

5Cr3

48
cos θ,

T =− ∂
∂r

(
1
r
∂
∂θ

(
−

Cr5

192
cos θ

))
=−

Cr3

48
sin θ.

For the complete plate 0≤ r ≤ R, both B and D must vanish, giving

σr =
t
tp

p(r, θ)+ 2Ar cos θ −
Cr3

48
cos θ;

and since p(r, θ) is zero on the boundary, the requirement that σr (R, θ)= 0 gives 2A=C R2/48, leading
to the final results
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Figure 6. Plate stresses under bending moment for the incompressible case.

σr (r, θ)=−
Gεb

4t tp R
(5+ ν)(R2

− r2)r cos θ,

σθ (r, θ)=
Gεb

4t tp R

(
(1+ 5ν)r2

− 3(1+ ν)R2)r cos θ,

τrθ (r, θ)=−
Gεb

4t tp R
(1− ν)(R2

− r2)r sin θ.

(43)

These results are plotted as nondimensional stresses in Figure 6.

Sr =
σr (r, θ)

GS2εb(t/tp)
=−(5+ ν)

(
1−

( r
R

)2
)

r
R

cos θ,

Sθ =
σθ (r, θ)

GS2εb(t/tp)
=

(
(1+ 5ν)

( r
R

)2
− 3(1+ ν)

)
r
R

cos θ,

Trθ =
τrθ (r, θ)

GS2εb(t/tp)
= (1− ν)

(
1−

( r
R

)2
)

r
R

sin θ.

(44)

4. Steel stresses due to compression in circular pads with large shape factors

The theory for the compression of a rubber pad given in the preceding section is based on two assumptions:
first, that the displacement pattern is defined by (1); second, that the normal stress components in all
three directions are equal to the pressure, p, in the material. The equation that is solved for p results
from the integration of the incompressibility constraint, that is, Equation (2), through the thickness of
the pad, leading to an equation for p(x, y) of the form given in (5). To include the influence of bulk
compressibility, we need only replace the incompressibility constraint by

εxx + εyy + εzz =−
p
K
, (45)
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where K is the bulk modulus. Integration through the thickness leads to an equation for p(x, y) of the
form

∇
2 p−

12p
t2

G
K
=−

12G
t2 εc, (46)

that is solved as before, with p = 0 on the edge of the pad.
We now consider a circular pad with a large shape factor, an external radius R, and a thickness t . The

pressure in the pad is axisymmetrical, that is, p = p(r) where 0≤ r ≤ R; therefore, (46) becomes

d2 p
dr2 +

1
r

dp
dr
− λ2(p− K εc)= 0, (47)

where λ2
= 12G/(K t2). The boundary conditions to be satisfied are p = 0 at r = R, and p is finite at

r = 0.
The solution involves the modified Bessel functions of the first and second kinds, I0 and K0. Because

the solution is bounded at r = 0, the term in K0 is excluded, and the general solution for p(r) is

p(r)= K
(

1−
I0(λr)
I0(λR)

)
εc. (48)

Integrating p over the area of the pad gives

P = KπR2
(

1−
2
λR

I1(λR)
I0(λR)

)
εc, (49)

where I1 is the modified Bessel function of the first kind of order 1.
The resulting expression for the compression modulus is

Ec = K
(

1−
2
λR

I1(λR)
I0(λR)

)
, (50)

where

λR =
(12G R2

K t2

)1/2
=

(48G
K

)1/2
S,

and the shape factor, S, is R/(2t).
The tension stresses in the steel reinforcing plates can be calculated in the same way as before by

using the stress function method. The equation for the stress function remains the same,

∇
2
∇

28+ (1− ν)∇2V = 0;

and the definition of the potential V (r, θ) is the same, V = t
tp

p(r, θ); but the pressure now satisfies the
equation

∇
2 p−

12p
t2

G
K
=−

12G
t2 εc. (51)

Thus the stress function now must satisfy the equation

∇
2
∇

28+ (1− ν)
t
tp

(
12G

t2

( p
K
− εc

))
= 0. (52)

With p given by (48), we have
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∇
2
∇

28− (1− ν)
t
tp

12G
t2

I0(λr)
I0(λR)

εc = 0. (53)

The solution for pure compression is rotationally symmetric, and the complementary part of the solution
remains the same, but it is necessary to determine the particular integral that corresponds to the term
I0(λr). To develop this, we recall that in radial symmetry,

∇
2
∇

2( f )= 1
r

d
dr

(
r d

dr

(1
r

d
dr

(
r d f

dr

)))
. (54)

By taking f = I0(λr), changing the variable to x = λr , and recalling that x so defined is dimensionless
and that λ is a reciprocal length, we have ∇2

∇
28|r = (1/λ4)∇2

∇
28|x . Thus we have successively

1
x

d
dx

(
x d

dx

(1
x

d
dx

(
x d f

dx

)))
= I0(x),

x d
dx

(1
x

d
dx

(
x d f

dx

))
=

∫
x I0(x)dx = x I1(x),

1
x

d
dx

(
x d f

dx

)
=

∫
I1(x)dx = I0(x),

x d f
dx
=

∫
x I0(x)dx = x I1(x),

f = I0(x).

The result for the stress function is 8= A ln r + Br2 ln r +Cr2
+ D+ 1

λ4 C I0(λr), where now the
constant C is given by

C = (1− ν)
t
tp

12G
t2

1
I0(λR)

εc. (55)

The stresses in the plate are now given by

σr −
t
tp

p(r)=
A
r2 + B(1+ 2 ln r)+ 2C +

C
λ2

I1(λr)
λr

,

σθ −
t
tp

p(r)=−
A
r2 + B(3+ 2 ln r)+ 2C +

C
λ2

(
I0(λr)−

I1(λr)
λr

)
.

Since in the case of a complete plate A and B must vanish, and the pressure is zero at the outside radius,
the condition that σr (R)= 0 means that

C =−
C

2λ2

I1(λR)
λR

,

and, with p(r) given by (48), we have

σr =
t
tp

K εc

(
1−

I0(λr)
I0(λR)

−
1− ν

I0(λR)

( I1(λR)
λR

−
I1(λr)
λr

))
,

σθ =
t
tp

K εc

(
1−

I0(λr)
I0(λR)

−
1− ν

I0(λR)

( I1(λR)
λR

+
I1(λr)
λr
− I0(λr)

))
.

(56)

At the center of the plate, the stresses become
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Figure 7. Plate stresses in compression for the large shape factor case.

σr = σθ =
t
tp

K εc

(
1−

1
I0(λR)

−
1− ν

I0(λR)

( I1(λR)
λR

−
1
2

))
. (57)

To illustrate these results, we look at the case when the shape factor is 30, the rubber shear modulus
is 0.42 MPa, and the bulk modulus is 2000 MPa, giving λR = 3. The normalized plate stresses denoted
by Sr = σr/((t/tp)K εc) and Sθ = σθ/((t/tp)K εc) are shown as functions of r/R in Figure 7.

If we compare the maximum value of the stress at the center of the plate of this solution with the same
result for the incompressible case, we can use (50) to determine the average pressure, and (57) to get

σmax

pave
=

t
tp

I0(λR)− 1− (1− ν)
(
I1(λR)/(λR)− 1

2

)
I0(λR)− 2I1(λR)/(λR)

. (58)

Figure 8 is a graph of (58) for a range of values of λR from 0 to 5 (0 being the incompressible case). It
shows that for the same value of εc and t/tp, the peak stresses are smaller. This implies that the result for
the incompressible computation is a conservative estimate of the stresses in the large shape factor case,

0 1 2 3 4 5
1.3

1.4

1.5

1.6

1.7

 λR

( 
t p

 /
 t

) 
σ

m
a
x
 /

 p
a
v
e

Figure 8. Ratio of maximum plate stresses for compressible and incompressible cases.
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which, if it can be used, greatly simplifies the prediction of the maximum value of the tension stress in
this case.

5. Steel stresses due to bending in circular pads with large shape factors

For a circular pad, the equation to be solved is

p,rr +
1
r

p,r +
1
r2 p,θθ − λ2 p =

α

t
λ2Kr cos θ, (59)

with p = 0 at r = R.
The result for p(r, θ) is

p =
αK

t

(
R

I1(λr)
I1(λR)

− r
)

cos θ = K εb

( I1(λr)
I1(λR)

−
r
R

)
cos θ. (60)

It follows that the ∇2 p reduces to

∇
2 p =

12G
t2

I1(λr)
I1(λR)

cos θεb, (61)

and that the equation to be solved for the stress function becomes

∇
2
∇

28+ (1− ν)
t
tp

12G
t2

I1(λr)
I1(λR)

cos θεb = 0. (62)

We look for a solution of the form
8(r, θ)= f (r) cos θ.

From [Timoshenko and Goodier 1970], the ordinary differential equation for f is

d4 f
dr4 +

2
r

d3 f
dr3 −

3
r2

d2 f
dr2 +

3
r3

d f
dr
−

3
r4 f +C I1(λr)= 0, (63)

where for this case we have

C = (1− ν)
t
tp

12G
t2

εb

I1(λR)
. (64)

The complementary part of the solution is

f (r)= Ar3
+

B
r
+Cr + Dr ln r,

and the particular integral can be shown (after considerable algebraic manipulation) to be −(C/λ4)I1(λr).
The resulting stresses are

σr −
t
tp

p =
(

2Ar −
2B
r3 +

D
r

)
cos θ + R,

σθ −
t
tp

p =
(

6Ar +
2B
r3 +

D
r

)
cos θ + S,

τrθ =

(
2Ar −

2B
r3 +

D
r

)
sin θ + T ,
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where
R =

(1
r
∂

∂r
+

1
r2

∂2

∂θ2

)(
−

C I1(λr) cos θ
λ4

)
=

2I1(λr)− I0(λr)λr
λ2r2

C
λ2 cos θ,

S =
∂2

∂r2

(
−

C I1(λr) cos θ
λ4

)
=

I0(λr)λr − I1(λr)(2+ λ2r2)

λ2r2

C
λ2 cos θ,

T =−
∂

∂r

(
1
r
∂

∂θ

(
−

C I1(λr) cos θ
λ4

))
=

2I1(λr)− I0(λr)λr
λ2r2

C
λ2 sin θ.

For the complete plate 0≤ r ≤ R, both B and D must vanish and σ(R, θ)= 0, giving

A =
1

2R
I0(λR)λR− 2I1(λR)

λ2 R2

C
λ2 .

Substituting for p(r, θ) from (60) and C from (64), and making use of λ2 from (47), leads to

σr = Kεb
t
tp

(
I1(λr)
I1(λR)

−
r
R
+

1− ν
I1(λR)

( I0(λR)λR−2I1(λR)
λ2 R2

r
R
−

I0(λr)λr − 2I1(λr)
λ2r2

))
cos θ,

σθ = Kεb
t
tp

(
I1(λr)
I1(λR)

−
r
R
+

1− ν
I1(λR)

(
3

I0(λR)λR−2I1(λR)
λ2 R2

r
R
+

I0(λr)λr−I1(λr)(λ2r2
+2)

λ2r2

))
cos θ,

τrθ = K εb
t
tp

1− ν
I1(λR)

( I0(λR)λR− 2I1(λR)
λ2 R2

r
R
−

I0(λr)λr − 2I1(λr)
λ2r2

)
sin θ. (65)

These results are plotted in Figure 9 again for the case where λR = 3.
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Figure 9. Plate stresses for bending in the large shape factor case.

6. Conclusion

The essential characteristic of the elastomeric isolator is the very large ratio of the vertical stiffness
relative to the horizontal stiffness. This is produced by the reinforcing plates, which in current industry
standard are thin steel plates. These plates prevent lateral bulging of the rubber, but allow the rubber
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to shear freely. The vertical stiffness can be several hundred times the horizontal stiffness. The steel
reinforcement has the effect of generating shear stresses in the rubber in the isolator and these stresses
act on the steel plates to cause tension stresses which, if they were to become large enough, could result
in failure of the steel shims through yielding or fracture. The external pressure on the isolator at which
this might happen is an important design quantity for an isolator and it is therefore necessary to be able
to estimate these tensile stresses under the applied external load. When the isolator is subject to shear
deformation, a bending moment is generated by the unbalanced shear forces at the top and bottom of the
bearing. These bending moments also affect the stresses in the steel shims and, in contrast to the case
of pure compression, the stresses in the steel plates can be compressive and could produce buckling of
the shims. No previous solution for the stresses due to bending moments in a bearing has been available.
Here we provide analyses for the circular isolator for the two cases: namely, when the rubber can be
assumed to be incompressible, generally in the low to moderate shape factor case, and also for the more
typical situation, when the shape factor is sufficiently large that compressibility of the rubber needs to
be taken into account in the theory. The solution for the compressible case both in pure compression and
bending is new.
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