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VICTOR BIRMAN

The paper presents a comprehensive formulation for the analysis of the stiffness and strength of fiber-
reinforced composites with the matrix enhanced by adding elastic or shape memory alloy (SMA) spher-
oidal particles. The micromechanical model used to evaluate the stiffness tensor of the matrix with
embedded particles is based on the Benveniste version of the Mori–Tanaka theory. In the case of a super-
elastic shape memory alloy particulate matrix, the stiffness of the particles depends on the martensitic
fraction that is in turn affected by the state of stress within the particle. In this case an exact solution
for the stiffness tensor of the composite material with elastic fibers and matrix and embedded SMA
particles is developed combining the recent macromechanical solution for multi-phase composites with
the inverse method of the analysis of SMA. In the particular case, this solution results in explicit for-
mulae for the homogeneous material constants of a SMA particulate material subjected to axial loading.
Upon the completion of the stiffness analysis the strengths of a fiber-reinforced material with the matrix
containing elastic or SMA particles can be analyzed using the Eshelby solution for the stresses. As
follows from numerical examples, elastic spherical particles added to the matrix of a fiber-reinforced
composite significantly improve the transverse strength and stiffness of the material, even if the volume
fraction of such particles is relatively small. The effect of elastic particles on the longitudinal strength
and stiffness is less pronounced. It is also illustrated that the stress-induced transformation of superelastic
SMA particles results in significant changes of the properties of SMA particulate composites.

1. Introduction

The optimization of composite structures is usually concerned with either increasing their load-carrying
capacity without additional weight or reducing weight without sacrificing the load-carrying capacity. In
both situations it is necessary to enhance the stiffness and strength of the structure. The straightforward ap-
proach to achieving enhanced properties is using a stiffer high-strength material. An alternative approach
employs spatially tailored structures with a variable stiffness. Functionally graded structures where the
composition of the constituent phases varies in one direction only, that is, through the thickness, have also
been extensively studied [Birman and Byrd 2007]. The analysis in the present paper is concerned with
improving the performance of composite structures by embedding stiff high-strength elastic or SMA
inclusions (particles or fibers) within the matrix of the fiber-reinforced material. The benefits of this
approach for the stiffness of fibrous composite materials have recently been demonstrated by Genin and
Birman [2009], who considered the effect of spherical glass particles on static and dynamic response of
glass/epoxy composites.
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Embedding shape memory alloy fibers within a composite material can offer numerous advantages,
including improved strength and stiffness, higher buckling loads and desirable dynamic properties. Ex-
tensive research on SMA fiber-reinforced composites with fibers that are either bonded to the substrate
or embedded within resin sleeves has been reviewed in literature; see, for example, [Birman 1997]. The
advantages associated with using SMA are realized through their martensitic and reverse transforma-
tions that are triggered by variations of temperature or applied stresses. In particular, the stress-induced
transformation of a superelastic SMA represents an interest due to a large hysteresis loop. Accordingly,
SMA materials and composites are considered for vibration control in aerospace and civil engineering
applications, for example in [Lagoudas 2008; McCormick et al. 2006; Cardone et al. 2004].

The present paper illustrates a two-step micromechanical model for the stiffness and strength analysis
of a fiber-reinforced material with particulate elastic or SMA matrix. The properties of the particulate
matrix determined at the first step of the analysis are subsequently used to evaluate those of the fiber-
reinforced material with the homogeneous matrix. As follows from numerical examples, elastic particles
embedded in the matrix can significantly increase both the stiffness and the strength of fiber-reinforced
materials.

In addition to the analysis of composites with elastic particulate matrices, the paper presents an exact
solution for the strength and stiffness of a fiber-reinforced composite material incorporating superelastic
SMA inclusions. The exact solution for the stiffness tensor is obtained by the Genin–Birman general-
ization of the Benveniste method combined with the three-dimensional formulation for a superelastic
SMA. Contrary to available three-dimensional solutions, the present method does not involve assump-
tions on the law that relates the rate of change in the transformation strain to the rate of change of
the martensitic fraction. Instead, the analysis of the matrix with SMA inclusions utilizes the “inverse”
method. According to this method, the stresses in SMA inclusions, the applied stresses and the tensor of
stiffness of the homogeneous material are determined exactly for the assumed value of the martensitic
fraction. Although the inverse solution does not yield the transformation strain in SMA inclusions,
this information is not necessary to determine the composite stress-strain relationships and the stiffness
tensor. Once the strength and stiffness of a SMA-particulate matrix have been determined, the strength
of a fiber-reinforced, SMA-particulate matrix composite can be obtained using standard solutions shown
in the paper.

The analysis of SMA reinforced composites developed in the paper is applied to the case of a SMA
particulate material. The explicit closed-form solution developed for this case elucidates significant varia-
tions in the stiffness of the composite as a result of applied stresses that cause SMA phase transformation.

2. Micromechanics of a fiber-reinforced, particulate-matrix material with elastic constituents

Numerous methodologies of the micromechanical stiffness analysis of composites with inclusions of
an arbitrary shape include the Mori–Tanaka model, the double-inclusion method, the models of Ponte
Castaneda and Willis, the Kuster–Toksoz model, etc. The bounds for the stiffness tensor have been
suggested by Hashin and Shtrikman, Beran, Molyneux and McCoy, Gibiansky and Torquato, etc. A
comprehensive review of these techniques is outside the scope of this paper; see for example [Tucker
and Liang 1999; Hu and Weng 2000; Torquato 2001; Milton 2002].
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Kanaun and Jeulin [2001] and Genin and Birman [2009] proposed the solution for the stiffness tensor
of a multi-phase material that is applicable to fiber-reinforced particulate composites. In particular, the
latter team found that the stiffness of a cross ply glass/epoxy material evaluated using their approach
was within the strict three-point bounds as long as the volume fractions of spherical inclusions and
fibers remained relatively small. In the present paper the strength and stiffness analyses of a three-phase
reinforced material are conducted in two steps. We begin with the Benveniste version of the Mori–Tanaka
solution to specify the stiffness tensor of a particulate matrix that is subsequently applied to evaluate the
stiffness of a fiber-reinforced, particulate-matrix material. The strength of the matrix with inclusions
(particles) is determined using the heterogeneous matrix stiffness data. In turn, knowing the strength of
the matrix enables us to predict the strength of the fiber-reinforced material with a particulate matrix.
The principal reason for the two-step stiffness analysis, instead of using the solution for materials with
multiple inclusion classes [Kanaun and Jeulin 2001; Genin and Birman 2009], is that the stiffness of the
particulate matrix is needed for the subsequent strength analysis of the composite.

2.1. Two-step stiffness analysis. Consider a fiber-reinforced material where the matrix contains uni-
formly distributed and uniaxially aligned spheroidal inclusions (they are referred to as particles, though
the approach could be applied to the case where the inclusions represent short or continuous fibers as
long as we use the appropriate Eshelby tensor). It is assumed throughout the paper that the matrix is
perfectly bonded to both fibers and particles. The volume fraction of the particles within the matrix
remains below 30%, so that the Mori–Tanaka approach is accurate [Genin and Birman 2009]. Then the
tensor of stiffness of the particulate matrix can be obtained following [Benveniste 1987] in the form

Lpm = L1+ f ′2(L2− L1)T2( f ′1 I + f ′2T2)
−1, (1)

where the subscripts 1 and 2 identify the matrix and particles, respectively, Li is the stiffness tensor of
the corresponding phase, I is the fourth-order identity tensor, f ′i is the volume fraction of the i-th phase,
and the prime indicates that these volume fractions are evaluated within the particulate matrix, that is,
f ′1+ f ′2 = 1. Furthermore,

T2 =
[
I + S2 L−1

1 (L2− L1)
]−1 (2)

is the coefficient tensor in the relation between the strain tensors in the matrix and in the particles

ε2 = T2ε1. (3)

The elements of the Eshelby tensor S2 were obtained for spheroidal inclusions dependent on the aspect
ratio by Tandon and Weng [1986].

It is known that the Mori–Tanaka solution for the bulk, elasticity and shear moduli of particulate
composites coincides with the Hashin–Shtrikman lower bound. At a high volume fraction of particles the
Mori–Tanaka prediction deviates from numerical (FEA) and experimental results. However, the accuracy
of the analysis at high particle volume fractions can be improved using the incremental particle-addition
approach suggested in the Appendix.

Once the stiffness tensor of the particulate matrix has been evaluated, it is possible to treat the matrix
as a homogeneous medium that is isotropic if the particles are isotropic and spherical or if they are
randomly oriented. Subsequently, we can apply a similar homogenization procedure to a unidirectional
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fiber-reinforced material considering fibers as aligned inclusions with an infinite aspect ratio. Accord-
ingly, the stiffness tensor of such fiber-reinforced, particulate-matrix material is

L = Lpm+ f3(L3− Lpm)T3( fpm I + f3T3)
−1, (4)

where f3 and fpm are the volume fractions of fibers and particulate matrix, respectively, fpm+ f3 = 1,
and

T3 =
[
I + S3 L−1

pm(L3− Lpm).
]−1 (5)

The Eshelby tensor for a fiber-reinforced material with an isotropic homogenous matrix, S3, was obtained
by Luo and Weng [1989]. Alternative micromechanical methods that could be applied to the analysis
of a fiber-reinforced material with the isotropic particulate matrix properties determined as shown above
include the well-known Halpin–Tsai or mechanics of materials solutions.

2.2. Strength of a particulate matrix. The pioneering study of Eshelby [1957] provided expressions for
the stresses just outside a spheroidal inclusion. This work was further continued by Tandon and Weng
[1986] and Kakavas and Kontoni [2005] who also illustrated that the analytical results were in a good
agreement with the finite element analysis.

Micromechanical strength conditions can be determined by specifying the stress in the matrix, at the
particle-matrix interface, and in the particles, and subsequently applying strength criteria to the matrix
and particles and at the interface. In this paper, we assume a perfect bond between the matrix and
particles. Furthermore, the fracture analysis is not included, though it could be developed based on the
knowledge of local stresses and assuming that the crack originates at the particle-matrix interface. The
strength of the particles is assumed higher than that of the matrix (as is usually the case in applications),
so that failure initiates in the matrix, just outside the particles, where the stresses are elevated due to the
stress concentration. Among the strength criteria applicable to the analysis of the isotropic and ductile
matrix, we consider the maximum principal stress criterion and the von Mises criterion. In the case of a
brittle matrix, these criteria may be inaccurate and the Coulomb–Mohr criterion or the recently suggested
Christensen criterion [2007] becomes more appropriate.

Consider a particulate matrix subject to uniaxial tension σ̂11 (the in-plane coordinates referred to are
denoted by 1 and 2). The stresses in the matrix (in the 1-2 plane), just outside a spherical particle, are
[Tandon and Weng 1986]

σ11,m = σ̂11

(
1+

(1− f ′2)(b1 p1+ 2b2 p2)

(1+ ν1)(1− 2ν1)
+

p1 cos2 θ + p2(ν1+ sin2 θ)

1− ν2
1

cos2 θ

)
= F11(θ)σ̂11

σ22,m = σ̂11

(
(1− f ′2)(b3 p1+ (b4+ b5)p2)

(1+ ν1)(1− 2ν1)
+

p1 cos2 θ + p2(ν1+ sin2 θ)

1− ν2
1

sin2 θ

)
= F22(θ)σ̂11

σ33,m = σ̂11

(
(1− f ′2)(b3 p1+ (b4+ b5)p2)

(1+ ν1)(1− 2ν1)
+
ν1 p1 cos2 θ + p2(1+ ν1 sin2 θ)

1− ν2
1

)
= F33(θ)σ̂11

σ12,m =−σ̂11
p1 cos2 θ + p2(ν1+ sin2 θ)

1− ν2
1

sin θ cos θ = F12(θ)σ̂11

σ13,m = σ23,m = 0,

(6)
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where the coefficients b j and p j are specified according to [Tandon and Weng 1986] in terms of the
elements of Eshelby’s tensor, the particle volume fraction within the particulate matrix f ′2, and bulk and
shear moduli of the matrix and particles.

The principal stresses can now be determined from∣∣∣∣∣∣
σ11,m−σ σ12,m 0
σ12,m σ22,m−σ 0

0 0 σ33,m−σ

∣∣∣∣∣∣= 0. (7)

Accordingly,

σ1,2 = σ̂11

(
F11(θ)+ F22(θ)

2
±

√
(F11(θ)− F22(θ))2+ 4F2

12(θ)

)
= σ̂11 F1,2 (θ),

σ3 = σ̂11 F33(θ).

(8)

The maximum principal stress criterion yields the tensile strength of the particulate matrix:

spm,T = smT min{F−1
1 (θ), F−1

2 (θ), F−1
33 (θ)}, (9)

where smT is the tensile strength of the matrix material.
The von Mises strength criterion predicts the strength

spm,T =
√

2smT
(
[F1(θ)− F2(θ)]

2
+ [F1(θ)− F33(θ)]

2
+ [F2(θ)− F33(θ)]

2)−1
. (10)

Either one uses the strength criterion (9) or (10), it is necessary to check all values of 0≤ θ ≤ π/2 since
it is unpractical to analytically determine the angular coordinate corresponding to the onset of failure.
Therefore, the strength should be found as the smallest value of the stress given by (9) or (10) obtained
by varying the angular coordinate.

The analysis of the axial compressive strength is quite similar: we can use (9) or (10), where spm,T

is replaced with the compressive strength of the particulate matrix spm,C and smT is replaced with the
compressive strength of the matrix material smC .

Now consider the shear strength of the particulate matrix subject to the stress σ̂12. Let

R = (1− f ′2)(1− 2S1212)−
G2

G2−G1
and S =

(1− f ′2)(1− 2S1212)
(

1− 2G1
Gpm

)
−

G2
G2−G1

(1− f ′2)(1− 2S1212)−
G2

G2−G1

, (11)

where G1 and G2 are the shear moduli of the matrix and particles, respectively, and Gpm is the shear
modulus of the particulate matrix found using the solution in the previous section. Then the stresses in
the matrix adjacent to the particle can be obtained [Tandon and Weng 1986]:

σ11,m =−
4G1

(1− ν1)Gpm R
σ̂12 sin θ cos3 θ = F̃11(θ)σ̂12,

σ22,m =−
4G1

(1− ν1)Gpm R
σ̂12 sin3 θ cos θ = F̃22(θ)σ̂12, (12)
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σ33,m =−
4G1ν1

(1− ν1)Gpm R
σ̂12 sin θ cos θ = F̃33(θ)σ̂12,

σ12,m = σ̂12

(
S+

4G1

(1− ν1)Gpm R
sin2 θ cos2 θ

)
= F̃12(θ)σ̂12,

σ13,m = σ23,m = 0.

These expressions depend on the shear modulus of the particulate matrix, which is available from the
micromechanical solution.

The principal stresses found from (7) are

σ1,2 = σ̂12

(
F̃11(θ)+ F̃22(θ)

2
±

√
(F̃11(θ)− F̃22(θ))2+ 4F̃2

12(θ)

)
= σ̂12 F̃1,2 (θ),

σ3 = σ̂12 F̃33(θ).

(13)

Subsequently, the maximum principal stress criterion or the von Mises criterion yields the shear
strength of the particulate matrix in the form (9) and (10), respectively, where F1 is replaced by F̃1,
F2 by F̃2, F33 by F̃33, spm,T by spm,S (the particulate matrix shear strength) and smT by the matrix shear
strength smS . Similarly to the case for the tensile and compressive strengths, the shear strength of the
particulate matrix is found as the smallest stress obtained from the accordingly modified equations (9)
or (10) by varying the values of θ .

2.3. Strength of the fiber-reinforced material with a homogenized matrix. The outline of microme-
chanical solutions for the strengths of a fiber-reinforced material in the axial and transverse directions as
well as for the shear strength obtained by assumption that all constituents remain within the linear elastic
range and bonding between the fibers and matrix is not violated was given by Daniel and Ishai [2006].
These solutions are outlined here using the properties of fibers and those of the particulate matrix, for
completeness. The composite strengths depend on the strength of fibers that we assume known and on
the strength, ultimate strain and stiffness of the particulate matrix evaluated using the results shown in
the previous sections.

The longitudinal tensile strength s1T depends on the relationship between the ultimate longitudinal
tensile strain εu

f,l of the fibers and the ultimate tensile strain εu
pm = spm,T /Epm of the particulate matrix

(here Epm is the elastic modulus of the particulate matrix):

s1T = s f T

(
f3+ fpm

Epm

E3

)
if εu

f,l < ε
u
pm,

s1T = spm,T

(
f3

E3

Epm
+ fpm

)
if εu

f,l > ε
u
pm,

(14)

where s f T is the tensile strength of isotropic fibers and E3 is their modulus of elasticity.
The modes of failure of a unidirectional fiber-reinforced composite subject to longitudinal compression

include fiber microbuckling in either extensional or shear mode and shear failure. The microbuckling
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failure modes occur at the following value of the applied compressive stress

s ′1C =min
{

2 f3

√
Epm E3 f3

3 fpm
,

Gpm

fpm

}
, (15)

where Gpm is the shear modulus of the particulate matrix.
The shear failure mode of a longitudinally compressed fiber-reinforced material occurs at the stress

s ′′1C = 2sfs

(
f3+ fpm

Epm

E3

)
, (16)

where sfs is the shear strength of the fiber.
The longitudinal compressive strength is now found as s1C = min{s ′1C , s ′′1C}. The analysis can also

account for the effect of fiber misalignment, as discussed by Daniel and Ishai [2006].
The transverse tensile failure of fiber-reinforced composites can be predicted accounting for the stress

or strain concentration factor and for residual stresses. For example, the stress concentration factor for a
square array of fibers can be obtained in terms of the properties of the particulate matrix and fibers as

k =
1− f3(1− Epm/E3)

1−
√

4 f3/π(1− Epm/E3)
. (17)

Subsequently, the maximum principal stress criterion yields s2T = (spmT − σpm,res)/k, where σpm,res is the
maximum radial residual stress in the particulate matrix. The latter stress can be found using a concentric
cylinder model subject to a uniform temperature, the inner cylinder being the fiber, surrounded with a
cylindrical layer of the particulate matrix that is in turn surrounded with the fiber-reinforced medium.
A more accurate approach would be based on subdividing the cylindrical layer of the particulate matrix
into a thin cylinder of the matrix material encompassed with a cylinder of the particulate matrix material.
The radial coordinate of the interface between these two cylinders could be determined from geometric
considerations. An alternative formulation employing the maximum principal strain criterion is also
available using the properties of the particulate matrix and the maximum residual radial strain.

The compressive strength of a fiber-reinforced composite is the lesser failure stress corresponding
to a number of possible scenarios, including interfacial shear failure, debonding and fiber crushing.
The typical mode of failure being the compressive matrix failure, the strength is determined as s2C =

(spm,C + σpm,res)/k.
In-plane shear failure occurs as a result of the interfacial shear stress concentration. The stress con-

centration factor ksh is available from (17) by replacing the moduli of elasticity with the shear moduli of
the corresponding phases. Then the shear strength is s12 = spm,S/ksh.

The strengths of the fiber-reinforced material can be specified only upon the conclusion of the micro-
mechanical stiffness analysis presented above, since they depend on the stiffness of the particulate matrix.

3. Fiber-reinforced composite material with superelastic shape memory alloy inclusions
embedded within the matrix

The total strain in SMA is composed of elastic, transformation and thermal components. The latter
components are negligible in the material experiencing superelastic transformations. The increments of
the transformation strain are usually evaluated as functions of the increments of the martensitic volume
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fraction using an assumption regarding the incremental law; see for example, [Boyd and Lagoudas 1993;
Birman et al. 1996; Jonnalagadda et al. 1998; Jiang and Batra 2002]. An alternative theory [Lu and Weng
2000] treated the martensitic phase as a separate class of inclusions within the austenitic metal.

Contrary to the incremental approach referred to above, the present solution is exact, yielding the
stiffness and applied stress and strain tensors for a material with superelastic SMA inclusions (spheroidal
particles or fibers) corresponding to a prescribed martensitic fraction of SMA (other types of inclusions,
besides SMA, can also be present).

The solution follows this sequence:

(i) The Benveniste version of the Mori–Tanaka formulation for a composite material with multiple
classes of inclusions is outlined, following the solution by Genin and Birman [2009].

(ii) A three-dimensional formulation for the superelastic material is then presented, combining the ap-
proaches of [Boyd and Lagoudas 1993] and [Tanaka 1986; Sato and Tanaka 1988].

(iii) A combination of the micromechanical and superelastic SMA formulations above, together with
the inverse method suggested in this paper, is used to obtain the exact solution for the stress-strain
response and stiffness of a composite material with multiple inclusions, including superelastic SMA
particles or fibers.

The analysis is practical since the knowledge of the transformation strain is not needed in numerous
problems concerned with SMA composites. Using the present solution that provides the applied stresses,
stiffness and stress-strain relationships corresponding to a prescribed martensitic volume fraction in SMA
inclusions, one can also develop a complete hysteresis loop varying this volume fraction to predict the
damping capacity of superelastic SMA composites bypassing the evaluation of the transformation strain
(this study elucidating a remarkable damping potential of particulate SMA composites is the subject of
a separate paper).

3.1. Micromechanics of a composite material with numerous inclusion classes. Consider a represen-
tative volume element of a composite material with multiple inclusions of various shapes and properties
subject to a remote strain tensor ε̄0. The behavior of SMA undergoing martensitic or reverse transfor-
mation is physically nonlinear. However, if the martensitic fraction of SMA is known, we can employ a
tangent stiffness tensor of the corresponding inclusions. All inclusions are assumed perfectly bonded to
the matrix. The average stress tensor in the element is related to the tensor of the applied average strain
via the tangent stiffness tensor by

dσ0 = L dε0. (18)

Following the solution by Genin and Birman [2009], the stiffness tensor is expressed in terms of the
corresponding tensors of the matrix (i = 1) and inclusions (i > 1) by the following equation, which
represents an extrapolation of (1):

L = L1+

N∑
i=2

fi (Li − L1)Ti ( f1 I + f2T2+ · · ·+ fN TN )
−1, (19)

where the number of distinct inclusion classes is N−1 and the fi are the volume fractions of the matrix
(i = 1) and inclusions (i ≥ 2). In the following discussion, SMA inclusions are identified by i = 2.
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Tensors Ti are given by equations similar to (2). Note that the Eshelby tensor S2 for SMA inclusions
is not affected by the martensitic transformation as long as the stiffness of the matrix remains constant
[Boyd and Lagoudas 1993].

In the following solution, we employ relationships between the tensor of average applied strain and
the tensor of average strain within the inclusions

dεi = Ai (ξ) dε0, (20)

where the so-called tensors of concentration factors are given by

Ai = Ti ( f1 I + f2T2+ · · ·+ fN TN )
−1. (21)

Note that the Genin–Birman solution (19) differs from that using a two-step approach, that is, Equations
(1) and (4). A quantitative comparison of the accuracy of these two approaches is outside our scope here.

3.2. Three-dimensional formulation for a shape memory material. The following formulation em-
ploys the assumption that the tensor of stiffness of a SMA material during the martensitic or reverse
transformation can be represented by the rule of mixtures [Boyd and Lagoudas 1993]

L2 = L A
2 + ξ(L

M
2 − L A

2 ), (22)

where the superscripts A and M refer to the austenitic and martensitic phase of the material.
Note that the rule of mixtures can also be applied to the strength of the SMA material, so that

s2 = s A
2 + ξ(s

M
2 − s A

2 ). (23)

The three-dimensional constitutive relations for a superelastic shape memory material are

dσ2 = d
(
L2(ε

′

2− ε
t
2)
)
, (24)

where ε′2 and εt
2 are tensors of total and transformation strains, respectively. The rate of change of the

tensor εt
2 is related to the rate of change of the martensitic volume fraction, using an assumption for

the tensor of coefficients in the relationship (called the transformation tensor). This approach implies
the use of an incremental technique monitoring the changes in the tensors of strain and stress with the
changes in the martensitic volume fraction; see, for example, [Birman et al. 1996; Jonnalagadda et al.
1998; Jiang and Batra 2002].

In the present study we discard the assumption regarding the transformation tensor and operate with the
average elastic strain tensor within the SMA particle, that is, ε2= ε

′

2−ε
t
2. This enables us to directly apply

linear elastic micromechanical theories, such as the Mori–Tanaka theory and its extrapolation to multi-
phase composites outlined in the previous section. While the present approach does not provide tools
for a decomposition of the elastic strain and determining the transformation component, it is sufficient
in a number of applied problems.

Equation (24) can be replaced with the following incremental relationship utilizing the tangent SMA
stiffness tensor:

dσ2 = L2(ξ) dε2. (25)

The martensitic fraction can be related to the effective stress in SMA by extrapolating the solutions
for a number of available one-dimensional theories (such as Tanaka’s, Liang–Rogers’ and Brinson’s
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theories). As an example, we adopt the Tanaka model [Tanaka 1986; Sato and Tanaka 1988]:

ξ = 1− exp
[
bM(T M

S − T )+ cMσeff
]

(A→ M),

ξ = exp
[
bA(T A

S − T )+ cAσeff
]

(M→ A),
(26)

where T is the current temperature, T M
S and T A

S are the martensite and austenite phase start temperatures
at stress-free conditions, and bM , bA, cM , cA are constants [Birman et al. 1996].

The effective stress is defined in terms of the components of the deviatoric stress tensor, that is,

σeff =

√
3
2σ
′

i jσ
′

i j , σ ′i j = σi j −
1
3σnnδi j , (27)

where σi j = σ
(i j)
0 .

3.3. Stiffness of a composite material with SMA particles: exact inverse method. For a composite
material where several inclusion classes, including superelastic particles, are embedded within an elastic
matrix, we now develop an exact solution to relate the tensor of applied strain to the martensitic fraction
in SMA particles and to determine the stiffness tensor corresponding to this applied strain.

Consider the situation where the tensor of applied strain ε0 is prescribed, except for one component
ε
(mn)
0 that will be specified from the subsequent solution. We begin by assuming the average martensitic

volume fraction ξ in SMA particles (the average per the inclusion class approach to strains and stresses
adopted in the Mori–Tanaka micromechanics necessitates the use of the average martensitic volume
fraction). The corresponding value of the effective stress σeff in the particle is immediately available
from (26), dependent on the transformation being direct or reversed (temperature is assumed constant).
Subsequently, the SMA stiffness tensor L2 corresponding to ξ can be determined from (22), and the
composite stiffness tensor L is specified from (19). While these tensors are the ultimate goal of the
analysis, the solution cannot stop here since we need to specify the unknown component of the applied
strain tensor corresponding to the assumed martensitic volume fraction.

The tensors Ti for each class of inclusions can be determined from equations similar to (2), where the
Eshelby tensor is not affected by the transformation within SMA particles. Subsequently, (21) yields the
concentration tensors Ai .

We have a system of 13 equations obtained from (23), (20) and (27) with respect to twelve unknown
components of the SMA stress and strain tensor increments, and the component of applied strain in-
crement dε(mn)

0 . The solution is incremental, starting with the elastic case where SMA particles are in
the austenitic phase (in this case the solution is available using [Tandon and Weng 1986]). At each
subsequent increment of the martensitic fraction the corresponding effective stress is found from (26).
The SMA and composite material tangent stiffness tensors are specified from (22) and (19). Subsequently,
equations (20) are used to express all strain components in the SMA inclusions, i.e., ε2 = ε2(ε

(mn)
0 , ξ),

The final phase of the solution is finding the values of ε(mn)
0 and six components of the stress tensor in

SMA inclusions from (25) and (27).
The strength of SMA particles corresponding to the prescribed martensitic volume fraction is available

from (23). Using the strength and stiffness of the SMA particles corresponding to the applied strain tensor,
the strength analysis of a fiber-reinforced, SMA particulate matrix composite can be conducted using the
previously illustrated solution.
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3.4. Particular case: superelastic SMA particulate composite material. As an example illustrating an
application of the inverse method of analysis discussed in the previous section consider the case of
an isotropic matrix with spherical SMA particles subject to a uniaxial axial stress σ̂ (11)

0 . As shown in
[Tandon and Weng 1986], the stresses in a particle subject to a uniaxial loading are

dσ (11)
2 =

(
1+

1− f ′2
(1+ ν1)(1− 2ν1)

(b1 p1+ 2b2 p2)

)
dσ̂ (11)

0 ,

dσ (22)
2 = dσ (33)

2 =
1− f ′2

(1+ ν1)(1− 2ν1)

(
b3 p1+ (b4+ b5)p2

)
dσ̂ (11)

0 ,

dσ (mn)
2 = 0, m 6= n,

(28)

where b j and p j are coefficients specified in that reference. These coefficients depend on the stiffness
of SMA particles, that is, b j = b j (ξ) and p j = p j (ξ).

The increment of the effective stress in SMA particles can now be explicitly expressed in terms of the
increment of the applied stress

dσeff =
∣∣dσ (11)

2 − dσ (22)
2

∣∣= ∣∣∣∣1+ 1− f ′2
(1+ ν1)(1− 2ν1)

(
(b1− b3)p1+ (2b2− b4− b5)p2

)∣∣∣∣ dσ̂ (11)
0 . (29)

Explicit expressions for the shear and bulk moduli of a composite material consisting of the matrix with
embedded spherical particles, that is, Gpm and Kpm, are available [Vel and Batra 2004]

Gpm = G1+
f ′2(G2−G1)

1+ f ′1
G2−G1
G1+ρ

, Kpm = K1+
f ′2(K2− K1)

1+ f ′1
G2−G1

K1+4G1/3

, ρ =
G1(9K1+ 8G1)

6(K1+ 2G1)
. (30)

The elasticity modulus and the Poisson ratio of the SMA-particulate material can now be determined
from Epm = 9KpmGpm(3Kpm+Gpm)

−1 and νpm = Epm(2Gpm)
−1
− 1.

The computational procedure in this case is very simple. The initial step corresponds to the elastic
problem with austenitic SMA particles where the solution is available. Then the martensitic fraction is
increased incrementally. At each value of ξ one can find the corresponding stiffness characteristics of
SMA particles and composite material from (22) and (19), while the effective stress is specified from (26).
The coefficients b j = b j (ξ) and p j = p j (ξ) are also calculated at this step. Subsequently, (29) yields the
value of the applied stress, while (30) results in the stiffness of the particulate material corresponding to
this stress. The strain tensor in the composite material is determined using (18).

4. Numerical examples

The effectiveness of embedding stiff particles within the matrix of a fiber-reinforced composite is shown
on the example of a glass/epoxy material with spherical particles within the matrix. The properties of
the constituent materials are taken as in [Genin and Birman 2009]: E1 = 3.12 GPa, ν1 = 0.38, E2 =

E3 = 76.0 GPa, ν2 = ν3 = 0.25. The tensile stress ratio kpm = σ11,m(max)/σ̂11 as a result of uniaxial
tension is shown in Figure 1, left, where the maximum stress in the matrix is normalized with respect to
the stress applied to the particulate matrix. The case of f ′2 = 0 corresponds to a single particle embedded
within the matrix, while larger values of the particle volume fraction account for multiple inclusions.
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Figure 1. Tensile stress ratio (kpm) in (left) the particulate matrix subject to uniaxial
tension, and (right) fiber-reinforced particulate-matrix composite.

The stress ratio reaches a maximum in the case of a single particle as was also observed by Tandon and
Weng [1986]. In Figure 1, right, we see the tensile stress concentration ratio at the composite level, that
is, the ratio σ11,m(max)/σ 0

11 of the maximum stress in the matrix to the applied composite stress.
The beneficial effect of adding particles on the longitudinal and transverse stiffness of the fiber-

reinforced material is reflected in Figure 2. The longitudinal stiffness of the material with a homogeneous
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Figure 2. Effect of particle volume fraction in particulate matrix on longitudinal (top)
and transverse (bottom) stiffness of fiber-reinforced composite.
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Figure 3. Effect of particles on the tensile longitudinal (left) and transversal (right)
strength of fiber-reinforced particulate-matrix composite. (R = s1T /s f T )

particulate matrix was determined by the rule of mixtures. The transverse stiffness was determined by
the Halpin–Tsai model with the curve fitting parameter equal to ξ = 1 and ξ = 2 (typical range of this
parameter). As seen in Figure 2, even a modest amount of particles added to the matrix can significantly
enhance the transverse stiffness, although the effect on the longitudinal stiffness is less pronounced.

The effect of particles on the longitudinal tensile strength of the composite material is reflected in
Figure 3, left, for the case where εu

f,l < ε
u
pm. As is obvious from that figure, adding glass particles to the

matrix has a relatively small effect on the longitudinal strength of the material. Predictably, the situation
is different in the case of transverse strength since it is highly dependent on the strength of the particulate
matrix. As is shown in Figure 3, right, the effect of adding particles on the transverse strength of the
composite is much more pronounced than that on its longitudinal strength. This is expected since the
contribution of the matrix to the transverse strength is higher than that to the longitudinal strength.

Examples of the closed-form solution for composites including SMA Nitinol spherical particles embed-
ded within an epoxy matrix with the properties identical to those in the paper on fibrous SMA composites
by Birman et al. [1996] are presented below. Figure 4 shows the shear and elasticity moduli as functions
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Figure 4. Shear modulus and elasticity modulus of SMA particulate composite (relative
to those of epoxy), as functions of the martensitic fraction. The SMA volume fraction is
f2 = 0.20 (blue), f2 = 0.35 (red), and f2 = 0.50 (green).
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Figure 5. Bulk modulus of SMA particulate composite (relative to that of epoxy), as
a function of the martensitic fraction. The SMA volume fraction is f2 = 0.20 (blue),
f2 = 0.35 (red), and f2 = 0.50 (green).

of the martensitic volume fraction, for values of the SMA particle volume fraction equal to 20%, 35%,
and 50%, while Figure 5 does the same for the bulk modulus. As is evident from these figures, martensitic
and reverse phase transformations in SMA particles significantly affect the properties of SMA particulate
composites with a high SMA volume fraction. The changes in the case where the volume fraction is
relatively low (20%) are noticeable but small (between 10 and 20%).

The effect of applied axial stress on the variation of the martensitic volume fraction in SMA particulate
composites is illustrated in Figure 6 for an SMA volume fraction equal to 20% and 50%. Predictably, the
range of stresses needed for the transformation loop (from austenite to martensite and back to austenite)
is larger if the amount of SMA increases. This reflects a higher stiffness of SMA material, even in
the martensitic phase, as compared to the stiffness of the epoxy considered in examples. The results
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Figure 6. Axial stress that has to be applied to a superelastic shape memory alloy partic-
ulate composite to cause martensitic (blue curve) or reverse (red curve) transformation.
The SMA volume fraction f2 is 0.20 (left) and 0.50 (right); the temperature is 40 ◦C.
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illustrated in Figures 5 and 6 can further be employed to develop an exact solution for the hysteresis
loop of particulate SMA composites (here the word exact refers to the solution within the framework of
assumptions employed in the theories of Tanaka for SMA and Mori–Tanaka for composite).

5. Conclusions

The paper illustrates a two-step approach to the strength and stiffness analyses of fiber-reinforced, partic-
ulate-matrix composites. The solution is obtained by a generalization of available micromechanical
solutions to three-phase materials. The strength and stiffness of the particulate matrix are specified
first, followed with the analysis of the properties of a fiber-reinforced material incorporating the already
homogenized matrix.

The numerical analysis shows that adding stiff particles to the matrix results in a significant enhance-
ment of the transverse strength and stiffness, but the benefits are less obvious for the longitudinal strength
and stiffness. This reflects a relatively larger contribution of the matrix to the transverse properties of
the fiber-reinforced material.

The solution is further extrapolated to composites including shape memory alloy (SMA) inclusions.
The exact solution is obtained for the stiffness of such composites, eliminating the need to assume a
transformation law (a relationship between the increments of the martensitic fraction and the tensor of
the transformation strain) and the associated incremental procedure. As follows from numerical exam-
ples, the stiffness of particulate SMA composites is significantly influenced by the stress-induced phase
transformation.

Appendix: Incremental Mori–Tanaka approach to the homogenization of multi-phase materials

Consider a composite material with a relatively high volume fraction of inclusions fi (i = 2, . . . , N ). The
procedure utilizes an incremental homogenization that begins with embedding a low volume fraction of
inclusions into the matrix, so f (1)1 +

∑N
i=2 f (1)i = 1, where the superscript identifies the step number.

The stiffness of the material at this first step is evaluated using a counterpart of Equation (19):

L(1) = L1+

N∑
i=2

f (1)i (Li − L1)Ti
(

f (1)1 I + f (1)2 T2+ · · ·+ f (1)N TN
)−1
, (A1)

where

Ti =
[
I + Si L−1

1 (Li − L1)
]−1
. (A2)

The Eshelby tensor at the first step is calculated using the properties of the matrix material.
The incremental procedure at the following steps can easily be developed. For example, at the j -th step

a prescribed increment of inclusions is added to the matrix that already contains inclusions incorporated
at the previous steps, so that f ( j)

1 +
∑N

i=2 f ( j)
i = 1 and

L( j)
= L( j−1)

+

N∑
i=2

f ( j)
i

(
Li − L( j−1))T ( j)

i

(
f ( j)
1 I + f ( j)

2 T ( j−1)
2 + · · ·+ f ( j)

N T ( j−1)
N

)−1 (A3)

T j
i =

[
I + S( j)

i (L( j−1)
1 )−1(Li − L( j−1))

]−1
. (A4)
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The Eshelby tensor at the j-th step is calculated using the properties of the material evaluated at the
( j−1)-st step. The properties of inclusions do not change during the procedure, but the tensor of stiffness
of the matrix is continuously updated. The suggested procedure enables us to maintain the volume
fraction of additional inclusions at each step below the recommended accuracy limit of the Mori–Tanaka
approach. Accordingly, at each step,

∑N
i=2 f ( j)

i < r , where r is prescribed (it could be limited to 0.2 or
0.3, depending on the desirable accuracy).
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