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STABILITY STUDIES FOR CURVED BEAMS

CHONG-SEOK CHANG AND DEWEY H. HODGES

The paper presents a concise framework investigating the stability of curved beams. The governing
equations used are both geometrically exact and fully intrinsic; that is, they have no displacement and
rotation variables, with a maximum degree of nonlinearity equal to two. The equations of motion are lin-
earized about either the reference state or an equilibrium state. A central difference spatial discretization
scheme is applied, and the resulting linearized ordinary differential equations are cast as an eigenvalue
problem. The scheme is validated by comparing predicted numerical results for prebuckling deformation
and buckling loads for high arches under uniform pressure with published analytical solutions. This is a
conservative system of forces despite their being modeled as distributed follower forces. The results show
that the stretch-bending coupling term must be included in order to accurately calculate the prebuckling
curvature and bending moment of high arches. In addition, the lateral-torsional buckling instability of
curved beams under tip moments is investigated. Finally, when a curved beam is loaded with nonconser-
vative forces, resulting dynamic instabilities may be found through the current framework.

1. Introduction

For decades, the vibration of curved beams, rings, and arches has been extensively investigated. About
400 references, which cover the in-plane (i.e., in the plane of the undeformed, initially curved beam), out-
of-plane (i.e., out of the plane of the undeformed, initially curved beam), coupled, linear and nonlinear
vibrations, have been summarized by in [Chidamparam and Leissa 1993]. While linear theory is adequate
for free-vibration analysis of initially curved beams, one must linearize the equations of nonlinear theory
about a static equilibrium state, if a beam is brought into a state of high curvature by the loads acting
on it. Because of this, the behavior of a beam curved under load may differ substantially from that of
an initially curved beam of identical geometry. The geometrically exact and fully intrinsic theory of
curved and twisted beams in [Hodges 2003] provides an excellent framework in which to elegantly study
the coupled vibration characteristics of curved beams, particularly those curved because they are loaded.
This is because of the simplicity of the equations — so simple that each term of every equation can be
easily interpreted intuitively. There are no displacement or rotation variables (this is what is meant by
“intrinsic” in this context); as a result there are no nonlinearities of degree greater than two. Both finite
element and finite difference discretization schemes are easily applied to these equations for numerical
computation, and the framework presented herein is simpler than that of other nonlinear beam theories.
Because of these observations, we have revisited the topic and broadened the base of cases studied.

This paper provides details of how to make use of the fully intrinsic formulation for calculating vibra-
tion frequencies and buckling loads of curved beams. One aspect of these calculations that is substantially
different from the usual approach involves the way boundary conditions are enforced. In [Chang and
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Hodges 2009] results from free-vibration analysis of curved beams were compared with those from
published work. Chidamparam and Leissa [1995], Tarnopolskaya et al. [1996], and Fung [2004] focused
on in-plane vibration; and Irie et al. [1982] and Howson and Jemah [1999] on out-of-plane vibration.
The coupled free-vibration frequencies were also presented as part of an investigation of low-frequency
mode transition, also referred to as veering [Tarnopolskaya et al. 1999; Chen and Ginsberg 1992].

It was shown analytically by Hodges [1999] and Simitses and Hodges [2006] that initially curved
isotropic beams possess stretch-bending elastic coupling, that this coupling is proportional to initial
curvature when the beam reference line is along the locus of cross-sectional centroids, and that this
coupling cannot be ignored when calculating the equilibrium state of high circular arches. Although this
term does not affect the buckling load, it must be included to calculate the prebuckling state correctly. As
a validation exercise, the present formulation is applied to the prebuckling deformation of high arches.
Displacement, curvature, bending moment and bifurcation load are compared to the analytical solutions
with and without this coupling term.

As a more powerful alternative than analytical treatments for determining cross-sectional elastic con-
stants, one may use VABS (variational asymptotic beam sectional analysis) [Cesnik and Hodges 1997;
Yu et al. 2002; Hodges 2006] to numerically calculate all the cross-sectional elastic constants, including
the stretch-bending coupling term. Based on results obtained from VABS, it is easy to show that there
is another term that depends on initial curvature and reflects shear-twist coupling. This term becomes
zero if the beam reference axis is along the locus of sectional shear centers. The location of the sectional
shear center depends on the initial curvature, but an analytical expression for that dependence is unknown.
Therefore, without a cross-sectional analysis tool such as VABS, which provides accurate cross-sectional
elastic constants as a function of initial curvature, certain aspects of the analysis presented herein would
be impossible.

2. Intrinsic beam formulation

The geometrically exact, intrinsic governing equations of [Hodges 2003] for the dynamics of an initially
curved and twisted, generally anisotropic beam are

F ′B + K̃ B FB + fB = ṖB + �̃B PB,

M ′B + K̃ B MB + (ẽ1+ γ̃ )FB +m B = ḢB + �̃B HB + ṼB PB,

V ′B + K̃ B VB + (ẽ1+ γ̃ )�B = γ̇ ,

�′B + K̃ B�B = κ̇,

(1)

where FB and MB are the internal force and moment measures, PB and HB are the sectional linear and
angular momenta, VB and �B are the velocity and angular velocity measures, γ and κ are the force and
moment strain measures, k contains the initial twist and curvature measures of the beam, K B = k + κ
contains the total curvature measures, and fB and m B are external force and moment measures, where
loads such as gravitational, aerodynamic, and mechanical applied loads are taken into account. All
quantities are expressed in the basis of the deformed beam cross-sectional frame except k which is in the
basis of the undeformed beam cross-sectional frame. The tilde operator as in ãb reflects a matrix form
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of the cross product of vectors a× b when both vectors and their cross product are all expressed in a
common basis.

A central difference discretization scheme is applied to the intrinsic governing equations in space to
obtain a numerical solution. The scheme satisfies both of the space-time conservation laws derived in
[Hodges 2003]. This scheme can be viewed as equivalent to a particular finite element discretization,
and the intrinsic governing equations are expressed as element and nodal equations. The n-th element
equations, which are a spatially discretized form of (1), are

F̂n+1
l − F̂n

r

dl
+ (κ̃n

+ k̃n)Fn
+ f

n
−
˙P

n
− �̃

n
Pn
= 0,

M̂n+1
l − M̂n

r

dl
+ (κ̃n

+ k̃n)Mn
+ (ẽ1+ γ̃

n)Fn
+mn

−
˙H

n
− �̃

n
H n
− Ṽ n Pn

= 0,

V̂ n+1
l − V̂ n

r

dl
+ (κ̃n

+ k̃n)V n
+ (ẽ1+ γ̃

n)�
n
− γ̇

n
= 0,

�̂n+1
l − �̂n

r

dl
+ (κ̃n

+ k̃n)�
n
− κ̇

n
= 0,

(2)

where f
n

and mn include any external forces and moments applied to the n-th element and dl is the
length of an element.

The equations for node n need to include possible discontinuities caused by a nodal mass, a nodal
force, and a slope discontinuity, so that

F̂n
r − ĈnT

lr F̂n
l + f̂ n

−
˙̂Pn
r −

˜̂�n
r P̂n

r = 0,

M̂n
r − ĈnT

lr M̂n
l + m̂n

−
˙̂H n
r −

˜̂�n
r Ĥ n

r −
˜̂V n

r P̂n
r = 0,

(3)

where Ĉlr reflects the slope discontinuity, f̂ n and m̂n are external forces and moments applied at n-th
node, and

V̂ n
l = Ĉn

lr V̂ n
r and �̂n

l = Ĉn
lr �̂

n
r . (4)

One may also include gravitational force in the analysis. When this is done, the formulation needs
additional equations to keep track of the vertical direction expressed in the cross-sectional basis vectors
of the deformed beam; details may be found in [Patil and Hodges 2006]. This aspect of the analysis is
not needed for the problems addressed herein.

3. Boundary conditions

Boundary conditions are needed to complete the formulation. Here, we describe boundary conditions
for pinned–pinned and clamped–clamped beams. At each end, for the static case, either natural bound-
ary conditions in terms of F̂ and M̂ or geometric boundary conditions in terms of u and C i B may be
prescribed. Here u is a column matrix of displacement measures ui in the cross-sectional frame of the
undeformed beam. Although these geometric boundary conditions are in terms of displacement and
rotation variables, they are easily expressed in terms of other variables such as κ, γ , etc., given in (12),
keeping the formulation intrinsic.
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If displacement and rotation variables appear in the boundary conditions for the free-vibration case, a
numerical Jacobian becomes necessary since an analytical determination of it would become intractable.
Fortunately, when calculating free-vibration frequencies, one may for convenience replace boundary
conditions on displacement and rotation variables with boundary conditions in terms of generalized
velocities V̂ and �̂. With the velocity boundary conditions, rigid-body modes will not be eliminated
from results.

3.1. Pinned–pinned boundary conditions. A total of 12 boundary conditions is necessary to calculate
free-vibration frequencies, given by

V̂ 1
r = M̂1

l = 0, (5)

V̂ N+1
r = 0 or


eT

1 C i B N+1
F̂ N+1

r = 0,

eT
2 V̂ N+1

r = 0,

eT
3 C i B N+1

V̂ N+1
r = 0,

(6)

M̂ N+1
r = 0, (7)

where C i B N+1
is the rotation matrix of the beam cross-section at the right end. Equation (5) fixes the

left boundary in space but leaves it free to rotate about all three axes. One may either apply a geometric
boundary condition of zero displacement at left end or may take advantage of the intrinsic formulation
through applying the velocity boundary condition given in (5). The right boundary condition of (6) allows
free movement in the axial direction while holding velocity components in the transverse directions to
zero, as shown in the right part of Figure 1. When there are no applied loads, one may simply make use
of trivial values as reference states.

For a loaded case, however, the reference states should be obtained from a specific static equilibrium.
To determine the static equilibrium, six boundary conditions are necessary, given by

M̂1
l = 0, (8)

uN+1
1 = 0 or eT

1 C i B N+1
F̂ N+1

r = 0, uN+1
2 = uN+1

3 = 0. (9)

The right end can be chosen either to be fixed in space or free to move in the axial direction, which is
described in (9). For static equilibrium, one must apply displacement boundary conditions, which appear
in (9), instead of velocity boundary conditions.

i
1

3i

Figure 1. Schematics of initially curved beams with pinned–pinned boundary conditions.

i
1

3i

Figure 2. Initially curved beam with clamped–clamped boundary condition.
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3.2. Clamped–clamped boundary conditions. The clamped-clamped boundary conditions are

V̂ 1
r = �̂

1
r = 0 and V̂ N+1

r = �̂N+1
r = 0, (10)

describing boundaries fixed in space and with zero rotation about all three axes.
As in the case of the pinned–pinned boundary condition, the boundary conditions for static equilibrium

of a loaded case must be written in terms of displacement and rotation, given by

uN+1
def = 0 and Ĉ i B N+1T

undef Ĉ i B N+1

def =1, (11)

where udef is the column matrix of displacement measures at the right end of the beam, Ĉ i B N+1

def is the
rotation matrix of the beam cross-section at the right end after deformation, and Ĉ i B N+1

undef is the rotation
matrix of the beam cross-section at the right end in the undeformed state.

The boundary conditions associated with geometric conditions for static equilibrium require displace-
ment and/or rotation to be expressed. These are described by the generalized strain-displacement equa-
tions from [Hodges 2003], given by

(r + u)′ = C i B(γ + e1) and C Bi ′
=−(̃κ + k̃)C Bi , (12)

where r is the column matrix of position vector measures and u is the column matrix of displacement
measures, both in the undeformed beam cross-sectional basis, and C Bi is the rotation matrix of the beam
cross-sectional reference frame in the deformed configuration. Equation (12) can be discretized as

rn+1
+ un+1

= rn
+ un
+C i B n

(γ n
+ e1)dl,

Ĉ Bin+1
=

(
1

dl
+
κ̃ + k̃n

2

)−1 (
1

dl
−
κ̃ + k̃n

2

)
Ĉ Bin

.
(13)

4. Linearization

The governing equations in the previous section are linearized about a static equilibrium so that they
reduce to an eigenvalue problem to calculate the free-vibration frequencies. First,

X = Xeq + X∗(t), (14)

where X is a state, Xeq is a value of the state at a static equilibrium, and X∗ is small perturbation about
the static value of the state. The linearized element equations from the intrinsic beam formulation are
then

F̂∗n+1
l − F̂∗nr

dl
+ (κ̃n

eq + k̃n)F∗n + κ̃∗n Fn
eq +µ

ng∗n = ˙P
∗n
,

M̂∗n+1
l − M̂∗nr

dl
+ (κ̃n

eq + k̃n)M∗n + κ̃∗n Mn
eq + (ẽ1+ γ̃

n
eq)F

∗n
+ γ̃ ∗n Fn

eq +µ
n ξ̃ ng∗n = ˙H

∗n
,

V̂ ∗n+1
l − V̂ ∗nr

dl
+ (κ̃n

eq + k̃n)V ∗n + (ẽ1+ γ̃
n
eq)�

∗n
= γ̇

∗n
,

�̂∗n+1
l − �̂∗nr

dl
+ (κ̃n

eq + k̃n)�
∗n
= κ̇
∗n
.

(15)
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The linearized nodal equations are

F̂∗nr − ĈnT

lr F̂∗nl + µ̂
n ĝ∗nr −

˙̂P
∗n
r = 0 and M̂∗nr − ĈnT

lr M̂∗nl + µ̂
n ˜̂ξ n ĝ∗nr −

˙̂H
∗n
r = 0. (16)

These linearized equations of motion can be expressed in a matrix form as AẊ∗ = B X∗, which is a
system of first-order ordinary differential equations. When X∗ = X̌ exp(λt) is assumed, the system is
easily cast as a generalized eigenvalue problem of the form B X̌ = AλX̌ . When B−1 exists, the equations
reduce to a standard eigenvalue problem, such that λ−1 X̌ = B−1 AX̌ . When the eigenvalues are pure
imaginary, the motion is simple harmonic.

5. Validation

A typical cross-sectional model for a beam has the form

γ11

2γ12

2γ13

κ1

κ2

κ3


=



R11 R12 R13 S11 S12 S13

R12 R22 R23 S21 S22 S23

R13 R23 R33 S31 S32 S33

S11 S21 S31 T11 T12 T13

S12 S22 S32 T12 T22 T23

S13 S23 S33 T13 T23 T33





F1

F2

F3

M1

M2

M3


(17)

or {
γ

κ

}
=

[
R3×3 S3×3

ST
3×3 T3×3

]{
F
M

}
, (18)

where the 3×3 submatrices R, S, and T , which make up the cross-sectional flexibility matrix, may be
computed by VABS for various initial curvatures [Cesnik and Hodges 1997; Yu et al. 2002; Hodges
2006]. When the reference line of the beam is chosen to be coincident with a cross-section shear center,
the shear-torsion elastic couplings S21 and S31 vanish for that section.

Results in this section are to be compared with the analytical solutions for high arches in [Hodges 1999]
and [Simitses and Hodges 2006]. Hydrostatic pressure is modeled as a distributed follower force with
constant magnitude per unit deformed length. When the equations are applied to buckling, the boundaries
are allowed (artificially) to move so as to maintain a circular arc in the deformed but prebuckled state.
For this case, only the radial displacement u2 and local stretching strain measure ε are nontrivial and
they are given as

u2 =
λρ2

1+ λρ2 and ε =−u2, (19)

where ρ2
= I3/AR2 and λ= f2 R3/E I3, where E I3 = 1/T33. (Subscript 2 indicates the radial direction

along b2 and subscript 3 indicates normal to the plane of the undeformed arch. For more details on
the definition of parameters see [Hodges 1999] and [Simitses and Hodges 2006].) Figure 3 shows the
excellent agreement between published analytical and present numerical solutions for ε versus λ.

Next, numerical results from the present analysis are compared with published analytical solutions for
pinned–pinned and clamped–clamped arches under hydrostatic pressure. When the boundary conditions
are not artificially adjusted, the problem is far more interesting. The geometry of the curved beam or arch



STABILITY STUDIES FOR CURVED BEAMS 1263

0 1 2 3 4 5 6 7 8 9
−8

−7

−6

−5

−4

−3

−2

−1

0
x 10

−5

λ

ε

ε: analytical 
ε: numerical

Figure 3. Plot of ε versus λ for ρ2
= 8.3333× 10−6, α = 1.

used for the results is such that `= 20 m and hk2= h/Rr = 0.01, where h is the height of the cross-section,
Rr = 1/k2 is the initial radius of curvature, k2 is the initial curvature, and α is the half-angle (`= 2Rrα).

The prebuckling tangential and radial displacements u1 and u2, prebuckling curvature κ and bending
moment M for the pinned–pinned case are shown in Figures 4 and 5. All quantities are normalized
according to the scheme in [Hodges 1999]. The present results agree well with the analytical solutions
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Figure 4. Normalized displacements u1, u2 for the pinned-pinned case (ρ2
= 8.3333×

10−6, λ= 8, α = 1).
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Figure 5. Curvature κ and bending moment M for the pinned-pinned case (ρ2
=

8.3333× 10−6, λ= 8, α = 1).

for both ν = 1/3 and ν = −1; note that ν = −1 annihilates the stretch-bending coupling according to
both the analytical solution and the cross-sectional flexibility coefficients obtained from VABS. As is the
case with the analytical solutions, κ and M depend significantly on whether or not the coupling term is
included. Incidentally, there is a typographical error in the captions of Figures 2 and 3 in [Hodges 1999];
the results presented are for λ= 8, not λ= 5.

The results for the same beam and same loading but with clamped–clamped boundary conditions are
shown in Figure 6 and 7. Only the normalized prebuckling bending moments change with ν, as is the
case with the analytical solution in [Hodges 1999].
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Figure 6. Normalized displacements u1, u2 for the clamped-clamped case (ρ2
=

8.3333× 10−6, λ= 8, α = 1).
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Figure 7. Curvature κ and bending moment M for the clamped-clamped case (ρ2
=

8.3333× 10−6, λ= 8, α = 1).
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Figure 8. λcr versus α for ρ2
= 8.3333× 10−6 (left for pinned–pinned and right for

clamped–clamped cases).

As the distributed follower force increases, the high arch will be buckled. For the pinned–pinned case,
the bifurcation load is λcr = π

2/α2
− 1 and for the clamped–clamped case, the characteristic equation

for the bifurcation load is
k tanα cot kα = 1,

where k =
√

1+ λ, as given in [Simitses and Hodges 2006]. For various half-angles, the bifurcation
loads are computed and shown in Figure 8. Thus, the present approach is seen to provide an excellent
numerical framework to study prebuckled deformation and buckling analysis without ad hoc modeling
approximations.
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6. Lateral-torsional buckling instability of curved beams under end moments

In this study the stability characteristics of curved beams are considered, including beams both with
curvature that is built-in and curvature that occurs because the beam is loaded with end moments. The
end moments are applied keeping its original orientation to the beam cross-section in deformation con-
figuration, which are nonconservative. The section properties vary according to the initial curvature.
Sample results are given in Table 1. In the general case we consider an curved beam with various initial
curvatures k2 loaded under various equal and opposite values of applied moments at the ends giving rise
to a constant value of bending moment M2. To facilitate this parametric study, the total static equilibrium
value of curvature K 2 is divided into two parts: the initial curvature k2 and the curvature caused by the
applied end moments M2/E I2. The total curvature can then be expressed as

K 2 = k2+
M2

E I2
, (20)

where E I2 is the in-plane bending stiffness for bending in the plane of the curved beam. A nondimen-
sional curvature ratio β is then introduced, where β is the ratio of the initial curvature to the final total
curvature and defined as

β =
k2

K 2
(K 2 6= 0). (21)

If β = 0, the beam has a zero initial curvature. If β = 1, the beam’s initial curvature is the total curvature,
which means that no end moments will be applied. If β =−1, the beam has an opposite initial curvature
to the final configuration. The first three parts of Figure 9 show the cases β =−1, 0, 1. End moments are
applied to deform the beam so that K 2 =−0.1, as shown in the last part of the same figure. A rectangular
cross-section is chosen to determine beam properties.

Table 2 and Figure 10 show the vibration frequencies for various β. It shows that the frequencies of
modes 2 and 6 change as β changes. The frequency of mode 2, in which the first out-of-plane bending
motion dominates, decreases as β decreases, becoming zero when β =−0.0117. This critical β is named

Rr 1/0.1 1/0.07 1/0.04 1/0.01

R11 1.4286 · 10−9 1.4286 · 10−9 1.4286 · 10−9 1.4286 · 10−9

R22 4.7292 · 10−9 4.7291 · 10−9 4.7291 · 10−9 4.7291 · 10−9

R33 4.7291 · 10−9 4.7291 · 10−9 4.7291 · 10−9 4.7291 · 10−9

S12 3.4133 · 10−10 2.3790 · 10−10 1.3619 · 10−10 3.4476 · 10−11

S21 −1.1431 · 10−12 8.6327 · 10−13 9.5232 · 10−14
−6.7113 · 10−13

T11 2.7802 · 10−6 2.7803 · 10−6 2.7803 · 10−6 2.7803 · 10−6

T22 1.7143 · 10−6 1.7143 · 10−6 1.7143 · 10−6 1.7143 · 10−6

T33 1.7143 · 10−6 1.7143 · 10−6 1.7143 · 10−6 1.7143 · 10−6

ξ3 8.7588 · 10−5 6.1310 · 10−5 3.5034 · 10−5 8.7585 · 10−6

Table 1. Nonzero cross-sectional constants used for calculation of coupled free-
vibration frequencies for initially curved beams: flexibility submatrices Ri j , Si j , Ti j ,
radius of curvature Rr , and shear center location ξ3.
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Figure 9. Initial configurations of beams with β =−1 (top left), β = 0 (top right), and
β = 1 (bottom left). Bottom right: Final deformed configuration (K 2 =−0.1) with end
moments.

βcr, indicating that this case is at the stability boundary and the lateral-torsional buckling instability will
occur if β < βcr =−0.0117.

The lateral-torsional buckling instability depends on the in- and out-of-plane bending stiffnesses and
the torsional stiffness, which convey how deep the beam is. For this example with a rectangular cross-
section, each stiffness will be determined by the ratio of cross-section r = h/b. So various cases for differ-
ent r and same cross-sectional area �area = bh/`2 are studied to determine βcr. βcr indicates that for the

β mode 1 mode 2 mode 3 mode 4 mode 5 mode 6

0 31.842 32.548 89.567 90.630 177.94 179.13
0.1 31.842 96.606 89.567 90.209 177.94 185.45
0.2 31.842 125.16 89.567 89.776 177.94 199.11
0.3 31.842 140.08 89.332 89.568 177.94 211.83
0.4 31.842 147.61 88.878 89.568 177.94 229.92
0.5 31.842 151.58 88.412 89.568 177.95 248.30

Table 2. Vibration frequencies (ωfreq) versus curvature ratio (β).
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given cross-section, the instability will occur if the initial curvature k2 is larger than −0.1βcr when the to-
tal static equilibrium curvature K 2=−0.1. Figure 11 shows the critical values βcr for �area= 0.01, ∼ 0.1,
and ∼ 0.2. The region above the lines are free of the lateral-torsional buckling instability and the buckling
will occur if a case is under the line. As the cross-sectional area gets small and the ratio r increases, that
is, the beam gets deeper, the example is prone to the lateral-torsional instability as shown in Figure 11.
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Figure 10. Vibration frequencies (ωfreq) versus curvature ratio (β).
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Figure 11. Critical curvature ratio βcr versus r = h/b for the lateral-torsional buckling instability.
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Figure 12. Frequencies and damping for different end moments (β = −0.02, r = 1.1,
�area = 0.2).

For deep beams loaded with nonconservative end moments, one may also encounter a lateral-torsional
flutter instability. The dynamic instability might occur before the lateral-torsional instability occurs. A
further study is done for the case with β = −0.02, r = 1.1, �area = 0.2, which is one case of the
lateral-torsional buckling instability boundary curves shown in Figure 11. For this case, the applied
tip moment is M2 = −E I2(0.1+ k2) = −0.1002E I2, which we denote as the reference value M2,ref.
Another instability can be found through lowering the ratio rM2 = M2/M2,ref. Then, the second torsional
and third out-of-plane bending modes shown in Figure 12 become oscillatory with increasing amplitude
if rM2 ≥ 0.765. For this case, the dynamic instability occurs prior to the lateral-torsional instability.

7. Conclusion

The paper describes a numerical procedure of intrinsic beam formulation to study the stability of curved
beams under certain types of loading. The linear analysis provides the vibration frequencies about the
equilibrium state for given arbitrary configurations undergoing given loads. Present results of prebuckled
in-plane deformation and buckling analysis agree well with those from the published paper of high arches.
Additional parametric study determines the stability boundaries for the system. For nonconservatively
loaded systems, as the example shows, the dynamic instability also can be identified.

The governing equations of the present approach do not require displacement and rotation variables.
Even though the displacement and rotation variables appear in the boundary conditions, those variables
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are easily recovered from the formulation (i.e. they are secondary variables and can be expressed in
terms of the primary variables). This makes the whole analysis quite concise, reducing computational
time. Thus, the present approach is an excellent numerical framework to study prebuckled deformation
and buckling analysis for curved beams with better understanding.
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