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The conditions for the applicability of the elastic-viscoelastic correspondence principle (analogy) in
the presence of any of the five distinct classes of viscoelastic Poisson’s ratios (PR) are investigated in
detail. It is shown that if Poisson’s ratios are time-dependent, no analogy in terms of PRs is possible,
except for two of the classes under specifically prescribed highly limited conditions. Separately, the
severely restrictive conditions involving time-independent PRs are discussed in detail. Failure to observe
all such restrictions leads to ill posed overdeterminate problem formulations. Similarities associated
with viscoelastic Timoshenko shear coefficients are also investigated and it is shown that no analogy
to equivalent elastic problems can be constructed if these coefficients are time functions. In the final
analysis, the PR analogy difficulties can be entirely avoided by characterizing viscoelastic materials in
terms of relaxation moduli or creep compliances or creep and relaxation functions without any appeal
to PRs.

Introduction

Unlike stress and deformation analyses where approximate solutions are permissible, material character-
ization must be performed with the highest available degree of precision since thusly defined constitutive
relations pervasively impact all subsequent analyses. Consequently, great care must be exercised in
modeling material and experimental data and no unnecessary approximations should be introduced1. A
major case in point is the convenient, but fictitious, introduction of the approximation of time-independent
viscoelastic PRs to “simplify” material characterization, but which as will be demonstrated results in
overdeterminate ill posed problem formulations and thus leads to unreliable material characterizations
as well as stress-strain solutions.

Historically, in elasticity Poisson’s ratio [Poisson 1829] has found much justifiable favor in analysis
and material characterization. When normal strains can be readily measured in two directions, elastic
PRs become a most useful universal cornerstone of elastic property description along with shear, bulk and
Young’s moduli. Much of the PRs’ success is due to their simple concept in elasticity, where constitutive
relations between stresses and strains are algebraic, with neither energy dissipation nor time-dependent
memory.

Keywords: Bernoulli–Euler beams, correspondence principle, material characterization, Poissonś ratio, Timoshenko shear
coefficients, viscoelasticity.
1“Nothing is less real than realism. Details are confusing. It is only by selection, by elimination, by emphasis, that we get

at the real meaning of things.” —Georgia O’Keeffe
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While linear elastic materials have been successfully characterized in terms of moduli and Poisson’s
ratios (PRs) for almost two centuries [Poisson 1829], the transition to viscoelastic PRs is far less simple
than the well established equivalence between elastic moduli and viscoelastic relaxation functions/moduli
[Hilton 1996; 2001; 2003; Hilton and Yi 1998; Tschoegl 1997; Tschoegl et al. 2002; Lakes and Wineman
2006; Hilton and El Fouly 2007; Shtark et al. 2007]. There are two overriding issues that need to be pre-
cisely and properly addressed when using viscoelastic PRs, namely (i) the time and stress dependencies
of PRs and (ii) the inapplicability of the elastic-viscoelastic correspondence principle in terms of PRs. In
question is the fundamental nature of PRs as a derived quantity in terms of ratios of perpendicular normal
strains as opposed to “pure” material properties such as relaxation moduli, creep compliances, relaxation
functions, etc. As such viscoelastic PRs are not universal and are specific to loading, deformation and
temperature histories for each viscoelastic material.

On the other hand, in viscoelasticity with its time integral constitutive relations PRs become more com-
plex functions dependent on time and stress histories [Hilton 1996; 2001; Hilton and Yi 1998; Tschoegl
1997; Tschoegl et al. 2002, Hilton and El Fouly 2007, Shtark et al. 2007] behaviorally similar to that of the
time-dependent viscoelastic shear center [Hilton and Piechocki 1962]. Even in linear viscoelastic theory,
PRs are process dependent nonlinear functions of strains and time and non-universal material properties,
whereas linear relaxation and creep functions remain invariant with respect to loading histories. The
viscoelastic time dependence has been demonstrated analytically [Hilton 1996; 2001; 2003; Hilton and
Yi 1998; Tschoegl 1997; Tschoegl et al. 2002; Lakes and Wineman 2006; Hilton and El Fouly 2007]
as well as experimentally [Shtark et al. 2007; Lakes 1991]. Auxetic viscoelastic materials, which have
negative elastic PRs, have been treated in [Hilton and El Fouly 2007] where it shown that viscoelastic
PRs do not follow the negative elastic patterns.

Consequently, time-independent classical PRs require states of stress and strain where each are defined
as distinct temporally and spatially separable functions under inertialess conditions with no mixed bound-
ary conditions. Under these conditions the uniquely admissible PR value is one half, the latter condition
being restricted solely to incompressible and isotropic viscoelastic materials. Additionally, material
characterization in terms of PRs excludes the applicability of any elastic-viscoelastic correspondence
principle. The latter analogy can only be derived in terms of relaxation moduli and/or creep compliances
and some very limited PR forms. Therefore, material characterization in terms of relaxation moduli
(functions) and/or creep compliances, rather than PRs, remains the method of choice.

It must be remembered that isotropic viscoelastic material properties can only be properly determined
through experiments involving simultaneous measurements of two-dimensional strains as summarized
in [Hilton 2001] with some additional examples described in [Ravi-Chandar 1998; 2000; Lakes et al.
1979; Qvale and Ravi-Chandar 2004; Giovagnoni 1994; Mead and Joannides 1991; Sim and Kim 1990]
or through x-ray evaluations [Hoke et al. 2001].

The original separation of variable analogy was formulated in [Alfrey 1944] and [Alfrey 1948] and the
more general and inclusive Fourier transform formulation may be found in [Read 1950]. Viscoelasticity
theory including the correspondence principle were place on a rational basis in [Lee 1955]. In [Hilton
and Russell 1961] and [Hilton and Clements 1964] the analogy was extended to cover temperature de-
pendent viscoelastic material properties, while in [Hilton and Dong 1965] the correspondence principle
was derived for anisotropic materials.
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In a number of instances [Gottenberg and Christensen 1963; Olesiak 1966; Paulino and Jin 2001a;
2001b; Jin and Paulino 2002; Jin 2006; Ko et al. 2003; Hilton 1964; Freudenthal and Henry 1960;
Bieniek et al. 1981; Librescu and Chandiramani 1989b; 1989a; O’Brien et al. 2001; Zhu 2000; Shrotriya
2000; Shrotriya and Sottos 1998; Zhu et al. 2003; Andrianov et al. 2004; di Bernedetto et al. 2007;
Noh and Whitcomb 2003; Klasztorny 2004; Bert 1973; Cowper 1966; Hilton 2009; Therriault 2003],
time-independent PR assumptions lead to overdetermined ill-posed problems and cause use of the elastic-
viscoelastic correspondence principle to become unjustified. In other analyses [Jin and Paulino 2002; Jin
2006; Ko et al. 2003; Hilton 1964; Freudenthal and Henry 1960; Bieniek et al. 1981; Librescu and
Chandiramani 1989b; 1989a; O’Brien et al. 2001; Zhu 2000; Shrotriya 2000; Shrotriya and Sottos
1998; Zhu et al. 2003; Andrianov et al. 2004; di Bernedetto et al. 2007; Noh and Whitcomb 2003;
Klasztorny 2004; Bert 1973; Cowper 1966; Hilton 2009; Therriault 2003; Nakao et al. 1985; Singh and
Abdelnaser 1993; Chen 1995; Hilton and Vail 1993], the elastic-viscoelastic correspondence principle
(analogy) has been applied improperly by extending it to viscoelastic time-dependent PRs. In this paper
the applicability and predominent inapplicability of this analogy as it relates to Poisson’s ratio in elastic
and viscoelastic expressions involving bulk, shear and Young’s moduli is examined.

Several illustrative examples consider the effects of viscoelastic PRs, namely one-dimensional relax-
ation loading, simple bending and Timoshenko beams. The Timoshenko beam in particular brings into
play an additional parameter, the shear coefficient, which depends on stresses, material properties, load-
ing histories and paths, cross sectional geometry, and boundary and initial conditions. Its characteristics
bear some resemblance to those of the PRs and it also does not generally submit to an elastic-viscoelastic
analogy, despite a number of publications to the contrary [Therriault 2003; Nakao et al. 1985; Singh and
Abdelnaser 1993; Chen 1995], including one by the present author [Hilton and Vail 1993].

Note that all the viscoelastic Timoshenko beam publications [Nakao et al. 1985; Singh and Abdelnaser
1993; Chen 1995; Hilton and Vail 1993] except [Therriault 2003] preceded [Hilton 1996; 2001; 2003;
Hilton and Yi 1998; Tschoegl 1997; Tschoegl et al. 2002] where the viscoelastic PR inconsistencies
were derived. On the other hand, [Jin and Paulino 2002] were published after [Hilton 1996; 2001; 2003;
Hilton and Yi 1998; Tschoegl 1997; Tschoegl et al. 2002].

1. General concepts

The correspondence principle. The elastic-viscoelastic correspondence principle or analogy comes in
two flavors, namely (a) separation of variables and (b) integral transforms. The pertinent references
are listed in the introduction. Consider a Cartesian coordinate system x = {x1, x2, x3} with Einstein’s
summation notation and where underlined indices indicate no summation.

The separation of variables analogy states that under proper conditions viscoelastic variables are re-
lated to equivalent elastic ones by

σi j (x, t) = g(t) σ e
i j (x) εi j (x, t) = h(t) εe

i j (x) (1)

where the superscripts e denote equivalent elastic variables or solutions. The severe restrictions associated
with these forms are discussed in Section 3. In particular, it is required that the material be incompressible
with PRs νe(x)= ν(x, t)= 1

2 .
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For isotropic materials the integral transform analogy one requires that the Fourier transforms (FT) be

elastic H⇒


σ

e
i j (x, ω) = σ

e
i j (x, ω,Ge, K e, αT , X ,U )

or
σ

e
i j (x, ω) = σ

e
i j (x, ω,Ge, νe, αT , X ,U )

(2)

and

viscoelastic H⇒


σ i j (x, ω) = σ

e
i j (x, ω,G, K , q αT , X ,U )

σ i j (x, ω) 6= σ
e
i j (x, ω,G, ν, q αT , X ,U )

(3)

(see Table 2), where X (x, t) and U (x, t) are respectively boundary stresses and displacements. The
generic symbols Ge and G refer respectively to Ge, K e or Ee and G, K or E . The integral transform
analogy or correspondence principle then consists of one to one replacements in elastic FT solutions of
elastic moduli with corresponding viscoelastic complex moduli, i.e.,

G
for
−→ Ge, K

for
−→K e, E

for
−→ Ee, but not ν

for
−→ νe, except when ν = νe

=
1
2 . (4)

The viscoelastic stresses, strains and displacements are the FT inverses of these modified elastic FTs.

Constitutive relations. Isotropic isothermal nonhomogeneous elastic constitutive relations (Hooke’s law)
at constant temperature are then written as

σ e
ii (x, t) =

3∑
j=1

Ee
ii j j (x) ε

e
j j (x, t), (5)

σ e
i j (x, t) = 2 Ge(x) εe

i j (x, t), i 6= j, (6)

and with the classical (original) definition of Poisson’s ratio [Poisson 1829] given by

νe
i j (x, t) = −

εe
j j (x, t)

εe
ii (x, t)

, i 6= j, (7)

Thus the elastic PR will be time-dependent whenever the strain components are non-separable functions
of space and time or distinct time functions regardless whether the elastic moduli Ee

i jkl or Ge are time-
dependent.

For a case of one-dimensional stress, where

σ11 6= 0 and all other σi j are 0, (8)

substitution of (7) into (5) in order to eliminate ε22 = ε33 in favor of ε11 yields

σ e
11(x, t) =

(
Ee

1111(x)− 2 νe
12(x, t) Ee

1122(x)
)
εe

11(x, t) = E0(x, t) εe
11(x, t), (9)

since Ee
1122 = Ee

1133 and where E0 is the Young’s modulus.
Alternately, consider the isotropic constitutive relations in terms of shear and bulk moduli (K e and Ge):

Se
i j (x, t) = 2 Ge(x) Ee

i j (x .t), σ e(x, t) = K e(x) εe(x, t), (10)
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where the stress Si j and strain Ei j deviators and mean stresses σ and strains ε are

Si j = σi j − δi j σ, σ =
σi i

3
, Ei j = εi j − δi j ε, ε =

εi i

3
, (11)

resulting in

σ e
11(x, t) =

4 Ge
+ K e

3︸ ︷︷ ︸
= Ee

1111

εe
11(x, t) +

K e
− 2 Ge

3︸ ︷︷ ︸
= Ee

1122

(
εe

22(x, t) + εe
33(x, t)

)
, K e <∞, (12)

and

εe
11(x, t) =

1+Ge/K e

3 Ge︸ ︷︷ ︸
= 1/Ee

0 = Ce
0

σ e
11(x, t), εe

22(x, t) =
2 Ge/K e

− 1
6 Ge︸ ︷︷ ︸

=1/Ee
2211=Ce

2211=−ν
e
12/Ee

0

σ e
11(x, t), (13)

since ε22 = ε33. Therefore, for any isotropic linear elastic material the PR becomes

νe
12 = νe

=
1− 2 Ge/K e

2 (1+Ge/K e)
, (14)

with an upper limit of 0.5 for incompressible materials when K e
→∞.

The corresponding isotropic nonhomogeneous viscoelastic stress-strain relations at constant tempera-
ture are expressable in the form

σi i (x, t) =
3∑

j=1

∫ t

−∞

Ei i j j (x, t − t ′) ε j j (x, t ′) dt ′, (15)

σi j (x, t) = 2
∫ t

−∞

G(x, t − t ′) εi j (x, t ′) dt ′, i 6= j. (16)

The initial conditions of any viscoelastic problem are

σ(x, 0) = σ e(x, 0) and εi j (x, 0) = εe
i j (x, 0), (17)

with material properties

E(x, 0) = Ee(x) G(x, 0) = Ge(x) νi j (x, 0) = νe
i j (x), (18)

and where the superscript e refers to elastic quantities of the corresponding elastic problem (same bound-
ary conditions, geometry, and so on).

In [Hilton 2001] five distinct classes of PR definitions are catalogued:

Class I
[Poisson 1829]

νi j (x, t) def
= −

εj j (x, t)

εi i (x, t)
, i 6= j; (19)

Class II
[Christensen 1982; Pipkin 1972] νC

i j (x, t) def
= −

εj j (x, t)

ε11(x)
, j 6= 1; ε11 = const.; (20)

Class III
[Hilton and Yi 1998]

ν
A
i j (x, ω)

def
= −

ε j j (x, ω)

εi i (x, ω)
, i 6= j; (21)
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Class IV
[Vinogradov and Malkin 1980] νH

i j (x, t) def
= −

log
(
1+ εj j (x, t)

)
log
(
1+ εi i (x, t)

) ,, i 6= j; (22)

Class V
[Bertilsson et al. 1993]

∂νV
i j (x, t)

∂t
def
= −

∂εj j (x, t)/∂t

∂εi i (x, t)/∂t
, i 6= j. (23)

Consider for instance the original classical Class I definition for isothermal viscoelastic materials,
resulting in

νi j (x, t) = −
εj j (x, t)

εi i (x, t)
= −

∫ t
−∞

C j jkl(x, t − t ′) σkl(x, t ′) dt ′∫ t
−∞

Ci imn(x, t − t ′) σmn(x, t ′) dt ′
, i 6= j, (24)

with similar expressions for the other PR classes. It can be readily seen that even in linear viscoelasticity
the PRs by any definitions are

(I) nonlinear functions of strains, stresses and their time histories (loading path) and hence process-
dependent and not universal material property parameters such as moduli and compliances;

(II) derived or defined quantities and not fundamental ones such as relaxation moduli or creep compli-
ances;

(III) material properties determined from one-dimensional normal loading experiments and PRs may not
be exportable to other stress fields, unless proper expressions are used to represent these viscoelastic
PRs.

Elimination of ε22 from (15) now results in

σ11(x, t) =
∫ t

−∞

(
E1111(x, t − t ′)− 2 ν12(x, t ′) E1122(x, t − t ′)

)
ε11(x, t ′) dt ′. (25)

This isotropic constitutive relation form can be achieved in temporal space only through the use of the
Class I PR definition of (19), i.e., Poisson’s original definition [1829], since the strain substitutions must
be based on the actual instantaneous strains. Indeed, this viscoelastic protocol is identical to what is
employed in the theory of elasticity when Hooke’s law is extended to three dimensions and is the proper
approach for formulating general relations between dynamic moduli.

Taking Fourier transforms (FT) of (9) and (25) yields respectively

elastic H⇒ σ
e
11(x, ω) = E

e
1111(x, ω) ε

e
11(x, ω) − 2 E

e
1122(x, ω) ν

e
12 ε

e
11(x, ω), (26)

viscoelastic H⇒ σ 11(x, ω) = E1111(x, ω) ε11(x, ω) − 2 E1122(x, ω) ν12 ε11(x, ω). (27)

It can be readily seen that (26) and (27) are not in the proper form for the correspondence principle to
be applicable, since they contain the transforms of the Class I PR and strain as opposed to the necessary
product of the transforms, i.e. ν12 ε11 6= ν12 ε11. This inequality can be removed if and only if either
the PR or the strain or both are time-independent or if and only if the strains are separable functions as
described in (1). Time independent strains are the degenerate case of relations (1). Additional examples
are analyzed in detail in the next section.
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The relationship between relaxation moduli G(t), compliances C(t) and relaxation and creep functions
8(t) and 9(t) in the Fourier transform space is

C(x, ω) =
1

G(x, ω)
= ı ω 9(x, ω) =

1

ı ω 8(x, ω)
; (28)

see [Christensen 1982; Hilton 1964]. The Laplace transform can be obtained from the FT as

LT{ f (x, t)} = f (x, p) = f (x, ω)
∣∣
ı ω=1/p (29)

These proper definitions then lead to shear viscoelastic constitutive relations

εS(x, t) =
∫ t

−∞

C(t− t ′) σS(x, t ′) dt ′ =
∫ t

−∞

9(t− t ′)
∂σS(x, t ′)

∂t ′
dt ′ =

∫ t

−∞

∂9(t − t ′)
∂t ′

σS(x, t ′) dt ′

(30)and

σS(x, t) =
∫ t

−∞

G(t− t ′) εS(x, t ′) dt ′ =
∫ t

−∞

8(t− t ′)
∂εS(x, t ′)
∂t ′

dt ′ =
∫ t

−∞

∂8(t − t ′)
∂t ′

εS(x, t ′) dt ′.

(31)
With similar expressions for the normal stresses and strains given by

εi i (x, t) =
3∑

k=1

∫ t

−∞

C N
iikk(x, t − t ′) σkk(x, t ′) dt ′

=

3∑
k=1

∫ t

−∞

9N
iikk(x, t − t ′)

∂σkk(x, t ′)
∂t ′

dt ′ =
3∑

k=1

∫ t

−∞

∂9N
iikk(x, t − t ′)

∂t ′
σkk(x, t ′) dt ′ (32)

and

σi i (x, t) =
3∑

k=1

∫ t

−∞

Ei ikk(x, t − t ′) εkk(x, t ′) dt ′

=

3∑
k=1

∫ t

−∞

8N
iikk(x, t − t ′)

∂εkk(x, t ′)
∂t ′

dt ′=
3∑

k=1

∫ t

−∞

∂8N
iikk(x, t − t ′)

∂t ′
εkk(x, t ′) dt ′. (33)

The shear constitutive equations are

σi j (x, t) = 2
∫ t

−∞

G(x, t − t ′) εi j (x, t ′) dt ′, i 6= j. (34)

Application of Fourier transforms leads to

σ i i (x, ω) =
3∑

k=1

E i ikk(x, ω) εkk(x, ω), (35)

σ i j (x, ω) = 2 G(x, ω) εi j (x, ω), i 6= j, (36)

which leads to the proper elastic-viscoelastic correspondence principle in terms of relaxation moduli.
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2. The elastic-viscoelastic correspondence principle or analogy

Class I Poisson ratios: original definition. The elastic-viscoelastic analogy cannot be expressed in terms
of PRs with classical definitions of (7) and (19) when these elastic or viscoelastic PRs are functions of
time, since

ε22(x, ω) = ν12 ε11(x, ω) =
∫
∞

−∞

ν12(x, t) ε11(x, t) exp (−ı ω t) dt

6= ν12(x, ω) ε11(x, ω) =
∫
∞

−∞

ν12(x, t) exp (−ı ω t) dt
∫
∞

−∞

ε11(x, t) exp (−ı ω t) dt; (37)

the inequality arises because the quantity on the first line of (37) is the transform of the ν and ε11 product,
while the one on the second line is a product of their individual transforms. Either elastic and viscoelastic
PR will be time independent if and only if all the strains are time-independent or separable functions of
space and time with identical time functions [Hilton and Yi 1998; Hilton 2001].

Similarly, the elastic PR relation (14) is not receptive to the application of the elastic-viscoelastic
correspondence principle, since, by virtue of (27),

ν12(x, ω) 6=
1− 2 G(x, ω)/K (x, ω)

2
(
1+G(x, ω)/K (x, ω)

) (38)

except for incompressible materials when K (x, t)→∞ and ν12→ 0.5.
If classical (Class I) Poisson ratios are introduced into the isotropic constitutive relations, then from

(19) one obtains their FT as the transform of the products and not the product of the transforms as is
required for the correspondence principle [Hilton 1996; 2001; Hilton and Yi 1998]. This can be readily
seen by substituting (27) into (36), resulting in

σ i i (x, ω) = E i i i i (x, ω) εi i (x, ω) − 2 E i ikk(x, ω) νikεi i (x, ω)︸ ︷︷ ︸
=− εkk(x,ω)

, i 6= k. (39)

This is not the proper form of the elastic-viscoelastic correspondence principle and the analogy, therefore,
fails to materialize. Upon inversion one obtains

σi i (x, t) =
∫ t

−∞

(
Ei i i i (x, t − t ′) εi i (x, t ′) − 2 Ei ikk(x, t − t ′) νik(x, t ′) εi i (x, t ′)︸ ︷︷ ︸

= − εkk(x,t ′)

)
dt ′, i 6= k. (40)

Consequently, the conventional isotropic elastic material property relations

Ge
=

Ee

2(1+ νe)
and K e

=
Ee

1− 2 νe , (41)

involving the Young’s (Ee), shear (Ge) and bulk (K e) moduli together with PRs, have no counterpart in
viscoelasticity except, when PRs are time-independent, because of the inability to arrive at corresponding
Laplace or Fourier transforms of νe and ν. Therefore

G 6=
E

2
(
1+ ν

) and K 6=
E

1− 2 ν
and ν 6=

1− 2 G/K

2
(
1+G/K

) , (42)
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due to (37). Unfortunately, these inequalities prevent conversion by the correspondence principle of the
extensive elastic formulas developed in [Hahn 1980] and further amplified in [Whitney and McCullough
1990]. However, relations involving only moduli, such as

Ee
=

3 Ge

1+Ge/K e , (43)

possess an equivalent viscoelastic integral transform expression of the type

E(x, ω) =
3 G(x, ω)

1+G(x, ω)/K (x, ω)
. (44)

Hence, the integral transform elastic-viscoelastic analogy cannot involve Poisson’s ratios, except when
the viscoelastic PRs are time-independent, with all the attendant severe restrictions outlined above and
developed in detail in [Hilton 1996; 2001; Hilton and Yi 1998].

Class II Poisson ratios: one strain component, time-independent. Class II is a special degenerate case
of Class I with a time-independent loaded direction strain ε11(x). Taking the FT of (20) leads to

ν
C
1 j (x, ω) ε11(x) = ε j j (x, ω), j 6= 1, (45)

with corresponding constitutive FT relations

σ i i (x, ω) =
(
E i i11(x, ω) − 2 E i ikk(x, ω) ν

C
1k(x, ω)

)
ε11(x), k 6= i, k 6= 1. (46)

which inverts to

σi i (x, t) = Ei i11(x, t) ε11(x) − 2
∫ t

−∞

Ei ikk(x, t − t ′) νC
1k(x, t ′) ε11(x)︸ ︷︷ ︸
= − εkk(x,t ′)

dt ′, k 6= i, k 6= 1. (47)

This indicates that for this special case, the elastic-viscoelastic analogy is applicable in the FT space
even though the PR is time-dependent, but one of the normal strains, ε11(x), must be time-independent.
However, (46) cannot be generalized to and are inapplicable for time-dependent strains ε11(x, t), which
have to be treated as Class I PRs. (See (25) and (27).)

Class III Poisson ratios: alternate definition based on Fourier transforms. The alternate or transform
Poisson ratio [Hilton and Yi 1998] defined by (21) will change the FT of (39) to

σ i i (x, ω) =
(
E i i i i (x, ω) − 2 E i ikk(x, ω) ν

A
ik(x, ω)︸ ︷︷ ︸

= E
A
i ikk(x,ω)

)
εi i (x, ω), k 6= i, (48)

with an inverse relation

σi i (x, t) =
∫ t

−∞

(
Ei i i i (x, t − t ′) − 2 EA

i ikk(x, t − t ′)
)
εi i (x, t ′) dt ′, (49)

where

EA
i ikk(x, t) =

∫ t

−∞

Ei ikk(x, t − t ′) νA
ik(x, t ′) dt ′ =

∫ t

−∞

Ei ikk(x, t) νA
ik(x, t − t ′) dt ′. (50)
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The form (49) restores a format for the correspondence principle in terms of a pseudo relaxation
modulus EA

i ikk . It must be remembered, however, that neither νA
i j nor νA

i j is a physical quantity.
These inherent difficulties associated with viscoelastic PRs stem from the fact that unlike moduli,

compliances, relaxation and creep functions, etc., PRs are “derived” rather than fundamental material
properties, as seen from (19) and (20)–(23) and discussed in detail in [Hilton 2001] All but one of these
five do not accommodate the elastic-viscoelastic correspondence principle. However, the alternate PR
definition based on Fourier transforms [Hilton and Yi 1998], namely

ν
A
i j (x, ω) = −

ε j j (x, ω)

εi i (x, ω)
and εj j (x, t) = −

∫ t

−∞

νA
i j (x, t − t ′) εi i (x, t ′) dt ′, i 6= j, (51)

lends itself to an elastic-viscoelastic analogy in terms of νA
i j , but this alternate or transform PR has no

physical counter part nor relation to the the classical PR as given by (7) and (37). Furthermore, the Class
III PR bears no relation to its classical Class I counterpart

νA
i j (x, t) = −

∫
∞

−∞

ε j j (x, ω)

εi i (x, ω)
exp (ı ω t) dω 6= νi j (x, t), i 6= j. (52)

The viscoelastic PR situation is further aggravated since under many conditions classical (19) and
alternate PRs (51) become stress as a well as time-dependent for linear viscoelastic materials [Hilton and
Yi 1998; Hilton 2001]. Therefore, unlike relaxation moduli and creep compliances which in the linear
case are stress independent, viscoelastic PRs in any form are not global material properties which can
be used interchangeably among different loading conditions without re-computation to fit each specific
set of conditions and time histories.

Class IV Poisson ratios: Hencky definition. The Hencky definition of (22) does not lend itself to any
form of the elastic-viscoelastic analogy because of its inherent presence of the logarithmic terms.

Class V Poisson ratios: strain velocity ratios. For this PR class one can use the relaxation form of (33)
and substitute the PR from (23) to yield

σi i (x, t) =
∫ t

−∞

(
8N

iiii (x, t − t ′) − 28N
iikk(x, t − t ′)

∂νV
ik(x, t ′)

∂t ′

)
∂εi i (x, t ′)

∂t ′
dt ′ k 6= i (53)

There are visible similarities between Class I and V definitions and, hence, it is not surprising that the
velocity based PR suffers from the same limitations as the Class I representation since

∂νV
ik

∂t
∂εi i

∂t
(x, ω) =

∫
∞

−∞

∂νV
ik(x, t)

∂t
∂εi i (x, t)

∂t
exp (−ı ω t) dt =

∂εkk

∂t
(x, ω) k 6= 1 (54)

This leads to constitutive relations in the FT domain

σ i i (x, ω) = ı ω 8
N
iiii (x, ω) εi i (x, ω) − 28

N
iikk(x, ω)

∂νV
ik

∂t
∂εi i

∂t
(x, ω), k 6= i, (55)

and, therefore, is not suited for any form of the elastic-viscoelastic analogy.
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3. The seldom time-independent viscoelastic Poisson ratio

In elasticity time-independent strains can be achieved only under time-independent stresses and dis-
placements regardless of boundary conditions. In viscoelasticity time free strains are attainable under
considerably more restrictive conditions. (15) can be inverted in order to express strains in terms stress as

εi i (x, t) =
3∑

j=1

∫ t

−∞

Ci i j j (x, t − t ′) σ j j (x, t ′) dt ′, (56)

with compliances defined by (28).
As has been pointed out in [Hilton and Yi 1998; Hilton 2001] and as can be seen from (19), the

viscoelastic PRs are time-independent if and only if the corresponding viscoelastic solution is separable
into products of temporal and spatial parts, such that

Ei jkl(x, t) = F(t) E∗i jkl(x), Ci jkl(x, t) = Fc(t) C∗i jkl(x), (57)

εi j (x, t) = h(t) εe
i j (x), σi j (x, t) = g(t) σ e

i j (x), (58)

with

g(t) =
∫ t

−∞

F(t − t ′) h(t ′) dt ′ or h(t) =
∫ t

−∞

Fc(t − t ′) g(t ′) dt ′ (59)

depending on whether g(t) or h(t) is defined a priori on the boundary. It must be emphasized that the
requirement that the Ei jkl and Ci jkl all have the same time functions has serious implications. In isotropic
viscoelasticity it means that the shear and bulk relaxation moduli all must have identical time functions,
which is not the case in real materials. It is not uncommon to witness bulk moduli with relaxation times
three to six orders of magnitude larger than those of shear moduli. Therefore, the requirements on the
F(t) and Fc(t) functions of (57) are unrealistic means to simply achieve the desired time-independent
PRs.

These severe restrictions necessary for the existence of separable variable solutions are discussed
in [Hilton 1996; 1964; Alfrey 1944; 1948; Christensen 1982]. Each and every one of the following
conditions must be enforced for separation of variable formulations to exist:

• Elastic and viscoelastic materials must be isotropic, homogeneous and incompressible with νe(t)=
ν(t)= 1

2 .

• No dynamic effects and no body forces can be included.

• No moving boundaries, i.e., no penetration or ablation problems, and boundary surface 0 = 0(x)
only.

• No mixed boundary conditions; only separable stress or separable displacement BCs may be pre-
scribed, i.e.,

σi j (x, t) = g(t) σ ∗i j (x) = g(t) ni (x) X∗j (x) on 0(x) (60)

or
ui (x, t) = h(t) U∗i (x) on 0(x). (61)

• No thermal expansions, i.e. αT = 0, except for special cases of stress free boundaries [Hilton and
Russell 1961].
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• Only separable functions for material properties are permissible (relaxation moduli, compliances,
etc.; see (57)).

• Viscoelastic materials must be isotropic [Hilton 1996].

• Relaxation moduli in all directions must have the same separable time function as defined by (57),
but K (x, t)→∞. An exception occurs when E(t), G(t) and K (t) all obey the same time functions:

E(t)
E0
=

G(t)
G0
=

K (t)
K0
= F(t), (62)

and then −1 ≤ ν0 ≤ 0.5. The equal relaxation time function concept was was first introduced in
[Tsien 1950] and its implications and limitations are discussed in detail in [Hilton 1996]. A time-
independent PR other than 0.5 must satisfy the conditions

the special case H⇒
E

G
=

E0

G0
= 2 (1+ ν0) =

3
1+G0/K0

(63)

Having E(t)∼G(t) is physically achievable, but bulk relaxation moduli generally have relaxation
times 3 to 5 orders of magnitude larger than those for E(t) [Hilton 1996; 2001; Hilton and Yi 1998;
[Qvale and Ravi-Chandar 2004]]. (See Figure 1.)
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Figure 1. Elastic and viscoelastic relaxation moduli.

One can next ask whether it is possible to obtain a time-independent Class II PR. An examination of
(45) indicates that this can only occur if all normal strains are time-independent, i.e., εj j = εj j (x).

Consider an isothermal isotropic material with a special 1-D loading in the x1 direction, such that

ε11(x) =
∫ t

−∞

= C(x,t−t ′)︷ ︸︸ ︷
C1111(x, t − t ′) σ11(x, t ′) dt ′ (64)



THE ELUSIVE AND FICKLE VISCOELASTIC POISSON’S RATIO 1353

and

σ11(x, t) =
∫ t

−∞

= E(x,t−t ′)︷ ︸︸ ︷
E1111(x, t − t ′) ε11(x) dt ′, (65)

indicating that the one-dimensional relaxation stress σ11(x, t) necessary to maintain a time-independent
strain ε11(x) in the loaded direction must be time-dependent. Similarly, the strains in the other two
normal directions are

ε22(x, t) = ε33(x, t) =
∫ t

−∞

(
C2211(x, t − t ′)

∫ t ′

−∞

E1111(x, t − s) ε11(x) ds︸ ︷︷ ︸
= σ11(x,t ′)

)
dt ′. (66)

Consequently, these two strains cannot be time-independent in this one-dimensional configuration and
a time-independent PR is impossible under this loading. On the other hand, a special three-dimensional
loading with all σi i (x, t) necessary to maintain time-independent strains can be imposed. Such a special
stress field is material dependent and in a sense is specifically contrived to produce the desired time-
independent strains leading to time independent Class II PRs.

4. Error analysis

Consider realistic simulations of a one-dimensional experiment consisting of a prismatic isotopic vis-
coelastic bar as described above where σ11 6= 0 and all other σi j = 0. One generally measures ε11(t) and
σ11(t) and determines C(t) or E(t) from (64) or (65). This can be accomplished in either the time or FT
or LT spaces by a least square fit of the the coefficients En and by using the approximation [Schapery
1962]

τn = 10n (67)

such that

FT H⇒
σ 11(ω)

ε11(ω)
= E(ω) =

E∞
ı ω
+

N∑
n=1

En

ı ω+ 1/τn
; LT H⇒ E(p) = E(ω)

∣∣
ı ω=p. (68)

If one does not assume values of relaxation times as indicated in (67), then nonlinear algebraic solvers
can be used to determine sets of En and τn from the experimental data. The number of terms N is
selected to meet a prescribed accuracy of fit.

The experimental difficulties arise from attempts to simultaneously measure normal strains in the
other directions, i.e., ε22(t). Instead, a number of authors have assumed time-independent PRs νAS =

constant 6= 0.5, obtaining approximate shear and bulk relaxation moduli from

E =
3 G

1+G/K
=

1

C
and G AS ≈

E
2 (1+ νAS)

, (69)

and thereby creating an ill posed overdetermined problem, resulting in nonuniversal shear and bulk
relaxation moduli G AS and K AS . The correct protocol for one-dimensional experiments is formulated in
[Shtark et al. 2007].

An error analysis will be undertaken next to evaluate the effects of this PR assumption as part of a
computational simulation. Consider a state of one-dimensional stress where σ11 and ε11 produce creep
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compliances with C0 < C∞ and of the forms

C(t) = C∞ − (C∞ − C0) exp
(
−

t
τc

)
, (70)

C2211(t) = −C2211∞ + (C2211∞ − C22110) exp
(
−

t
τ2211

)
. (71)

This is equivalent to determining any other two moduli such as E(t), G(t) and the bulk relaxation
modulus K (t). Note that as discussed in a previous section τK > τG , it follows from (69) and (72) that
τC 6= τ2211.

The exact strains for this illustrative example are obtained from the constitutive relations as

ε11 =
σ 11

E
=

1+G/K

3 G
σ 11 = C σ 11, (72)

ε22 =
2 G/K − 1

2 E
(

1+G/K
) σ 11 =

2 G/K − 1

6 G
σ 11 = C2211 σ 11, (73)

and the shear and bulk moduli can be determined from (69) and (72) to be

G =
1

2 (C −C2211)
and K =

1

C + 2 C2211

, (74)

with C(t)≥ 0 and C2211(t)≤ 0. Note that for K (ω)→∞ the compliance C2211(ω) tends to −C(ω)/2.
As seen from (72) the simulation can also be formulated in terms of G and K instead of the Cs above,
but the latter approach renders the moduli/compliance relations considerably more involved.

The previously discussed exception of time-independent PRs with ν 6= .5 is evident from (69) and (72)
when G(t)∼ K (t) and G/K → G0/K0. Then

ν12(t) = −
ε22(t)
ε11(t)

→ −
2 G0/K0− 1

2 (G0/K0+ 1)
. (75)

On the other hand, it is quite evident from (72) that when G(t) and K (t) respond with different time
functions, the isotropic compliances C(t) and C2211(t) obey another set of two distinct time functions.

One can now compare exact G(ω) with approximate G AS(ω) and obtain the error resulting from the
introduction of νAS

Gerr =
G−G AS

G
, (76)

where the variables without subscripts AS are exact quantities. Similarly, the error between approximate
strains ε22AS and correct strains is determined by

ε22AS(t) = − νAS ε11(t) or ε22AS(ω) = − νAS ε11(ω), (77)

and for a one-dimensional loading from (72) one obtains

ε22(ω) =
C2211(ω)

C(ω)
ε11(ω) with εerr (ω) =

ε22(ω) − ε22AS(ω)

ε22(ω)
. (78)
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Typical compliance values and the corresponding viscoelastic PR are displayed in Figure 2.
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Figure 2. Compliances and PRs.

Note the pattern of initially decreasing from 0.3 and then rising PRs to a long time value of 0.48 for this
configuration. Consequently, lower and upper limit estimations based on time-independent initial νAS

and maximum values of 0.5 as was reported in [Therriault 2003] are erroneous and misleading, because
they disregard the time history as exemplified by the the constitutive relation convolution time integrals.
Furthermore, such arbitrarily assumed time-independent PRs νAS do not even lead to upper and lower
bounds which could replace and bracket the experimentally unrecorded relaxation moduli, strains, etc.
This fact is further amplified by next examining the experimentally unmeasured shear relaxation moduli
and strains in the direction normal to the one-dimensional loading.

Figure 3 depicts the per cent error between the exact LT shear modulus of (74) and the one based on
assumed values of the PR νAS of (69). For this configuration, the estimates for shear moduli based on
constant PR values of .3 and .5 lead to maximum errors in shear moduli of 43% and 56% respectively.
Errors of such magnitude render the constant PR approach totally unsatisfactory and unacceptable for
shear relaxation modulus determination from uniaxial experimental data with only single directional
stress and strain measurements.

The errors between the LT of the unmeasured and exact strains ε22 for 0≤ p ≤∞ or conversely for
∞≥ t ≥ 0 are shown in Figure 4 based on (72).

It is patent from these graphs that the arbitrary selection of constant Poisson ratios — in the present
examples PR values between 0.3 and 0.5 — produces errors in predicted unmeasured strains ε22 varying
from 130% to 270% from the exact values. These errors are so excessive as to make the constant PR
approach meaningless. These conclusions should come as no surprise, since earlier (and different) time-
independent PR error analyses in [Hilton and Yi 1998] and [Hilton 2001] showed similar undesirable
results.
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Figure 3. Percent shear modulus error.
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Figure 4. Percent Laplace transform transverse strain errors.

Furthermore, it can be readily seen from (77) and (69) that calculations based solely on the erroneous
time-independent PR νas with values between 0.3 and 0.5 produce unmeasured strains ε22AS which differ
by 66.7% and corresponding changes in shear moduli G AS of 76.9%. These errors are smaller than the
true errors described in the preceding paragraph, but they are much too large to be acceptable in their
own right. The generally accepted standard in deviations of elastic moduli is ±3%. Although no firm
equivalent standards has been established for viscoelastic relaxation moduli, material property character-
ization protocols based on arbitrarily defined time-independent PRs which yield different relaxation time
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histories and maximum errors ranging from 43% to 67% must definitively be rejected as indefensible.
(Note that the corresponding maximum strain errors are in excess of 250%.)

Different viscoelastic materials and other temperature conditions would change the specific numeri-
cal results, but would not alter the general large discrepancies between exact viscoelastic compliances,
strains, PRs, etc. and those based on assumed time-independent values νAS . While the comparison were
conducted in the LT space, the transforms can be inverted analytically or in the presence of complicated
transforms by fast Fourier transform (FFT) protocols [van Loan 1992]. In the present simulations the
LT results were not inverted into the time plane in order to avoid any additional possible errors resulting
from the approximate IFFT.

In summary, the arguments advanced in [O’Brien et al. 2001; Zhu 2000; Shrotriya 2000; Shrotriya and
Sottos 1998; Zhu et al. 2003; Andrianov et al. 2004; di Bernedetto et al. 2007; Noh and Whitcomb 2003]
to mention a few, that analyses based on time-independent PRs are reasonable approximations to exact
solutions — particularly for material characterizations — are disproved by the present simple simulations
of exact conditions and their comparison with assumed time-independent PR responses.

5. Some illustrative examples

One-dimensional relaxation loading. The foregoing analysis has direct implications in a number of
“simple” problems. Consider a prismatic viscoelastic bar subjected to a one-dimensional loading in the
x1-direction with ε11(x) only and a relaxation stress σ11(x, t) with all other σi j = 0. Clearly from (66)
the other two normal strains are time-dependent and so is the classical PR, as well as the other PRs of
Classes II through V.

Euler–Bernoulli viscoelastic beams. Another case in point is that of a prismatic, isotropic and isothermal
Euler-Bernoulli viscoelastic beam of length L , moment of inertia I , height 2c and h(x2) < c the beam
thickness or width with static loads q(x1) and statically determinate boundary conditions (Figure 5).

x1 

q(x1,t) 

x2 

RL 

ML RR MR 

Figure 5. Viscoelastic beam.

Here the self-equilibrating bending and shear stresses are time-independent, but the strains and deflec-
tions are not since ∫ t

−∞

E(t − t ′) I
∂4w(x1, t ′)

∂x4
1

dt ′ = q(x1), 0≤ x1 ≤ L , (79)

or, taking the FT,

I
∂4w(x1, ω)

∂x4
1

= C(ω)
q(x1)

ı ω
, 0≤ x1 ≤ L , (80)
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which upon inversion leads to

I
∂4w(x1, t)
∂x4

1
= q(x1)

∫ t

−∞

C(t − t ′) dt ′ = h(t) q(x1), 0≤ x1 ≤ L , (81)

with

σ11(x1, x2) =
M(x1) x2

I
and σ12(x1, x2) =

1
b(x2)

∫ c

x2

∂σ11(x1, x ′2)
∂x1

b(x ′2) dx ′2 (82)

for 0≤ x1 ≤ L and −c ≤ x2 ≤ c.
In this special one-dimensional case, the strains are also separable functions by virtue of the consti-

tutive relations (56) and (81), resulting in a time-independent PR with the required value of 0.5 and the
mandatory incompressible material (K →∞). However, for an anisotropic beam made of say composite
materials, no such separation of variables solution is admissible [Hilton 1996] and the corresponding PR
for such beams must be time-dependent.

Furthermore, if the applied loads are time-dependent then (79) changes to

m
∂2w(x1, t)

∂t2 +

∫ t

−∞

E(t − t ′) I
∂4w(x1, t ′)

∂x4
1

dt ′ = q(x1, t), 0≤ x1 ≤ L , (83)

and its solution is no longer separable even if the inertia term is neglected, unless the load is limited to
the special expression q(x1, t)= g(t) f (x1). In general the load can be represented by a Fourier series
whose summands are of this form:

q(x1, t) =
∞∑

n=1

gn(t) fn(x1), 0≤ x1 ≤ L , (84)

and the deflection w(x1, t) will also be a sum of separable functions

w(x, t) =
∞∑

n=1

hn(t) Wn(x), (85)

where each of the the functions Wn(x) individually satisfy all boundary conditions for all n ≥ 1.
In this case the PRs will be time-dependent regardless of whether or not the inertia term is included.

Table 1 summarizes these effects.

Load Inertia E Deflection PR

q(x1) Yes or No F(t) E∗i jkl(x1) h(t) w∗(x1) ν(x1)= 0.5
q(x1) Yes or No Ei jkl(x1, t) w(x1, t) ν(x1, t)

g(t) q∗(x1) No F(t) E∗i jkl(x1) h(t) w∗(x1) ν(x1)= 0.5
g(t) q∗(x1) Yes F(t) E∗i jkl(x1) w(x1, t) ν(x1, t)
g(t) q∗(x1) No Ei jkl(x1, t) w(x1, t) ν(x1, t)

q(x1, t) Yes or No F(t) E∗i jkl(x1) w(x1, t) ν(x1, t)
q(x1, t) Yes or No Ei jkl(x1, t) w(x1, t) ν(x1, t)

Table 1. Euler–Bernoulli bending effects on class I PR.
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Viscoelastic Timoshenko beams. Although the definition of the elastic Timoshenko shear coefficient is
somewhat arbitrary, in that it is based on equalities of strain energies [Bert 1973] or deformations [Cowper
1966] between exact and approximate solutions to mention a few examples, the concept leads to relatively
simple expressions depending only on beam cross sectional geometry and its elastic material properties.
However, under either definitions the shear coefficient is dependent on the elastic PR, thus making it
impossible to construct an elastic-viscoelastic analogy for this problem [Hilton 2009]. Unfortunately,
a number of authors [Therriault 2003; Nakao et al. 1985; Singh and Abdelnaser 1993; Chen 1995]
including the present one [Hilton and Vail 1993], have misinterpreted the possibility of the KSC analogy
and used it in inappropriate and incorrect settings. Space limitations do not allow to present the correct
solution for the viscoelastic Timoshenko beam here; for a complete treatment see [Hilton 2009].

6. Concluding remarks

Poisson ratios are defined quantities and not fundamental material properties such as relaxation moduli
and creep compliances which can be derived from first principles through the latter’s dependence on
thermodynamic derivatives. In linear viscoelasticity PRs are functions of time and stresses as well as
their time histories and, therefore, are not universal universal property parameters such as moduli and
compliances. It is, therefore, best to formulate viscoelastic analyses in terms of relaxation moduli or
creep compliances without involving Poisson ratios.

The following points emerge from the above analyses:

(1) The fundamental problem with viscoelastic Poisson’s ratios is not so much the diversity of their
definitions, i.e. five classes, as it is with their proper use in constructing constitutive relations and
correspondence principles involving PRs.

(2) In general, viscoelastic Poisson ratios can be time-independent if and only if displacements, strains
and stresses as well as relaxation moduli and creep compliances are all separable unequal functions
in time and space, and then PRs are limited to a single value of 0.5 for incompressible materials.

(3) A specific exception to the above exists if bulk, shear and Young’s relaxation moduli obey identical
time functions and stresses, displacements and moduli are separable spatial and temporal functions,
then PRs are time-independent and in the elastic range −1≤ ν ≤ 0.5. However, such a phenomenon
where changes in shape and in volume exhibit the same time response remain unobserved in nature.

(4) Linear viscoelastic PRs are not limited to the elastic value range and may exceed it considerably
in either direction, because of their dependence on stresses and stress time histories [Shtark et al.
2007; Lakes 1991].

(5) An assumption of time-independent viscoelastic Poisson ratios 6= 0.5 and without enforcement of the
above enumerated conditions is not an admissible approximation, because ill posed overdeterminate
problems result.

(6) The conventional elastic-viscoelastic analogy does not apply to expressions involving elastic or
viscoelastic PRs based on the classical Poisson and other definitions (Classes I, IV and V), as seen
in Table 2.

(7) Additionally, when the correspondence principle is inapplicable then no relations exist between
complex PRs and complex moduli.
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(8) Class II PRs based on one time-independent normal strain are always time-dependent, unless con-
stant volume deformations are maintained.

(9) An elastic-viscoelastic correspondence principle based on the alternate Fourier transform PR defi-
nition (Class III) may be constructed, but these PRs have no physical counterparts.

(10) Viscoelastic PRs are derived material properties and unlike relaxation moduli are neither universal
nor path-independent of loading conditions, since they depend on stress (loading) conditions and
relaxation/creep properties as well their time histories.

(11) In the time space, it is possible to formulate viscoelastic constitutive relations in terms of PRs which
bear resemblances to their elastic counterparts (Table 3). However, their forms do not lend them-
selves to the elastic-viscoelastic correspondence principle, except under very restrictive conditions;
see Table 2.

(12) Simulation study results displayed in Figures 2, 3, and 4 clearly demonstrate that even for a simple
time independent loading shear relaxation modulus, PRs and strains based on time-independent
PRs are no measure of the exact values of these variables as the former lead to excessively large
errors (ranging from 130% to 270% for the strain error in the examples considered), and constitute
extremely poor approximations. Furthermore, any such arbitrarily assumed time-independent PRs
νAS values do not lead to upper and lower bounds which could replace and bracket the experimentally
unrecorded relaxation moduli, strains, etc.

(13) The time dependence of viscoelastic PRs makes them unsuitable to be characterized from experimen-
tal data and measurements in two normal directions must be employed. Alternately, simultaneous
loadings, such as tractions and twisting for instance, may be employed on the same specimen.

Class Name
Viscoelastic Poisson’s Ratio

i 6= j Eq. Analogy Eq.

I Classical νi j (x, t) def
= −

εj j (x, t)

εi i (x, t)
(19) NO (39)

II Constant
strain

νC
i j (x, t) def

= −
εj j (x, t)

εi i (x)
(20)

YES, but limited to
ε11(x) only (47)

III Transform ν
A
i j (x, ω)

def
= −

ε j j (x, ω)

εi i (x, ω)
(21) YES, but νA

i j has
no physical meaning

(48)

IV Hencky νH
i j (x, t) def

= −
log
(
1+ εj j (x, t)

)
log
(
1+ εi i (x, t)

) (22) NO –

V Velocity
∂νV

i j (x, t)

∂t
def
= −

∂εj j (x, t)/∂t

∂εi i (x, t)/∂t
(23) NO (54)

Table 2. Poisson ratio elastic-viscoelastic correspondence principle (analogy). See
equations (19)–(23) for the bibliographical references for each class.
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Class Constitutive relations

I σ i i (x, ω)= E i i i i (x, ω) εi i (x, ω)− 2 E i ikk(x, ω)

= − εkk(x,ω)︷ ︸︸ ︷
νikεi i (x, ω), i 6= k

I σi i (x, t)=
∫ t

−∞

(
Ei i i i (x, t − t ′) εi i (x, t ′)− 2 Ei ikk(x, t − t ′) νik(x, t ′) εi i (x, t ′)︸ ︷︷ ︸

= − εkk(x,t ′)

)
dt ′, i 6= k

II σ i i (x, ω)= E i i11(x, ω) ε11(x) − 2 E i ikk(x, ω)

= − εkk(x,ω)︷ ︸︸ ︷
ν

C
1k(x, ω) ε11(x), k 6= i, k 6= 1

II σi i (x, t)= Ei i11(x, t) ε11(x) − 2
∫ t

−∞

Ei ikk(x, t − t ′) νC
1k(x, t ′) ε11(x)︸ ︷︷ ︸
= − εkk(x,t ′)

dt ′, k 6= i, k 6= 1

III σ i i (x, ω) =
(
E i i i i (x, ω) − 2

= E
A
i ikk(x,ω)︷ ︸︸ ︷

E i ikk(x, ω) ν
A
ik(x, ω)

)
εi i (x, ω), k 6= i

III σi i (x, t) =
∫ t

−∞

(
Ei i i i (x, t − t ′) − 2 EA

i ikk(x, t − t ′)
)
εi i (x, t ′) dt ′, k 6= i

V σ i i (x, ω)= ı ω 8
N
iiii (x, ω) εi i (x, ω) − 28

N
iikk(x, ω)

∂νV
ik

∂t
∂εi i

∂t
(x, ω), k 6= i

V σi i (x, t)=
∫ t

−∞

(
8N

ii11(x, t − t ′) − 28N
iikk(x, t − t ′)

∂νV
ik(x, t ′)

∂t ′

)
∂εi i (x, t ′)

∂t ′
dt ′, k 6= i

Table 3. Linear isotropic constitutive relations with Poisson’s ratios.

(14) In the final analysis, relaxation moduli, compliances, and creep and relaxation functions should be
the characterizations of choice since they do not suffer the severe limitations of PRs, such as —
even for linear materials — dependence on stress, strain and displacement time histories. Further-
more, they properly allow use of the elastic-viscoelastic correspondence principle without additional
constraints.
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