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THE EFFECT OF INFINITESIMAL DAMPING ON NONCONSERVATIVE
DIVERGENCE INSTABILITY SYSTEMS

ANTHONY N. KOUNADIS

The present work discuss the local dynamic asymptotic stability of 2-DOF weakly damped nonconser-
vative systems under follower compressive loading in regions of divergence, using the Liénard–Chipart
stability criterion. Individual and coupling effects of the mass and stiffness distributions on the local
dynamic asymptotic stability in the case of infinitesimal damping are examined. These autonomous
systems may either be subjected to compressive loading of constant magnitude and varying direction
(follower) with infinite duration or be completely unloaded. Attention is focused on regions of diver-
gence (static) instability of systems with positive definite damping matrices. The aforementioned mass
and stiffness parameters combined with the algebraic structure of positive definite damping matrices may
have under certain conditions a tremendous effect on the Jacobian eigenvalues and thereafter on the local
dynamic asymptotic stability of these autonomous systems. It is also found that contrary to conservative
systems local dynamic asymptotic instability may occur, strangely enough, for positive definite damping
matrices before divergence instability, even in the case of infinitesimal damping (failure of Ziegler’s
kinetic criterion).

1. Introduction

The importance of damping on the local dynamic asymptotic stability of nonconservative systems was
recognized long ago [Ziegler 1952; Nemat-Nasser and Herrmann 1966; Crandall 1970]. Particular atten-
tion was given to nonconservative discrete systems under follower load (autonomous systems) which may
lose their stability either via flutter (vibrations of continuously increasing amplitude) or via divergence
(static) instability depending on the region of variation of the nonconservativeness loading parameter.

The local dynamic stability of such autonomous nonconservative damped systems is governed by the
matrix-vector differential equation [Kounadis 2006; 2007]

Mq̈ +Cq̇ + Vq = 0, (1)

where the dot denotes differentiation with respect to time t , q(t) is an n-dimensional state vector with
coordinates qi (t) (i =1, . . . , n), and M and C are n×n real symmetric matrices, while V is an asymmetric
matrix if the nonconservativeness loading parameter η is different from one (η = 1 corresponds to a
conservative load). Specifically, the matrix M , associated with the total kinetic energy of the system, is a
function of the concentrated masses mi (i = 1, . . . , n), and is always positive definite; C , whose elements
are the damping coefficients ci j (i, j = 1, . . . , n), may be positive definite, positive semidefinite, as in
the case of pervasive damping [Zajac 1964; 1965], or indefinite [Laneville and Mazouzi 1996; Sygulski

Keywords: nonconservative divergence, follower load, infinitesimal damping mass, Liénard–Chipart criterion, asymptotic
instability.
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1996]; V is a generalized stiffness matrix with coefficients ki j (i, j = 1, . . . , n), whose elements Vi j

are also linear functions of η and of a suddenly applied external load λ of constant magnitude with
varying direction (partial follower load defined by η) and infinite duration [Kounadis 1999], that is,
Vi j = Vi j (λ; ki j , η). Apparently, due to this type of loading the system under discussion is autonomous.
The static instability or buckling loads λc

i (i = 1, . . . , n) are obtained by setting to zero the determinant
of the stiffness asymmetric (η 6= 1) matrix V (λ; ki j , η):

V = |V (λ; ki j , η)| = 0. (2)

This clearly yields an n-th degree algebraic equation in λ for given values of ki j and η. Assuming
distinct critical states the determinant of the matrix V (λ; ki j , η) is positive for λ < λc

1, zero for λ= λc
1,

and negative for λ > λc
1.

The boundary between flutter and divergence instability is obtained by solving with respect to λ and
η the system of algebraic equations [Kounadis 1997]

V = ∂V
∂λ
= 0 (3)

for given stiffness parameters ki j (i, j = 1, . . . , n).
We established in [Kounadis 2006; 2007] the conditions under which the above autonomous dissi-

pative systems under step loading of constant magnitude and direction (conservative load) with infinite
duration may exhibit dynamic bifurcation modes of instability before divergence, that is, for λ < λc

1,
when infinitesimal damping is included. These dynamic bifurcational modes may occur through either
a degenerate Hopf bifurcation (leading to periodic motion around centers) or a generic Hopf bifurcation
(leading to periodic attractors or to flutter). These unexpected findings (implying failure of Ziegler’s
kinetic criterion and other singularity phenomena) may occur for a certain combination of values of the
mass (primarily) and stiffness distributions of the system in connection with a positive semidefinite or
an indefinite damping matrix [Kounadis 2006; 2007].

The question now arises whether there are combinations of values of these parameters (the mass and
stiffness distributions) which, in connection with positive definite damping matrices, may lead to dynamic
bifurcational modes of instability when the system is nonconservative due to a partial follower compres-
sive load associated with the nonconservativeness parameter η. Only cases of divergence instability
occurring for suitable values of η are considered. Namely, pseudoconservative systems are considered
which are subjected to nonconservative circulatory forces, being therefore essentially nonconservative
systems [Huseyin 1978]. Systems exhibiting flutter are called Ziegler circulatory, although in this termi-
nology pseudoconservative systems are not distinguished [Ziegler 1952]. Attention is focused mainly on
infinitesimal damping which may have a tremendous effect on the system’s divergence instability. Such
local dynamic instability will be sought through Liénard–Chipart’s set of asymptotic stability criteria
[Gantmacher 1959; 1970] which are elegant and more readily employed than the well known Routh–
Hurwitz stability criteria. The local dynamic asymptotic stability of these systems using the above criteria
is also discussed if there is no loading (λ= 0).

In addition to the above main objective of this work, some new cases when the above autonomous
systems are loaded by the aforementioned type of step follower compressive load will be also discussed by
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analyzing 2-degree of freedom (DOF) systems for which a lot of numerical results are available. Finally,
the conditions for the existence of a double purely imaginary root (eigenvalue) are properly discussed.

2. Basic equations

The solution of (1) can be sought in the form

q = reρt , (4)

where ρ is in general a complex number (eigenvalue) and r is a complex vector independent of time t .
Introducing q from (4) into (1) we get

(ρ2 M + ρC + V )r = 0. (5)

For given matrices M , C , and V solutions of (5) are related to the Jacobian eigenvalues ρ= ρ(λ) obtained
by setting the determinant to zero, so

|ρ2 M + ρC + V | = 0; (6)

expansion of the determinant gives the characteristic (secular) equation for an n-DOF system

ρ2n
+α1ρ

2n−1
+ · · ·+α2n−1ρ+α2n = 0, (7)

where the real coefficients αi (i = 1, . . . , 2n) are determined by means of the Bôcher formula [Pipes
and Harvill 1970]. The eigenvalues ρ j ( j = 1, . . . , 2n) of (7) are, in general, complex conjugate pairs
ρ j = ν j ±µ j i (where ν j and µ j are real numbers and i =

√
−1), with corresponding complex conjugate

eigenvectors r j and r̄ j ( j = 1, . . . , n). Since ρ j = ρ j (λ), clearly ν j = ν j (λ), µ j = µ j (λ), r j = r j (λ),
and r̄ j = r̄ j (λ). Thus, the solutions of (1) are of the form

Aeν j t cosµ j t, Beν j t sinµ j t, (8)

where constants A and B are determined from the initial conditions. Solutions (7) are bounded, tending
to zero as t→∞, if all eigenvalues of (7) have negative real parts, that is, when ν j < 0 for all j . In this
case the algebraic polynomial (7) is called a Hurwitz polynomial (since all its roots have negative real
parts) and the origin (q = q̇ = 0) of the system is asymptotically stable.

Regarding the criteria for asymptotic stability it is worth mentioning the following. Consider the more
general case of a polynomial in z with real coefficients αi (i = 0, 1, . . . , n)

f (z)= α0zn
+α1zn−1

+ · · ·+αn−1z+αn = 0 (α0 > 0), (9)

for which we will seek the necessary and sufficient conditions so that all its roots have negative real parts.
Denoting by zκ (κ = 1, . . . ,m) the real and by r j ± is j ( j = 1, . . . , (n−m)/2; i =

√
−1 ) the complex

roots of (9) we can arrange for all these complex roots to lie to the left of the imaginary axis:

zκ < 0, r j < 0 (κ = 1, . . . ,m; j = 1, . . . , n−m
2

). (10)

Then one can write

f (z)= α0

m∏
κ=1

(z− zκ)
n−m∏
j=1

(z2
− 2r z+ r2

j + s2
j ). (11)
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Since due to inequality (10) each term in the last part of (11) has positive coefficients, it is deduced
that all coefficients of (9) are also positive. However, this (meaning αi > 0 for all i with α0 > 0) is a
necessary but by no means sufficient condition for all roots of (9) to lie in the left half-plane (Re(z) < 0).

The Routh–Hurwitz criterion [Gantmacher 1959; 1970] gives necessary and sufficient conditions for
asymptotic stability, that is, for all roots of (9) to have negative real parts; the conditions are

11 > 0, 12 > 0, . . . , 1n > 0, (12)

where

11 = α1, 12 =

[
α1 α3

α0 α2

]
, 13 =

α1 α3 0
α0 α2 α4

0 α1 α3

 , . . . , 1n =



α1 α3 α5 · · ·

α0 α2 α4 · · ·

0 α1 α3 · · ·

0 α0 α2 α4 · · ·
...

...
...

...
. . .
αi

 (13)

with ακ = 0 for κ > n. The last equality yields 1n = αn1n−1.
Note that when the necessary conditions αi > 0 (for all i) hold, the inequalities (17) are not independent.

For instance, for n = 4 the Routh–Hurwitz conditions reduce to the single inequality 13 > 0, for n = 5
they reduce to 12 > 0 and 14 > 0, while for n = 6 they reduce again to two inequalities, 13 > 0 and
15 > 0. This case was discussed by Liénard and Chipart who established the following elegant criterion
for asymptotic stability [Gantmacher 1970].

The Liénard–Chipart stability criterion. Necessary and sufficient conditions for all roots of the real
polynomial f (z) = α0zn

+ α1zn−1
+ · · · + αn−1z + αn = 0 (α0 > 0) to have negative real parts can be

given in any one of the following forms:

αn > 0, αn−2 > 0, . . . , with

{
either 11 > 0, 13 > 0, . . . ,

or 12 > 0, 14 > 0, . . . ,
(14)

or

αn > 0, αn−1 > 0, αn−3 > 0, . . . , with

{
either 11 > 0, 13 > 0, . . . ,

or 12 > 0, 14 > 0, . . . .
(15)

This stability criterion was rediscovered by Fuller [1968].
In this study attention is focused on 2-DOF nonconservative (due to partial follower compressive

loading) dissipative systems, whose characteristic equation (7) is written as follows:

ρ4
+α1ρ

3
+α2ρ

2
+α3ρ+α4 = 0 (α0 = 1). (16)

According to the last criterion all roots of (16) have negative real parts provided that α4 > 0, α2 > 0,
and 13 = α3(α1α2−α3)−α

2
1α4 > 0. Clearly, from the last inequality it follows that α3 > 0. Hence, the

positivity of α1 and α3 was assured via the above conditions (α4 > 0, α2 > 0, 11 > 0, and 13 > 0).



EFFECT OF INFINITESIMAL DAMPING ON NONCONSERVATIVE DIVERGENCE INSTABILITY SYSTEMS 1419

3. Mathematical analysis

Consider the cantilevered dissipative spring model with 2 DOFs under a partial follower compressive
tip load which is shown on the next page. Subsequently we will examine in detail the effect of a viola-
tion of one or more of the conditions of the Liénard–Chipart criterion on its local dynamic asymptotic
stability. The response of this dynamic model carrying two concentrated masses is studied when it is
either loaded under a suddenly applied load of constant magnitude and
varying direction with infinite duration or completely unloaded. Such
autonomous dissipative systems with positive definite damping matrices
and particularly with infinitesimal damping are properly investigated.
If at least one root of the secular equation (16) has a positive real part
the corresponding solution — see (8) — will contain an exponentially
increasing function with time, and the system will become dynamically
asymptotically unstable.

The seeking of an imaginary root of the secular equation (16) which
represents a borderline between dynamic stability and instability is a
first, important step in our discussion. Clearly, an imaginary root gives
rise to an oscillatory motion of the form eiµt (i =

√
−1, µ real number)

around the trivial state. However, the existence of at least one multiple
imaginary root of the κ-th order of multiplicity leads to a solution con-
taining functions of the form eiµt , teiµt , . . . , tκ−1eiµt , which increase
with time. Hence, the multiple imaginary root on the imaginary axis
denotes local dynamic instability. The discussion of such a situation is
also another objective of this study.

A

B
m1

m2 C

θ1

θ2

k1

k2

load λ

|AB| = |BC | = `

ηθ2

The nonlinear equations of motion for the 2-DOF nonconservative model of the figure with rigid links
of equal length ` are given by [Kounadis 1997]

(1+m)θ̈1+ θ̈2 cos(θ1+ θ2)− θ̇
2
2 sin(θ1− θ2)+ c11θ̇1+ c12θ̇2+ V1 = 0,

θ̈2+ θ̈1 cos(θ1− θ2)− θ̇
2
1 sin(θ1− θ2)+ c22θ̇2+ c12θ̇1+ V2 = 0,

(17)

where

V1 = (1+ k)θ1− θ2− λ sin
(
θ1+ (η− 1)θ2

)
, V2 = θ2− θ1− λ sin ηθ2,

η is the nonconservativeness loading parameter, and

m = m1
m2
, k = k1

k2
, λ=

P`
k2
.

Linearization of Equation (17) after setting

2=

[
θ1

θ2

]
= eρt

[
ϕ1

ϕ2

]
= eρtφ
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gives (ρ2 M + ρC + V )φ = 0, where

M =
[

m11 m12

m12 m22

]
=

[
1+m 1

1 1

]
, C =

[
c11 c12

c12 c22

]
,

V =
[

V11 V12

V21 V22

]
=

[
k+ 1− λ −1− λ(η− 1)
−1 1− λη

]
.

(18)

In the case of a positive definite damping matrix of Rayleigh viscous type c11 = c1+ c2, c12 =−c2, and
c22 = c2, where ci (i = 1, 2) is the damping coefficient of the i-th bar.

The static buckling equation, det V = 0, leads to

ηλ2
− η(k+ 2)λ+ k = 0, (19)

whose lowest root is the first buckling load λc
1 equal to

λc
1 =

1
2

(
k+ 2−

√
(k+ 2)2− 4k/η

)
(η 6= 0). (20)

For real roots the discriminant 1 of (19) must be greater or equal to zero (1≥ 0) which yields

η ≥
4k

(k+ 2)2
. (21)

For instance, for k = 1 it follows that static instability occurs for η≥ 4/9 and flutter instability for η < 4/9.
The coefficients of the characteristic equation (16) are given by

α1 =
1
m
[(1+m)c22+ c11− 2c12],

α2 =
1
m
[(1+m)(1− λη)+ 3+ k− λ+ λ(η− 1)+ |c|],

α3 =
1
m
{
c11(1− λη)+ c22(1+ k− λ)+ [2+ λ(η− 1)]c12

}
,

α4 =
1
m
[ηλ2
− η(k+ 2)λ+ k] = 1

m
det V,

(22)

where |c| = det C .
The region of existence of adjacent equilibria (region of divergence instability) is related to static

bifurcations with two distinct critical loads obtained via α4 = 0 or (19). The boundary between the
region of existence and nonexistence of adjacent equilibria is defined by

α4 =
dα4
dλ
= 0, (23)

which due to relations (22) gives

η0 =
4k

(k+ 2)2
, λ0 =

k+ 2
2

. (24)

This is a double (compound) branching point related to a double root of (19) with respect to λ. Consider-
ing the function η = η(λ, k) the necessary condition for an extremum ∂η/∂λ= ∂η/∂k = 0 yields λ0 = 2
and k0 = 2 implying η0 =

1
2 . Note that η0 is the maximum distance of the double branching point from

the λc-axis (curve η versus λc). Two characteristic curves are considered, k < 2 and k > 2. It is clear that
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λc
0→ 1 and η0→ 0 as k→ 0, whereas for k > 2λc

0→∞, η0→ 0 as k→∞. It is easy now to establish
the locus of the double branching points in the plane of η− λc (see Figure 1), being independent of m.
Note that for k→ 0 or k→∞ the region of flutter instability disappears.

Subsequently, the Liénard–Chipart criterion for asymptotic stability is used, which is more simple and
efficient than that of Routh–Hurwitz. Clearly, if one of the conditions (15α, b) is violated there is no
asymptotic stability. We will apply this criterion for the above 2-DOF cantilevered model (n = 4, α0 = 1)
in the case of a positive definite damping matrix for which one can show that m > 0 always implies
α1 > 0. Now consider the case of the Rayleigh positive definite viscous damping matrix in the region of
divergence stability, that is, for η ≥ η0 = 4k(k+ 2)2. Then c11 = c1+ c2, c12 = c21 =−c2, and c22 = c2

Figure 1. Locus of double branching points (λc
0, η0).
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(ci > 0, i = 1, 2), and relations (22) become

α1 =
1
m
[c1+ (4+m)c2], α2 =

1
m
[m+ k+ 4+ c1c2− λ(ηm+ 2)]

α3 =
1
m
[c1(1− λη)+ c2(k− 2λη)], α4 =

1
m
[ηλ2
− η(k+ 2)λ+ k].

(25)

According to the first set of conditions (14) we have

α4 > 0, α2 > 0, 11 = α1 > 0, 13 > 0, (26)

where

13 =

∣∣∣∣∣∣
α1 α3 0
1 α2 α4

0 α1 α3

∣∣∣∣∣∣= α3(α1α2−α3)−α
2
1α4. (27)

From (25) it follows that α1 > 0. Since α4 = det(V/m) (m > 0) one may consider the following cases
regarding the interval of variation of λ:

For λ < λc
1 ⇒ det V > 0 and hence α4 > 0,

For λc
1 < λ < λ

c
2 ⇒ det V < 0 and hence α4 < 0,

For λ≥ λc
2 ⇒ det V > 0 and hence α4 > 0.

 (28)

Considering always the region of divergence instability, η≥ 4k/(k+2)2, and keeping in mind the interval
of values of λ the following cases of violation of conditions (26) are discussed:

First case: α4 > 0 (for λ < λc
1), α2 < 0, and 13 > 0. In view of (27), clearly 13 > 0 implies α3 < 0

(since always α1 > 0) or due to relation (25)

c1(1− λη)+ c2(k− 2λη) < 0. (29)

Since c1, c2 > 0 the quantities 1− λη and k− 2λη must be of opposite sign. Inequality (29) can always
be satisfied for suitable values of ci > 0 (i = 1, 2). Subsequently one can find suitable values for k, η,
and m for which

λ < λc
1 =

1
2

(
k+ 2−

√
(k+ 2)2− 4k/η

)
is also consistent with α2 < 0. The important conclusion which then can be drawn is that a local dynamic
asymptotic instability in regions of divergence (for λ less than the first buckling load) may occur in the
case of a positive definite damping matrix. This is excluded in the case of conservative loading (η = 1),
as shown in [Kounadis 2006; 2007].

More specifically one can establish to the following proof: In view of (25), the condition α2 < 0
implies

λ >
m+ k+ 4+ c1c2

ηm+ 2
, (30)

which must be consistent with (20),

λ < 1
2

(
k+ 2−

√
(k+ 2)2− 4k/η

)
. (31)



EFFECT OF INFINITESIMAL DAMPING ON NONCONSERVATIVE DIVERGENCE INSTABILITY SYSTEMS 1423

One can show that there are values of λ for which both inequalities (30) and (31) are satisfied for
η ≥ 4k/(k+ 2)2, m > 0, k > 0, and ci > 0 (i = 1, 2). For example for k = 5, m = 8, c1 = 0.001,
and c2 = 0.00013 we get η ≥ 4k/(k + 2)2 = 20/49 = 0.408163265. Choosing η = 0.41 we obtain
λc

1 = 3.26574, as well as

λ >
m+ k+ 4+ c1c2

ηm+ 2
= 3.219697.

For λ= 3.26<λc
1= 3.26574, we find: α1= 0.00032, α2=−0.0266, α3=−4.26×10−6, α4= 0.0001395,

and m313 = 1.96× 10−9
≈ 0. Figure 2 shows, for these values of parameters αi (i = 1, . . . , 4), a large

amplitude chaotic-like response in the (θ2, θ̇2) phase plane. Hence, for 3.26≤ λ≤ 3.26574, the damped
autonomous system exhibits local asymptotic instability before divergence for a positive definite damping
matrix (with coefficients practically zero) of the Rayleigh viscous type. This is an unexpected finding
which does not occur for the same system under conservative (η = 1) tip load [Kounadis 2006; 2007].

Second case: α4 < 0 (for λc
1 < λ < λc

2), α2 > 0, and 13 > 0. In view of (25), the condition α2 > 0
implies

λ <
m+k+4+c1c2

ηm+2
, and hence λc

1 <
m+k+4+c1c2

ηm+2
< λc

2, (32)

or, due to (19),

1
2

(
k+ 2−

√
(k+ 2)2− 4k/η

)
<

m+k+4+c1c2
ηm+2

< 1
2

(
k+ 2+

√
(k+ 2)2− 4k/η

)
. (33)

 

Figure 2. Phase-plane response
(
θ2(τ ) versus θ̇2(τ )

)
for a cantilever with parameters

k = 5, η = 0.41, m = 8, c1 = 0.001, c2 = 0.00013, and λ= 3.26< λc
1 = 3.26574. The

model is locally dynamically unstable exhibiting large amplitude chaotic motion.
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Fig 4 

Figure 3. Phase-plane response
(
θ2(τ ) versus θ̇2(τ )

)
for a cantilever with parameters

k = 10, η = 0.41, m = 7.5, c1 = c2 = 0.001, and λc
1 = 2.59269< λ= 3< λc

2 = 9.40731.
The model exhibits large amplitude chaotic motion which is finally captured by the left
stable equilibrium point acting as an attractor.

Figure 4. Phase-plane response
(
θi (τ ) versus θ̇i (τ ), i = 1, 2

)
for a cantilever with

parameters k = 1, η = 0.45, m = 4, c1 = 0.001, c2 = 0.003, and λ = 2.37 >

(k +m + 4+ c1c2)/(ηm + 2) = 2.36842. The model is locally dynamically unstable
exhibiting large amplitude chaotic motion.
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For instance, if k = 10 then η ≥ 4k/(k + 2)2 = 0.2777777. Choosing η = 0.41, c1 = c2 = 0.001,
and m = 7.5 inequality (33) yields 2.59269 < 4.23645 < 9.40731. For λ = 3 we get: α1 = 0.001667,
α2 = 0.83667, α3 = 0.00097467, α4 =−0.142667, and m313

= 3.39795× 10−4.
As was anticipated the system is locally dynamically asymptotically unstable. However, a nonlinear

dynamic analysis will show that the system is globally stable. This is so, because the cantilever under
statically applied load exhibits postbuckling strength and hence the postbuckling stable equilibria act as
point attractors. Figure 3 shows, corresponding to the given parameters αi (i = 1, . . . , 4), the motion
in the (θ2, θ̇2) phase plane, which after large amplitude vibrations is finally captured by the left stable
equilibrium point (of the cantilever) acting as point attractor.

Third case: α4> 0 (for λ>λc
2), α2< 0, and13> 0. Clearly α2< 0 and13> 0 imply α3< 0. Inequality

α2 < 0 due to relations (25) yields

λ >
k+m+4+c1c2

ηm+2
. (34)

We must also have

λ > λc
2 =

1
2

(
k+ 2+

√
(k+ 2)2− 4k/η

)
. (35)

One can readily show that both (34) and (35) can be satisfied for various values of λ and of the parameters
m > 0, k > 0, ci > 0 (i = 1, 2), and η ≥ 4k/(k+ 2)2.

For instance, for m = 4, c1 = 0.001, c2 = 0.003, and k = 1 implying η = 4/9, after choosing η = 0.45
we obtain λ≥ (k+m+ 4+ c1c2)/(ηm+ 2)= 2.36842 and λc

2 = 1.66666. Hence, for λ= 2.375 we have
local asymptotic instability. Figure 4 shows, corresponding to these values of the parameters, the (θ1, θ̇1)

and (θ2, θ̇2) phase plane responses similar to those presented by Sophianopoulos et al. [2002] using the
same cantilever model.

Fourth case. α4 > 0 for λ < λc
1, α2 > 0, and 13 ≤ 0. The condition 13 = 0 (being necessary for a Hopf

bifurcation) yields

α3(α1α2−α3)−α
2
1α4 = 0, (36)

which due to α1 > 0 implies also α3 > 0. For instance, if k = 1 then η= 4k/(k+2)2 = 4/9. Subsequently
choosing η = 0.45 we obtain λc

1 =
1
2(k+ 2−

√
(k+ 2)2− 4k/η) = 1.3333. Take λ = 1.2, m = 1,

c1 = 0.001, and c2 = 0.0036, which yield α1 = 0.019, α2 = 3.06, α3 = 0.000172, α4 = 0.028, and
13 = −1.3749× 10−7. Figure 5, on the basis of these values of parameters αi (i = 1, . . . , 4), shows
periodic motion around centers in the (θ1, θ̇1), whose final amplitude depends on the initial conditions.

Equation (36) is the necessary condition for the existence of a pair of purely imaginary roots of the
characteristic equation (16). This case is associated either with a degenerate Hopf bifurcation or with a
generic Hopf bifurcation [Kounadis 2006; 2007].

Using (22), we reduce (36) to a second-degree algebraic equation in λ:

Aλ2
+ Bλ+0 = 0, (37)
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where

A = m[ηc11+ c22− c12(η− 1)]2+ η[(1+m)c22+ c11− 2c12]
2

− (ηm+ 2)[(1+m)c22+ c11− 2c12][ηc11+ c22− c12(η− 1)],

(38)

B = [(1+m)c22+c11−2c12]
{
(ηm+2)[c11+c22(1+k)+2c12]+(4m+k+|c|)[ηc11+c22−c12(η−1)]

}
− 2m[c11+ c12(1+ k)+ 2c12][ηc11+ c22− c12(η− 1)] − η(k+ 2)[(1+m)c22+ c11− 2c12]

2,

0 = m[c11+ c22(1+ k)+ 2c12]
2
+ k[(1+m)c22+ c11− 2c12]

2

− [(1+m)c22+ c11− 2c12](4+m+ k+ |c|)[c11+ c22(1+ k)+ 2c12].

Unlike A and B, the coefficient 0 is independent of η.
For λ to be real the discriminant D= B2

− 4A0 of (37) must be nonnegative. If D> 0, the quadratic
equation has two unequal roots; if D= 0, it has a double root, equal to λH =−B/2A. Note also that the
intersection between the curve of (37) and the curve of the first static load λc

1, corresponds to a dynamic
coupled flutter-divergence bifurcation.

The case λ = 0. The most important particular case is when λ= 0, implying 0 = 0(k,m, ci j )= 0; then
all the coefficients of the characteristic equation (16) given in relations (22) or (25) are independent of

Fig. 6 

Figure 5. Phase-plane response
(
θ1(τ ) versus θ̇1(τ )

)
for a cantilever with parameters

k = 1, η = 0.45, m = 1, c1 = 0.001, c2 = 0.0036, and λ = 1.2 < λc
1 = 1.33333. The

model is locally dynamically unstable exhibiting periodic motion around centers, whose
final amplitude depends on the initial conditions.
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η. Thus 0 is the same as for a conservative load (η = 1). Strangely enough, the unloaded cantilever,
although statically stable, is dynamically locally unstable under any small disturbances!

Conditions for a double imaginary root. For a double imaginary root the first derivative of the secular
equation (16) must also be zero, which yields 4ρ3

+ 3α1ρ
2
+ 2α2ρ+α3 = 0. Inserting ρ = µi into this

equation, where µ is real, yields µ2
=

1
2α2 = α3/3α1 and thus α3 =

3
2α1α2. Since ρ = µi must also be

a root of (16) we obtain µ2
= α3/α1, which implies α3 =

1
2α1α2. This is consistent with the previous

expression α3 =
3
2α1α2 only when α3 = 0 due to either α1 = 0 (which is excluded for a positive definite

damping matrix) or α2 = 0 (which is also excluded since it implies µ= 0). Hence, if the damping matrix
C is positive definite and of Rayleigh viscous type (c11 = c1+ c2, c12 = c21 =−c2 and c22 = c2 with c1

and c2 both positive) then the case of a double imaginary root is excluded [Sophianopoulos et al. 2008].
Note also that in this case the expressions of A, B, and 0 are simplified as follows:

A = η[mη(c1+ 2c2)]
2
+ [c1+ (m+ 4)c2]

2
− (c1+ 2c2)(2+ ηm)[c1+ (m+ 4)c2],

B = [c1+ (m+ 4)c2]
{
(ηm+ 2)(c1+ c2k)+ η(4+m+ k+ c1c2)(c1+ 2c2)

}
− 2mη(c1+ c2k)(c1+ 2c2)− η(k+ 2)[c1+ (m+ 4)c2]

2,
(39)

0 = m(c1+ c2k)2+ k[c1+ (m+ 4)c2]
2
− [c1+ (m+ 4)c2](4+m+ k+ c1c2)(c1+ kc2).

4. Conclusions

The coupling effect of the mass and stiffness distributions of a 2-DOF cantilevered model under partial
follower compressive load at its tip in connection with (mainly) infinitesimal positive definite damping is
discussed in detail in regions of divergence stability. For the local dynamic asymptotic stability of such
autonomous systems attention is focused on the violation of the Liénard–Chipart asymptotic stability
criterion. The most important findings of this study are:

• The geometric locus of the double branching points (η0, λc
0) corresponding to various values of k is

established via the relations η versus λc. The locus is independent of the mass m, whose effect on
dynamic instability is of paramount importance. Note that for k→ 0 or k→∞ the region of flutter
tends to zero. The intersection between the curve (37) and curve λc

1 corresponds with a coupled
fluttered-divergence instability bifurcation.

• The Liénard–Chipart, a more elegant and readily employed stability criterion than that of Routh–
Hurwitz, brought into light new types of dynamic bifurcations.

• The mass and stiffness distributions combined with a positive definite negligibly small damping
matrix, strangely enough, may have a considerable effect on the local dynamic asymptotic stability
prior to divergence. Similar phenomena may occur in conservative systems, but only in the cases
of positive semidefinite or indefinite damping matrices [Kounadis 2006; 2007].

• The model under partial follower tip load (step load of constant-magnitude and varying direction
with infinite duration) under certain conditions may exhibit a divergent (unbounded) motion before
divergence in the case of a positive definite negligibly small damping matrix at a certain value of
the external load. This is a completely unexpected result.
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• The cantilevered model when unloaded (although being statically stable) under certain conditions
becomes dynamically locally unstable to any small disturbance which is also an unexpected finding.

• The case of a double imaginary root in the case of a positive definite damping matrix is excluded.
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