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REID A. LARSON AND ANTHONY N. PALAZOTTO

A property estimation sequence is presented for determining local elastic properties of a two-phased, two-
constituent functionally graded material (FGM) plate subject to impact loading. The property estimation
sequence combines the use of experimentally determined strain histories, finite element simulations
of the experimental impact events, and an analytical model of the impact tests. The experimental,
computational, and analytical models are incorporated into a parameter estimation framework, based
on optimization theory, to solve for material properties of individual graded layers in the FGM plate
specimens. The property estimation sequence was demonstrated using impact tests performed on a
titanium-titanium boride (Ti-TiB) FGM plate system. The estimated material properties of the Ti-TiB
FGM from the sequence were shown to correlate well with published material properties for the titanium-
titanium boride FGM system. The estimated properties were further input into a finite element model of
the impact events and were shown to approximate the experimental strain histories well. This property
estimation framework is formulated to apply to virtually any two-phase FGM system and is thus an
invaluable tool for research engineers studying the response of FGMs under load.

1. Introduction

Functionally graded materials (FGMs) are advanced composites with mechanical properties that vary
continuously through a given dimension. The property variation, in the context of this article, is ac-
complished by varying the volume fraction ratio of two constituents along a given dimension. FGMs
have generated a great deal of interest in recent years due to their flexibility for use in a wide variety
of environments, including those structural applications where extreme thermal and corrosion resistance
are required.

Most research into FGMs has occurred over the previous two decades. Suresh and Mortensen [1998]
provided a comprehensive literature review of the state of the art in FGMs then prevalent, and Birman
and Byrd [2007] compiled another extensive literature review covering FGM research from 1997 to 2007.
Selected works pertinent to this investigation, specifically those of FGM plate statics and dynamics, will
be highlighted here. J. N. Reddy and his colleagues [Reddy et al. 1999; Loy et al. 1999; Reddy 2000;
Pradhan et al. 2000; Reddy and Cheng 2001; 2002] have studied the behavior of a wide variety of FGM
plate configurations under static and dynamic loading, as have others in the field [Woo and Meguid 2001;
Yang and Shen 2001; Yang and Shen 2002; Vel and Batra 2002; Prakash and Ganapathi 2006]. To date,
only a few researchers have given consideration to studying impact response and wave propagation in
functionally graded composites. Gong et al. [1999] studied low-velocity impact of FGM cylinders with
various grading configurations. Bruck [2000] developed a technique to manage stress waves in discrete
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and continuously graded FGMs in one-dimension. Li et al. [2001] first studied FGM circular plates
under dynamic pressures simulating an impact load with a specific metal-ceramic system and using a
rate-dependent constitutive relation they developed. Banks-Sills et al. [2002] also studied an FGM system
under dynamic pressures of various temporal application. Larson et al. [2009] performed impact tests
on titanium-titanium boride monolithic and functionally graded specimens and further developed finite
element simulations that approximated the impact tests with a strong degree of correlation. With the
exception of the last reference, all of these works were performed using analytical and computational
techniques, but none of them were compared to physical or experimental data given the fact that very
little test data of any kind associated with functionally graded composites can be found in the literature.
This is due to (a) the difficulty to manufacture FGMs, (b) the limited availability of such materials in
industry and academia, and (c) the high cost associated with producing them.

Local property estimation and accurate material models for use in FGMs present another set of unique
challenges with multiphased functionally graded composites for many of the same reasons that little test
data is available in the literature. To date, most investigators assume that common material models
used to estimate properties in polymer-matrix fibrous composites apply in general to functionally graded
materials, including those where metal and ceramic constituents are used. In this work, local elastic
properties will be estimated in two-phase metal-ceramic functionally graded plates subject to impact
loading using three common material models applied in a novel parameter estimation sequence. The
estimation sequence combines the use of experimentally determined strain histories, finite element simu-
lations of the experimental impact events, and an analytical model of the impact tests. The experimental,
computational, and analytical models are incorporated into a parameter estimation framework, based
on optimization theory, to solve for material properties of individual graded layers in the FGM plate
specimens. The estimates of the local material properties can be used to study the dynamic behavior of
FGM plates.

The major contribution of this work is a property estimation sequence that can be applied to virtu-
ally any two-phase FGM plate system under impact loading where strain data has been experimentally
collected over the course of an impact event. The key objectives necessary to construct and validate
the property estimation sequence are: (a) obtain an analytical model that reasonably approximates the
conditions and results of a series of FGM plate impact tests; (b) construct a finite element model that
can be used to study the FGM plate impact experiments; (c) outline the parameter estimation framework
that determines FGM properties from impact data using the analytical and finite element models of the
tests; and (d) correlate the FEM and experimental results using the estimated FGM properties in the finite
element models for the plate specimens.

This article is organized as follows. First, an overview of FGM plate impact experiments conducted
and documented in previous work by the authors is presented. Next, an analytical treatment of the
impact tests is discussed based on development from previous work in the field. A finite element model
of the impact tests was developed using two material models. Next, the analytical treatment and finite
element model of the impact tests are used directly in a parameter estimation sequence that simultaneously
determines FGM properties while matching FEM and experimental strain histories from the impact tests.
Lastly, the parameter estimation sequence is demonstrated by comparing estimated material properties
from an FGM system to those published in the field and comparing FEM and experimental strain histories.
The article concludes with a discussion to aid future investigators in this field.
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2. FGM plate impact experiments

A series of FGM plate impact tests were conducted in [Larson et al. 2009]. The results of these tests
play a central role in this study, and a brief summary of the tests is presented here. The FGM system
used in the tests was a titanium-titanium boride (Ti-TiB) system developed by BAE Systems – Advanced
Ceramics in Vista, California. BAE Systems uses a proprietary “reaction sintering” process to produce
Ti-TiB FGMs. Commercially pure titanium (Ti) and titanium diboride (TiB2) are combined in powder
form in a graphite die according to prescribed volume fractions through the plate thickness. A catalyzing
agent is applied to the construction, and the powders are subjected to extreme temperature (near the
melting point of titanium) and pressure in a vacuum or inert gas environment. The catalyzing agent
reacts with the titanium and titanium diboride powders to form titanium boride (TiB) that crystallizes in
a needle morphology. In the reaction process, almost no residual TiB2 remains in the FGM. Through
the sintering process, the powders adhere together and the Ti-TiB FGM is the final product. The change
in composition of the constituents along a dimension is discrete and not truly continuous, although the
distance over which a discrete change occurs can be very small and can closely approximate a continuous
function over a larger distance. The FGM plates used in testing were graded over seven discrete layers
of equal thickness with Ti/TiB compositions ranging from 15%/85% to 100%/0% as shown in Figure 1.

layer % Ti % TiB

1 15 85
2 25 75
3 40 60
4 55 45
5 70 30
6 85 15
7 100 0

Figure 1. BAE Systems Ti-TiB FGM through-the-thickness configuration of the plate
specimens. The thickness of each layer is 0.181 cm.

The impact tests were conducted using the Dynatup apparatus owned by the Air Force Research
Laboratory, Wright-Patterson AFB, OH. The Dynatup apparatus delivers a controlled impact load to a
specimen by storing a known potential energy and converting that energy to kinetic energy prior to impact.
Here, a known mass was raised above each plate specimen to a specified height and released from rest.
The velocity at impact is measured by the system and can be compared to the velocity that would occur
under frictionless conditions. These were the conditions for each of the four tests performed:

test sample
crosshead/tup velocity, impact

mass (kg) height (m) actual (m/s) energy (J)

1 7-Layer Ti-TiB FGM 13.06 0.508 3.040 60.35
2 7-Layer Ti-TiB FGM 13.06 0.635 3.412 76.02
3 7-Layer Ti-TiB FGM 13.06 0.762 3.765 92.56
4 7-Layer Ti-TiB FGM 13.06 0.889 4.078 108.6
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Figure 2. Specimen plate with location of three strain gages in FGM impact tests. The
gages are installed on the bottom surface of the plate, opposite the surface impacted by
the Dynatup. All dimensions are in centimeters.

Each of the four plates was 7.62 cm� 7.62 cm and 1.27 cm thick. The specimen plates were placed
in a specially designed fixture that configured the plates so that they behaved very closely to a circular
plate 6.99 cm in diameter with a simply supported boundary condition. Each of the four FGM specimen
plates in the Dynatup were impacted on the TiB-rich surface (layer 1 in Figure 1) directly in the center
of the plate with a 2.54 cm diameter tup with hemispherical tip. The opposite surface of the plate was
instrumented with three strain gages as shown in Figure 2. The strain gages collected strain histories
over the course of the impact events. The strain histories from each gage can be used to trace the local
and global deflection of the plate using analytical and computational techniques. Strain histories from
gages 2 and 3 are plotted for each of the tests in Figure 5 and will be discussed later in this article.
The maximum strains from each gage and each test are shown in the table below. The FGM plate in
test 4 failed midway through the test, and it is not certain whether it failed at the maximum strain level
attainable had the plate not failed.

test sample
maximum strain

gage 1 gage 2 gage 3

1 7-Layer Ti-TiB FGM 0.0014595 0.0013910 0.0006638
2 7-Layer Ti-TiB FGM 0.0017830 0.0014677 0.0007573
3 7-Layer Ti-TiB FGM 0.0018890 0.0017203 0.0007016
4 7-Layer Ti-TiB FGM Failed Failed Failed

3. Analytical treatment of plate impacts

The first objective in constructing the property estimation sequence was to obtain an analytical model
that reasonably approximates the conditions and results of the FGM plate impact tests. This section will
describe the analytical model chosen for this very task. Larson [2008] demonstrated through extensive
analysis of the test results that the period of impact loading in each of the FGM plate impact tests
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was significantly larger than the period of the specimen plate-fixture’s first natural mode. Under these
conditions, the global response of the FGM plates subject to impact can be approximated by applying
quasistatic analytical theory [Zukas et al. 1982; Goldsmith 1960]. Reddy et al. [1999] developed a theory
for axisymmetric circular FGM plates relating classic plate theory to first-order shear deformable theory
under quasistatic conditions. The mid-surface deflection of a homogeneous, axisymmetric circular plate
with simply supported boundary and concentrated central load P from classical plate theory is given by
(see [Ugural 1999]):

wC0 .r/D
P

16�D

�
2r2 ln

r

a
C
3C �

1C �
.a2� r2/

�
(3-1)

where r is the radial coordinate, a is the radius of the plate, and D is the flexural rigidity. The mid-
surface deflection of a functionally graded plate that is first-order shear deformable is given by [Reddy
et al. 1999] as
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The radial strain at a radial coordinate r and thickness coordinate z (note z = 0 is the plate mid-surface)
in the FGM plate can be determined from the theory of elasticity:
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The moment sum MC in (3-2) is given by
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where the radial and angular moment loads M within the plate from classical plate theory are
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The constants in (3-2) and (3-3) from application of the boundary conditions are
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where the �i are constants defined by
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in terms of material properties: Aij , Bij , and Dij , the in-plane, bending-extension coupling, and bending
stiffnesses from classic composite laminate theory (see [Daniel and Ishai 2006]); and A55, the transverse
shear stiffness, also from classic composite laminate theory. For brevity, the equations for the stiffnesses
are not reproduced but note that the stiffnesses are direct functions of the elastic material properties
(elastic modulus and Poisson’s ratio) assumed for the FGM layers. Models for the elastic properties will
be the focus of the next subsection.

The relation for strain in the FGM plates in (3-3) can be used to tie the test results to analytical theory.
Knowing the radial location of the strain gages in each test from Figure 2 and the maximum strain values
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for each gage in each test (see table on page 1432), the maximum contact force P can be solved for in
(3-3) using known material properties. The value for the contact force P is then substituted into (3-2)
to solve for the transverse deflection of the FGM plate’s midsurface. This is a key aspect of estimating
material properties in the FGM and will be discussed again subsequently.

A very important note on the displacement and strain of the plate is in order before proceeding. For
a concentrated load, at or very near r = 0 the displacement and strains are unbounded. Westergaard
[1926] proposed that the problem can be alleviated by using an equivalent radius re in place of r in these
equations at the center of the plate, meaning the concentrated load is assumed to be applied over a very
small area given by

re D

q
1:6 r2c C h

2� 0:675 h; rc � 0:5 h: (3-8)

Here rc is a small radius that defines a small circular area over which the concentrated load is assumed
to be distributed and h is the thickness of the plate. One can set rc to zero for a concentrated load, if
desired, in which case re is equal to 0.325h. For r less than or equal to re, re is substituted for r as a
constant in the equations for displacement and strain, (3-2) and (3-3) respectively. This has the effect of
bounding the solutions near the plate center, although it is only an approximation to the exact solution.

3A. Material models. Material properties such as elastic modulus, Poisson’s ratio, and density must be
assumed for local mixtures of Ti-TiB. In the case of the seven-layer FGM, the material properties vary
in discrete jumps; in a truly continuous FGM, the material properties vary in a continuous fashion as
a function of the distribution of constituents. Here, three material models that estimate properties of
local mixtures of constituents are presented where the “average” properties of the composite are based
on functions of the volume fractions and individual properties of the constituents.

First, the classical rule-of-mixtures (ROM) directly relates the net material properties of multiphase
materials to the ratio of volume fractions (Vf ) of the constituents. If P is an arbitrary property of a
two-phase mixture and P1 and P2 are arbitrary properties of the two constituents, then the relation

PD V
f
1 P1CV

f
2 P2 (3-9)

is assumed to describe the local properties of the FGM under the classical rule-of-mixtures. Equation
(3-9) is based on the Voigt model for determining longitudinal stiffnesses if both FGM phases are in a
state of equal strain [Suresh and Mortensen 1998; Daniel and Ishai 2006]. The assumption that the two
phases in the FGM are in a state of equal strain can be thought of as analogous to (two) springs acting
in parallel to resist a longitudinal force. A force extends or compresses two springs in parallel an equal
distance (i.e., equal strain) and the springs exert forces based on their appropriate spring constants (i.e.,
elastic moduli adjusted by volume fractions). For this reason, the Voigt model is often referred to as a
“parallel” model in composite theory.

The second material model was developed by Hill [1965]. His so-called self-consistent (SC) material
model was developed specifically for two-phase composite materials. The model is general enough to be
assumed applicable to FGMs. Hill showed that if a series of randomly dispersed isotropic spheres served
as inclusions in a homogeneous matrix and if the matrix-inclusion composite bulk material displayed
statistical isotropy (that is, a significant percentage of the composite behaves isotropically and can be
reasonably assumed to behave as such), then the net bulk modulus K and shear modulus G for the
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composite are given by the relations
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where ı D 3� 5�DK=.KC 4G=3/, and the subscripts 1 and 2 refer to the individual phases. Equations
(3-10) must be solved for K and G simultaneously. The bulk and shear moduli are related to the elastic
modulus E and Poisson ratio � by
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The third model was formulated by Mori and Tanaka [1973]. They demonstrated that in two-phase
composites, i.e., a matrix with randomly distributed misfitting inclusions, the average internal stress in
the matrix is uniform throughout the material and independent of the position of the domain where the
average is obtained. They also showed that the actual stress in the matrix is the average stress in the
composite plus a locally varying stress, the average of which is zero in the matrix phase. Benveniste
[1987] used their analysis as the basis for developing equations that can be used to determine bulk and
shear moduli for the composite material as a whole:
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‰1 and ‰2 are constants, based on the geometry of the inclusions. Berryman [1980a; 1980b] provides
a formulation for inclusions with (1) spherical and (2) ellipsoid geometries. General ellipsoids can be
complicated, but spherical inclusions are special cases with simple formulas for ‰1 and ‰2:
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Another special case of ellipsoid inclusions is that of needle-shaped inclusions; the constants ‰1 and ‰2
are given by
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with f 01 DG1.3K1CG1/=.3K1C 7G1/. The Mori–Tanaka (MT) material model will be used for both
cases of spherical (MT-S) and needle-shaped (MT-N) inclusions in this study.

Each of the three material models (rule-of-mixtures, self-consistent, and Mori–Tanaka) are important
because the elastic modulus and Poisson’s ratio for local mixtures of the constituents must be used to
determine the Aij , Bij , and Dij stiffnesses for the FGM plates necessary to evaluate the displacement
and strains associated with the impact tests. Note that for a given set of elastic properties and set of
volume fractions of the constituents in a mixture, each of the three material models will yield different
properties for the mixture. This fact will be important later in the article as the property estimation
sequence is applied in practice.
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4. Finite element model

The second objective necessary to implement the property estimation sequence is constructing a finite
element model that can be used to study the FGM plate impact experiments. A finite element model
(FEM) of the plate impact tests was developed extensively [Larson et al. 2009] to study the plate impact
tests in and is discussed in this section. The commercial code ABAQUS was used for this study. The
model is composed of two major components: (a) the FGM specimen plate and (b) the Dynatup fixture
and tup. Each of these portions has interesting features that will be briefly discussed in the following
paragraphs.

4A. FGM plates FEM. Two plate finite element models were constructed to study the FGM impact
tests. The first model is a two-phase representation of the FGM where elements containing only Ti
or TiB properties are randomly distributed according to local volume fraction constraints in the FGM.
The two-phase finite element representation of the FGM plates is shown in Figure 3. In the figure,
black elements represent TiB and white elements are Ti. The material properties for commercially pure
titanium [Oberg et al. 2000] are

elastic modulus E D 110GPa; Poisson ratio � D 0:340; density �D 4510 kg/m3:

The material properties for titanium boride [BAE 2007] are

elastic modulus E D 370GPa; Poisson ratio � D 0:140; density �D 4630 kg/m3:

The second model of the FGM plates is the homogenized-layers model, also shown in Figure 3. In this
model, homogenized material properties are assigned to elements based on the properties of Ti and TiB
and their local volume fraction ratio using one of the three material models outlined in the previous
section. The material properties in each layer of the FGM are constant. In the figure, the layers of the
FGM are shaded based on the local volume fractions of the constituents; darker layers are TiB-rich and
lighter areas are Ti-rich.

Figure 3. Schematic of specimen plate FEMs: left, homogenized-layers FEM; right,
two-phase FEM.

The plates were meshed with eight-noded linear brick elements in a 42�42�14-element mesh (27735
nodes and 24696 elements). The nodal grid and mesh were built using a separate mathematical script
and this grid and mesh was exported to ABAQUS. The script was designed to quickly and efficiently
build each grid and mesh for both the two-phase and homogenized-layers FEM of each plate.
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Figure 4. Finite element mesh and model for the plate impact experiments.

4B. Dynatup, fixture FEM. The second major portion of the finite element model is the Dynatup and
plate fixture FEM. The plate fixture and tup FEM is shown with a specimen plate installed in Figure 4.
The fixture essentially provides a boundary condition for the specimen plates very close to the actual tests
(despite the fact the fixture was shown to configure the plate specimens as circular plates with simply
supported boundary conditions [Larson 2008]). The specific details surrounding the plate fixture can be
found in [Larson 2008; 2009]. The fixture and attachment screws were composed of 18-8 grade stainless
steel and were assigned properties (1) elastic modulus, E = 193 GPa; (2) Poisson ratio, � = 0.290; and
(3) density, � = 8030 kg/m3. The same linear eight-noded brick elements as used to model the plate
specimens.

The tup delivers the impact load to the plate specimens. In the FEM, the tup model stores the entire
mass of the crosshead-tup assembly and a velocity field is applied to the model with the same magnitude
as the impact velocity in the FGM plate tests (see table at the bottom of page 1431). The tup is meshed
with eight-noded linear brick elements.

The FGM plate, fixture, and Dynatup assembly employ contact algorithms in ABAQUS to ensure
the boundary conditions of the system are properly enforced. The FGM plate is in contact with the
fixture components, the fixture components are in contact with each other, and the tup and FGM plate
are in contact for the duration of the impact event. Additional constraints and boundary conditions were
applied throughout the model as necessary to ensure the FEM reached a solution that closely emulated
the conditions of the Dynatup impact tests.

5. Parameter estimation sequence

This section presents the theory and implementation of the parameter estimation sequence used to esti-
mate FGM properties from the impact test data. This is the third objective of this work and the estimation
sequence is the major contribution of this study. The section begins with an overview of general parameter
estimation theory, followed by a mathematical model used to predict the plate deflection from an impact
load, and then concludes with a formulated estimation sequence and its implementation.
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5A. Overview of parameter estimation theory. The parameter estimation theory presented in this sec-
tion is taken from standard textbooks [Arora 1989; Haftka et al. 1990; Dennis Jr. and Schnabel 1983].
The parameter estimation sequence is posed as a constrained minimization problem, generally defined as

min f .x/D f .x1; : : : ; xn/

subject to h.x/D 0

and g.x/ � 0: (5-1)

The objective function f , the equality constraint functions hD .h1; : : : ; hp/ and the inequality constraint
functions g D .g1; : : : ; gm/ all depend on the design variable x D .x1; : : : ; xn/. These functions can be
combined into the Lagrange function L, defined as

L.x;�;�/D f .x/C�Th.x/C�Tg.x/ (5-2)

in terms of two vectors of Lagrange multipliers: a vector � for the p equality constraints and a vector �
for the m inequality constraints. (The Lagrange multipliers are not functions of the design variable x.)

Now recall from multivariate calculus that a necessary condition for a differentiable function F.x/ to
have a local extremum (maximum or minimum) at x� is that the gradient of F be zero at x�:

rF.x�/ D 0: (5-3)

If that condition is satisfied, a necessary condition for x� to be a local minimum of F is that the Hessian
matrix

H D

�
@2F
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�
i;jD1;:::;n

(5-4)

evaluated at x� be positive semidefinite. The stronger condition that the Hessian be positive definite at
x� is also sufficient for x� to be a local minimum. Replacing “positive” by “negative” gives conditions
for maximization. An indefinite Hessian implies neither a maximum nor a minimum of F .

William Karush, in his 1939 master’s thesis, gave necessary conditions for a point x� to satisfy the
constrained minimization problem (5-1). These conditions, often called the Kuhn–Tucker conditions,
are obtained by applying the gradient criterion (5-3) to the Lagrange function (5-2) and dualizing the
inequality constraints. (In the absence of inequality constraints, of course, the problem had been solved
by Lagrange.) The Kuhn–Tucker necessary conditions are
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i gi .x
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i � 0 for i D 1; : : : ; m: (5-5)

We will apply them directly to the FGM property estimation problem in Section 5C.
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5B. Mathematical model for plate deflection. A series of simulations with the two-phase FGM plate
FEM were run in order to estimate the maximum center deflection of the plate from impact by fitting
a second-order polynomial to the FEM results using the method of least squares (such techniques are
well documented in the literature; see for example [Myers and Montgomery 1995; Lawson and Erjavec
2001]). The second-order polynomial has the form

Oy D b0C

kX
iD1

bixi C

kX
iD1

kX
jDi

bijxixj ; (5-6)

where Oy is the dependent variable being estimated, xi (i = 1, . . . , k) are the independent variables, or
“factors,” of the second-order polynomial, and b0, bi i , and bij are the coefficients of the terms containing
independent variables.

The math model is constructed by determining the b-coefficients. The equations for doing so can be
posed in matrix and vector form by setting

X D
�
1 x1 x2 x3 x4 x

2
1 x22 x23 x24 x1x2 x1x3 x1x4 x2x3 x2x4 x3x4

�
; (5-7)

for a response variable with four independent variables xi , i D 1; : : : ; 4. Each of the column-vector
elements of X contains the values or cross-multiplied values of the independent variables for each
simulation where an individual Oy was determined. The response variable Oy results of each simulation
are assembled into a vector and denoted Y . The response variable Oy in this case corresponds to the
mid-surface transverse center deflection of the FGM plate from impact, wFEM

0 , collected in each FEM
simulation. The mid-surface transverse center deflection is a function of four independent variables
(discussed momentarily). The vector of coefficients b for the second-order model in (5-6) is given by

bD .XTX/�1XTY : (5-8)

The transverse deflection of the FGM plates subject to impact is dependent on the material properties
and the impact velocity of the tup (understanding that the plate geometry, configuration, and boundary
condition do not change). The relevant material properties are three: elastic modulus, Poisson’s ratio,
and density. As discussed earlier, the FGM plates behaved elastically in impact tests at room temperature,
so restricting the study to these three parameters is valid.

The material properties and behavior of the titanium constituent are well documented in the literature
and are assumed to be accurate. The TiB constituent, on the other hand, is not well understood and
the limited available literature shows a wide range of estimated properties [Sahay et al. 1999; Atri et al.
1999; Panda and Ravichandran 2003; 2006; Ravichandran et al. 2004]. These properties with uncertain
values are variables over which to optimize. It is convenient to let the design variables be ratios rather
than the property values themselves. That is, we write

x1 D C1 �
ETiB

ETi
; x2 D C2 �

�TiB

�Ti
; x3 D C3 �

�TiB

�Ti
:

These coefficients Ci are allowed to take values over a given range of magnitudes, corresponding to
the minimum and maximum predicted values for these properties. Table 1 shows each coefficient and
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values: maximum midrange minimum

variable meaning (coded C1) (coded 0) (coded �1)

x1 D C1 elastic modulus coefficient 4.20 3.40 2.60
x2 D C2 Poisson’s ratio coefficient 0.50 0.40 0.30
x3 D C3 density coefficient 1.10 1.00 0.90
x4 D vtup tup velocity 4.128 m/s 3.493 m/s 2.858 m/s

Table 1. Factors used in Box–Behnken designed experiment.

the range of values it can assume, based on data from [Sahay et al. 1999; Atri et al. 1999; Panda and
Ravichandran 2003; Ravichandran et al. 2004; Panda and Ravichandran 2006; Hill and Lin 2002]. The
fourth design variable, the tup impact velocity, is also assumed to be limited to certain magnitudes based
on the settings for the impact tests. These four independent variables can then be coded to range from
values �1 to C1, indicating minimum value and maximum value, respectively, and a midpoint value 0.

An efficient method for generating the b-coefficients in (5-6) has been developed by Box and Behnken
[1960]. The series of tests necessary to determine the b-coefficients (15 b-coefficients in all for the four
factors xi ) in (5-6) are shown in Table 2. According to the Box–Behnken designed experiments, 27 tests
must be conducted where Oy is measured (again, Oy is the maximum center deflection of the FGM plate
denoted wFEM

0 ) using the combination of variables and associated levels shown in Table 2. The results
from the two-phase FGM plate FEM according to the prescribed simulation parameters are shown in the
Table 2.

Assembling the 27 � 1 vector Y with the results from the tests and the 27 � 15 array X in (5-7)
and applying the vector and array to (5-8), the b-coefficients for this set of tests is determined. The
b-coefficients are then used in (5-6) and the resulting mathematical model for predicting the mid-surface
transverse deflection of the FGM plate at the center (r = 0) is

wFEM
0 D Oy D�258:34� 10�6

C 22:57� 10�6x1C 1:21� 10
�6x2C 9:25� 10

�9x3� 37:77� 10
�6x4

� 3:39� 10�6x21 C 420:46� 10
�9x22 � 42:04� 10

�9x23 � 4:26� 10
�6x24

C 142:00� 10�9x1x2� 148:50� 10
�9x1x3C 3:60� 10

�6x1x4

� 55:50� 10�9x2x3� 90:75� 10
�9x2x4� 45:25� 10

�9x3x4 (5-9)

where �1 � xi � C1. The units of wFEM
0 are meters. Since the coded variables for the TiB property

coefficients and tup velocity are unitless, all the b-coefficients in (5-9) are in units of meters as well.
The mathematical model was then used to predict the plate deflection at each of the 27 simulations

using the coded xi values and the results are shown in Table 2. It is easily seen that the mathematical
model predicts the results from the FEM simulations very closely. This mathematical model is a key
component of the parameter estimation sequence described in the following paragraphs.

The two-phase FEM was used to develop the math model (5-9) to harness effects of the random
distribution of constituents. In the homogenized-layers model, localized effects from adjacent phases
of materials are averaged out through the use of material models that specify constant properties for
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test
coded variable wFEM

0 , mm
x1 x2 x3 x4 result predicted

1 �1 �1 0 0 0.2849 0.2849
2 C1 �1 0 0 0.2401 0.2401
3 �1 C1 0 0 0.2827 0.2828
4 C1 C1 0 0 0.2374 0.2374
5 0 0 �1 �1 0.2250 0.2249
6 0 0 C1 �1 0.2248 0.2248
7 0 0 �1 C1 0.3003 0.3004
8 0 0 C1 C1 0.3003 0.3004
9 0 0 0 0 0.2583 0.2583

10 �1 0 0 �1 0.2466 0.2472
11 C1 0 0 �1 0.2084 0.2093
12 �1 0 0 C1 0.3310 0.3299
13 C1 0 0 C1 0.2784 0.2776
14 0 �1 �1 0 0.2592 0.2592
15 0 C1 �1 0 0.2564 0.2567
16 0 �1 C1 0 0.2597 0.2591
17 0 C1 C1 0 0.2570 0.2568
18 0 0 0 0 0.2583 0.2583

19 0 �1 0 �1 0.2262 0.2257
20 0 C1 0 �1 0.2240 0.2231
21 0 �1 0 C1 0.3001 0.3011
22 0 C1 0 C1 0.2981 0.2988
23 �1 0 �1 0 0.2845 0.2845
24 C1 0 �1 0 0.2393 0.2391
25 �1 0 C1 0 0.2838 0.2842
26 C1 0 C1 0 0.2391 0.2393
27 0 0 0 0 0.2583 0.2583

Table 2. Box–Behnken designed experiment for four factors (see Table 1), with results
from FEM (maximum transverse displacement at center of plate wFEM

0 ) and predicted
values from mathematical model.

the mixture. Thus, the transverse deflection of an FGM plate under the conditions of the impact tests
discussed is much easier to predict using conventional techniques—such as through the analytical model
of the FGM plate impacts discussed previously. Most FGMs tend to exhibit statistical distributions of
constituents that can produce localized effects that are nearly impossible to predict without simulation
tools or over-simplified assumptions. In this case, the statistical effects to the transverse deflection of the
plate in a two-phase mixture are generally accounted for through the use of the least squares fit to the
simulation data in (5-9).
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5C. Material property estimation. The property estimation sequence is posed as the following mini-
mization problem: minimize the error between the analytical prediction for the transverse deflection of
the FGM plate mid-surface (wFST

0 ) and the prediction for the same transverse deflection of the mid-surface
predicted by the math model from the FEM simulations (wFEM

0 ) by adjusting the material properties for
the TiB constituent (adjust the vector of property coefficients C ) subject to bounds on the values the TiB
properties can assume. Mathematically, the minimization problem from (5-1) is thus formulated as

min f .C /D
�
wFST
0 .C1; C2/�w

FEM
0 .C1; C2; C3/

�2
subject to g1.C /D Cmin

1 � C1 � 0;

g2.C /D C1�C
max
1 � 0;

g3.C /D C
min
2 � C2 � 0;

g4.C /D C2�C
max
2 � 0;

g5.C /D C
min
3 � C3 � 0;

g6.C /D C3�C
max
3 � 0: (5-10)

f .C / is the objective function and the equations gi .C / in (5-10) are the inequality constraint equations.
Essentially, by minimizing the error between wFEM

0 and wFST
0 , the error is being minimized between

a model that accounts for a statistical distribution of constituents and one that homogenizes material
properties in each FGM layer. This process incorporates the test data (necessary to determine wFST

0 ),
an analytical model describing wFST

0 , and the results of FEM simulations under the same conditions
(through wFEM

0 ). This problem can be posed for each of the FGM impact tests individually. Note that
wFEM
0 is really a function of the TiB coefficients C and the velocity of the tup. In the wFEM

0 term
from (5-10), the velocity of the tup at impact for an individual test is already known and is therefore a
constant. Thus, only the TiB properties C need to be adjusted to evaluate wFEM

0 . Similarly, the velocity
of the tup in the wFST

0 analytical term is accounted for through the strain data in the tests by solving for
the maximum force applied during the impact event. The analytical model does not require the density
term to evaluate wFST

0 because of the quasistatic assumptions. Thus, wFST
0 is evaluated by adjusting

only the TiB coefficients associated with the elastic modulus and Poisson’s ratio (C1 and C2). Given
this information, it is therefore intuitive why wFEM

0 is a function of only C1, C2, and C3 and wFST
0 is a

function of only C1, C2 in the minimization problem (5-10).
The objective function and the constraint equations are combined into the Lagrange equation,

LD f .C /C�Tg.C / (5-11)

where � is the vector of Lagrange multipliers, one for each of the six inequality constraints. The min-
imum point of L.C / occurs at [C �, ��], subject to the Kuhn–Tucker necessary conditions in (5-5). If
the point [C �, ��] is truly a minimizer of L, then the Hessian of L will be at least positive semidefinite
and at best positive definite to satisfy the necessary and sufficient conditions for a minimum point.

The minimization problem is solved numerically. The mathematical model (5-9) for the two-phase
FEM is rather straightforward; however the analytical prediction for wFST

0 is very difficult to evaluate
into a simple closed-form relationship because of the dependence of the stiffness terms on (potentially)
complicated material models. All partial derivatives were evaluated numerically and the solution to find
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the minimizer of L was conducted using modified Newton’s method [Dennis Jr. and Schnabel 1983].
The choice of numerical solver is not unique; any appropriate numerical technique for solving for zeros
to a series of equations could be used.

5D. Implementation. The following is a summary of the steps to implement the parameter estimation
sequence. This sequence is demonstrated using the Ti-TiB FGM, but the steps to carry out the estimation
can be used with any two-constituent material system evaluated in the manner the Ti-TiB FGM plates
have been. It is assumed that a mathematical model for the finite element response of the FGM such as
that in (5-9) has already been determined.

(1) Set the material properties of one constituent to be held constant, named constituent 1 here (Ti for
this study). The properties of constituent 2 (TiB) will be a set of constants multiplied by the set of
material properties for the first constituent:

FGM Constituent 1: P1;P2; : : : ;Pn

FGM Constituent 2: C1P1; C2P2; : : : ; CnPn

(2) Determine limits for the constants as constraints on the solution.

(3) Assemble the objective function and constraints into a minimization problem (5-10). Form the
Lagrange function by augmenting the objective function with the constraint relations multiplied by
the set of Lagrange multipliers.

(4) Choose a set of constants C1; : : : ; Cn as an initial estimate for the properties of constituent 2 within
the constraints of the set. Set the vectors of Lagrange multipliers to zero. Assemble the vector
xCk D ŒCk;�k�. At this initial estimate, k D 0. Choose a numerical step-size (fixed or variable)
appropriate for the numerical algorithm used to solve the equations.

(5) Evaluate the gradient and Hessian of L at xCk .

(6) Use the current properties for constituents 1 and 2 to solve for the transverse displacement of the
FGM plate at the center with the mathematical model for the finite element tests, wFEM

0 .

(7) Using the strain gage test data (maximum radial strains) from the nominal radial plate locations
and the current estimate for the material properties of constituents 1 and 2, solve for the maximum
impact load P from the impact event using (3-3).

(8) The P load and the current estimate for the material properties of constituents 1 and 2 are used to
solve for the maximum transverse displacement wFST

0 at the center of the plate using (3-2).

(9) Solve for the current estimate of L using the solutions of wFST
0 , wFEM

0 , and the current estimate for
xCk .

(10) Perform an iteration of the numerical solver (modified Newton’s method was used in this work) to
solve for xCkC1.

(11) Evaluate the gradient and Hessian of L at the updated xCkC1.

(12) Compare the norm of rL( xCk) to the norm of rL( xCkC1). If the absolute value of the difference
of the two norms is less than a predefined tolerance, terminate solution and go to the next step.
(Another appropriate termination criterion may be used in place of that used in this work.) Else, set
kC 1D k and go to step (6).
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(13) If the Hessian of L at the updated xCkC1 is positive definite and the gradient rL at the updated xCkC1
is sufficiently close to zero (determined by a user-defined metric), terminate solution and analyze
minimum point. If minimum point is determined to be not acceptable, adjust initial choice of xC0
and repeat process.

6. Results

The final objective of this study is to correlate the FEM and experimental results using the estimated
FGM properties in the finite element models for the plate specimens. To accomplish this, the property
estimation sequence must be implemented and the outputs analyzed. These tasks will be the focus of
this section.

The parameter estimation sequence was conducted as described in this paper using the three material
models to estimate the analytical prediction of wFST

0 . These models were the classic rule-of-mixtures
(ROM), the self-consistent model (SC), the Mori–Tanaka estimates (needles, MT-N, and spheres, MT-S).
The initial estimates for the material parameters published in this section were C1 = 3.40, C2 = 0.40,
and C3 = 1.00; essentially the center points from the Box–Behnken tests in Table 1. The choice of these
initial values here was merely for conceptual convenience only and the choice of initial values is more or
less arbitrary in the region of interest. The minimum and maximum constraints on the parameters are the
minimum and maximum levels for each parameter shown in Table 1 relaxed by 20% in each direction.
Given the high degree of correlation in the second-order math model for the two-phase FEM, it was
felt that this range would be accurate to the two-phase FEM without running further simulations in the
Box–Behnken FEM tests. Note that while the results published in this section may not represent global
minimums of L (the convexity of the objective function was not evaluated because of the complex nature
of the objective function) for the region of interest here, various initial estimates were taken throughout
the region, including points on the boundary from the inequality constraints, and in all cases the algorithm
converged to the same solution for the material parameters. The solutions found for these parameters are
shown in Table 3 as tested for the three primary material models and experimental tests 1-3 (the FGM
plate in Test 4 failed so data was not used in the estimation sequence from that test). When the FEM
mathematical model was used to estimate wFEM

0 for iterations of the parameter estimation sequence,
the velocity from the Dynatup experiment was used for vtup and held constant. Thus, wFEM

0 for each
estimation sequence was reduced to a function of C1, C2, and C3.

The estimates for the coefficients C1, C2, and C3 in Table 3 show that in general all models estimated
similar results for the three parameters. The difference in results is associated directly with the material
models themselves and their estimates for material properties in each layer of the FGM. To illustrate this,
consider the transverse displacements at the center of the plates at the minimization of L summarized in
Table 4. In all cases the parameter estimation sequence virtually estimated the same plate deflections at
the center regardless of material model. Recall the estimation sequence was tied directly to the results
of the plate experiments for all material models. Since the Ti-TiB plates should ideally have the same
composition through the thickness and the plates should have the same average behavior in each layer
regardless of the material model chosen, it should be expected that the parameter estimation sequence
would converge to very similar material properties for each layer and adjust Ci so that the material model
reflects this. In Table 6, it is evident that this is indeed the case. The material property estimates (E
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test coeff.
material model

ROM SC MT-S MT-N

C1 2.549 2.468 2.494 2.486
1 C2 0.3478 0.3583 0.3594 0.3602

C3 0.9458 0.9414 0.9409 0.9408

C1 2.309 2.239 2.256 2.250
2 C2 0.3468 0.3551 0.3573 0.3572

C3 0.9325 0.9298 0.9277 0.9281

C1 2.442 2.367 2.389 2.381
3 C2 0.3355 0.3424 0.3439 0.3441

C3 0.9540 0.9508 0.9501 0.9501

Table 3. Comparison of predicted coefficients for TiB material properties using the pa-
rameter estimation technique and three material models. The initial estimates for the
material parameters were C1 D 3:40, C2 D 0:40, C3 D 1:00.

test method
material model

ROM SC MT-S MT-N

1
plate theory, wFST

0 0.25926 0.26197 0.26107 0.26136
math model, wFEM

0 0.25927 0.26198 0.26108 0.26137

2
plate theory, wFST

0 0.29064 0.29336 0.29268 0.29291
math model, wFEM

0 0.29065 0.29337 0.29269 0.29292

3
plate theory, wFST

0 0.30959 0.31261 0.31170 0.31199
math model, wFEM

0 0.30960 0.31262 0.31171 0.31200

Table 4. Predicted maximum center displacement of plate at center of bottom surface
using the predicted TiB coefficients in Table 3. All units in millimeters.

coeff.
material model

ROM SC MT-S MT-N

C1 2.433 2.358 2.380 2.372
C2 0.3434 0.3519 0.3535 0.3538
C3 0.9441 0.9407 0.9396 0.9397

Table 5. Comparison of predicted coefficients for TiB material properties based on an
average of the results shown in Table 3.

and � only) in each layer, based on the average results for Ci in Table 5, show a very strong degree of
correlation between the layers. Further, the estimates for these layers based on Ci correlate well with the
published results determined experimentally. The correlation between the published results is strongest
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%Ti / %TiB
elastic modulus E, GPa Poisson ratio �

Literature ROM SC MT-S MT-N Literature ROM SC MT-S MT-N

15 / 85 274.3 244.0 231.7 234.3 232.7 0.170 0.150 0.161 0.160 0.161
25 / 75 247.6 228.2 213.9 217.0 215.2 0.182 0.173 0.187 0.185 0.187
40 / 60 193.7 204.6 188.4 192.6 190.8 0.216 0.206 0.225 0.220 0.222
55 / 45 162.2 180.9 165.1 169.9 168.2 0.246 0.240 0.259 0.253 0.255
70 / 30 139.4 157.3 144.1 148.6 147.4 0.276 0.273 0.290 0.284 0.286
85 / 15 120.1 133.6 125.8 128.7 128.0 0.310 0.307 0.317 0.313 0.314

100 / 0 106.9 110.0 110.0 110.0 110.0 0.340 0.340 0.340 0.340 0.340

Table 6. Elastic property data from parameter estimation scheme for Ti-TiB volume ra-
tios using the (averaged) predicted values from the four material models in the estimation
sequence, compared to experimental values reported in [Hill and Lin 2002].

at low to medium volume fractions of TiB and weakest (but still pretty good) at higher volume fractions
of TiB. This is likely a consequence of residual titanium diboride known to be present at higher volume
fractions of TiB affecting the predictions from the estimation sequence.

The maximum impact force P in each test was related to the maximum radial strains at points on
the plate. Since the force data was not collected during the tests, the strain histories from the plates
were used to estimate P . The predictions of load P are affected by the material properties through
the FGM plates. In Table 7, the estimated force P based on the strain histories in each test at each
location are compared with the different material models used to predict Ci . The average predicted load

test method
material model

ROM SC MT-S MT-N

strain gage 1 96.24 92.57 93.61 93.22

1
strain gage 2 131.75 126.82 128.16 127.61
strain gage 3 96.35 92.88 93.73 93.32

Average Load 108.11 104.09 105.16 104.72

strain gage 1 111.15 107.91 108.81 108.46

2
strain gage 2 130.31 126.58 127.58 127.16
strain gage 3 101.52 98.72 99.42 99.09

Average Load 114.33 111.07 111.94 111.57

strain gage 1 121.29 117.18 118.36 117.91

3
strain gage 2 157.87 152.63 154.07 153.47
strain gage 3 97.924 94.78 95.57 95.19

Average Load 125.70 121.53 122.67 122.19

Table 7. Predicted maximum force (kN) applied to the plate at instant of maximum
center displacement using the predicted TiB coefficients in Table 3.
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was calculated at each iteration of the parameter estimation sequence. The data in Table 7 yields some
interesting results. First, the average P for each test matches well regardless of material model. This is
another verification of the statement that the estimation sequence attempts to match the properties in each
layer to the actual FGM within the framework of the material model used in the sequence. Secondly, the
results show the trend that the force increases as the velocity/energy increases for each test. Lastly, the P
loads individually calculated at each position vary somewhat in each test, implying variability occurred
in strain gage placement on each plate.

Figure 5 show the strain histories from the homogenized-layers FEMs using the Mori–Tanaka needles
(MT-N) material model results compared to the experimental strain histories for FGM plate tests 1-4
(Ci per Table 5). The other models were not plotted simply because the results were virtually the same
(as demonstrated through the correlation of layer-by-layer material properties). The FEM results match
the test data very well for the most part. Some of the peculiarities observed in the experimental strain
histories are not captured with the optimized FEMs. These minor discrepancies can be attributed to any
number of causes, including but not limited to FEM boundary conditions, strain gage-adhesive-plate
interactions, and tup impacts slightly off center. The FEM determined through this process, however,
correlates well with published results and was developed through a process directly tied to the physics
and results of the Dynatup impact tests.

Lastly, a comment on the ability of the three material models to accurately represent the physical prop-
erties of the Ti-TiB mixtures is in order. The three material models were specifically chosen for use in the
parameter estimation sequence for several important reasons. First, these models have been commonly
used in the literature to analytically predict properties for a wide variety of composite materials. Second,
the models are relatively easy to implement in mathematical equations and simulation computer code
while simultaneously providing a reasonable estimate of property variation as the volume-fraction ratio of
a two-phase mixture varies. Third, each of the models was formulated under different assumptions with
respect to the geometry, configurations, and behavior of the mixtures under loading conditions. Using
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Figure 5. Experimental strain histories and FEM comparison using optimized Mori–
Tanaka needles plate models, for test 1. (Continued on next page.)
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Figure 5 (continued). Experimental strain histories and FEM comparison using opti-
mized Mori–Tanaka needles plate models, for test 2 (top), test 3 (middle) and test 4
(bottom).
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each of the three models in the parameter estimation sequence then provides a means of comparison
with the assumption that each of the models may be better suited to accurately predicting the physical
properties of the FGM under certain conditions. The three models for the property variations and the
estimates for the actual volume fraction ratios of Ti to TiB reduced the number of variables the parameter
estimation sequence needed to determine. It is possible that a more robust estimation sequence could
be formulated that would directly estimate material properties in individual layers of the FGMs. For
example, if the sequence were to directly determine the elastic modulus, Poisson’s ratio, and density of
each of the seven layers of the FGM, the sequence would need to determine 21 variables (three individual
properties for each of the seven layers). If such a formulation could be successfully implemented, it would
likely predict physical properties more accurately than those predicted using models that may or may
not accurately represent physical properties under certain conditions. However, the increased fidelity of
such a formulation would come at a significant increase in computational cost.

7. Conclusions

The major contribution of this work is a property estimation sequence that can be applied to virtually
any two-phase FGM plate system under impact loading where strain data has been experimentally col-
lected over the course of an impact event. Each of the four key objectives necessary to construct and
validate the property estimation sequence were realized and discussed at length: (a) obtain an analytical
model that reasonably approximates the conditions and results of a series of FGM plate impact tests;
(b) construct a finite element model that can be used to study the FGM plate impact experiments; (c)
outline the parameter estimation framework that determines FGM properties from impact data using the
analytical and finite element models of the tests; and (d) correlate the FEM and experimental results
using the estimated FGM properties in the finite element models for the plate specimens. The sequence
ties experimental, analytical, and computational data from FGM plate impact events together and poses
the estimation sequence as a sophisticated minimization problem. The property estimation sequence was
effectively demonstrated using a Ti-TiB FGM system and would be, in theory, extendable to practically
any two-phased FGM system.

As a final note, the material properties determined in this study were assumed to be rate-independent.
Given the relatively low-velocity impacts in the FGM plate tests and the fact that the plates behaved
elastic to failure, the rate-independent assumption used here is likely sufficient. In high-velocity impact
tests, generally rate effects become very important to the constitutive models of the system of interest.
The property estimation sequence discussed here could be modified to study such problems, however the
objective function and material property parameters would have to take a different form.
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