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AN ASYMPTOTIC ANALYSIS OF ANISOTROPIC HETEROGENEOUS PLATES
WITH CONSIDERATION OF END EFFECTS

JUN-SIK KIM

A finite element-based asymptotic analysis tool is developed for general anisotropic plates. The formu-
lation begins with three-dimensional equilibrium equations in which the thickness coordinate is scaled
by the characteristic length of the plate. This allows us to split the equations into two parts, such as the
one-dimensional microscopic equations and the two-dimensional macroscopic equations, via the virtual
work concept. The one-dimensional microscopic analysis yields the through-the-thickness warping func-
tion at each level, which does not require two-dimensional macroscopic analysis. The two-dimensional
macroscopic equations provide the governing equations of the plate at each level in a recursive form.
These can be solved in an orderly manner, in which proper macroscopic boundary conditions should be
incorporated. The displacement prescribed boundary condition is obtained by introducing the orthog-
onality condition of asymptotic displacements to the plate fundamental solutions. In this way, the end
effects of the plate are kinematically corrected without applying the sophisticated decay analysis method.
The developed asymptotic analysis method is applied to semiinfinite plates with simply supported and
clamped-free boundary conditions. The results obtained are compared to those of three-dimensional
FEM, three-dimensional elasticity, and Reissner–Mindlin plate theory. The usefulness of the present
method is also discussed.

1. Introduction

Analysis of anisotropic plates has been extensively carried out since the Kirchhoff–Love and Reissner–
Mindlin plate theories were developed. It has been a challenging class of problems, involving the
prediction of the behavior of anisotropic elastic bodies, including plates made of emerging composite
materials, with sufficient accuracy while maintaining a low number of degrees of freedom. Accordingly
many higher-order plate theories have been developed beyond the classical Kirchhoff–Love and Reissner–
Mindlin plate theories. One can categorize them into three classes: smeared theories, zig-zag theories,
and layerwise theories. Comprehensive reviews and assessments can be found in the surveys [Kapania
and Raciti 1989; Noor and Burton 1989; Reddy and Jr. 1994; Carrera 2003].

Most theories reported in the literature are based on an a priori kinematic assumption which describes
the higher-order behavior of plates especially for transverse shear deformation. This kinematic assump-
tion leads to the improved prediction of transverse shear stresses that is crucial for stress analysis of
laminated composite plates. Some of the higher-order theories are quite successful at describing such
composite plates by increasing the number of degrees of freedom. For example, the higher-order theory
developed by Lo et al. [1977] provides the accurate through-the-thickness distribution of transverse shear
stresses for the plates made of isotropic materials. However the accuracy of this theory is degraded when
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a plate made of highly anisotropic materials is considered, especially one weak in shear. This triggered
the development of various higher order plate theories in the last two decades.

One of the major drawbacks of these higher-order theories is that we do not know how accurate they
are. These theories strongly depend on a priori assumed warping functions that are generally functions of
the material properties and loading conditions. Thus it is crucial to find and/or assume the proper warping
functions and desirable to obtain these from the three-dimensional (3D) elasticity if possible. One can
derive them from the 3D elasticity by applying asymptotic methods which are mathematically rigor-
ous. There are three types of asymptotic methods: the formal asymptotic method [Niordson 1979], the
variational-asymptotic method (VAM) [Berdichevskii 1979; Berg 1991], and the asymptotic integration
method [Novotny 1970; Wang and Tarn 1994; Tarn et al. 1996]. There is however a critical bottleneck
associated with these asymptotic methods, and that is a proper set of boundary conditions. It is not trivial
to exactly satisfy 3D boundary conditions especially for a displacement prescribed boundary condition
[Duva and Simmonds 1992]. One can obtain asymptotically correct boundary conditions without solving
the boundary layer problems by applying the decay analysis method [Gregory and Wan 1984]. Fan
and Widera [1994] demonstrated that the displacement prescribed boundary conditions obtained via this
method are different from those derived by variational principles. It is however too difficult to obtain these
boundary conditions via the decay analysis method for engineering applications. For this very reason,
an asymptotic analysis is often limited to the classical approximation for clamped plates and plates with
simply supported boundary conditions. Another way to avoid the problem associated with boundary
conditions is to derive a Reissner–Mindlin-like (RM-like) plate theory. Recently, Yu et al. [2002] and
Yu [2005] have developed the RM-like plate models by applying the VAM and using the through-the-
thickness finite element analysis. These models are not claimed to be asymptotically correct. And the
asymptotically correct solutions up to O(ε2), which are comparable to those of the Reissner–Mindlin
theory, have not been known for general anisotropic heterogeneous plates with clamped boundaries.

In this paper, a formal asymptotic expansion method is employed to derive a set of recursive equilib-
rium equations and boundary conditions from the 3D linear elasticity. We first split the 3D equilibrium
equations into two sets of one-dimensional (1D) microscopic and two-dimensional (2D) macroscopic
problems by introducing the virtual work concept. A conventional finite element discretization is then
applied to solve the problems. The 1D microscopic analysis, which is the through-the-thickness analysis,
yields the warping functions corresponding to the classical strain measure at each level. These functions
are smeared into the stiffness models used for the 2D macroscopic formulation. Once the microscopic
and macroscopic equations are derived, one has to determine a proper set of boundary conditions. We
recast the strong forms of the equilibrium equations obtained in their corresponding weak forms. During
this process, the displacement boundary conditions are treated as constraints in the weak form. In this
way, the asymptotic displacement can be correlated to the boundary condition, and the asymptotically
correct boundary condition up to O(ε2) can be derived. Thus one can obtain the asymptotically correct
solution immediately next to the classical solution for general boundary conditions.

The results obtained are compared to those of the 3D FEM, 3D elasticity, and RM plate theory.
Through numerical examples, this paper demonstrates how the edge zone affects the interior solution via a
proper set of boundary conditions. This defines the term “end effects” used in this paper. The microscopic
solutions, which can be obtained without solving the macroscopic problems, are also discussed to convey
the usefulness of the proposed approach.
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Figure 1. Geometry and coordinates of laminated plates.

2. Formal asymptotic formulation

A 3D composite plate with material anisotropy is considered in this study (see Figure 1). In order to apply
the asymptotic expansion method, one needs to define a small parameter (ε) in terms of the thickness
dimension which is much less than the in-plane dimension. To this end, the coordinates are scaled as

yα = xα, y3 =
x3
ε
, (1)

in which ε is defined to be ε = h/lc, where h and lc represent the thickness and characteristic length of
the plate, respectively.

2.1. 3D equilibrium equations and boundary conditions. In the scaled coordinates from (1), the 3D
static problem of linear elasticity, which consists of equilibrium equations, strain-displacement relation-
ships, and constitutive equations, can be expressed as

σi j, j + b̃i = 0 →
1
ε

Lt
3σ ,3+Lt

ασ ,α + b̃= 0,

εi j =
1
2
(ui, j + u j,i ) → ε =

1
ε

L3u,3+Lαu,α,

σi j = ci jklεkl → σ =
1
ε

CL3u,3+CLαu,α,

(2)

where a subscript ( ),i indicates the partial derivative with respect to the coordinate yi , a superscript t
denotes the transpose of a matrix or vector, ci jkl represent components of the 3D elasticity tensor, a body
force vector b̃, and a displacement vector u. Stress and strain tensors are expressed in the vector form

ε = [ε11 ε22 ε33 2ε23 2ε13 2ε12]
t , σ = [σ11 σ22 σ33 σ23 σ13 σ12]

t . (3)

The linear operators Li are defined by

L1 =



1 0 0
0 0 0
0 0 0
0 0 0
0 0 1
0 1 0


, L2 =



0 0 0
0 1 0
0 0 0
0 0 1
0 0 0
1 0 0


, L3 =



0 0 0
0 0 0
0 0 1
0 1 0
1 0 0
0 0 0


. (4)
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The boundary conditions considered herein are summarized as

u= ū on Su, σν = p̃ on Sσ , σν = g̃ on �±, (5)

where Su and Sσ represent the edge boundaries with prescribed displacements ū(xi ) and prescribed
traction p̃(xi ), respectively. �± denotes the top and bottom surfaces of the plate, and ν is the direction
cosine of the outward normal to the boundaries Sσ and �±.

2.2. Asymptotic expansion and scaling. The displacement is expanded in terms of the small parameter

u= u(0)+ εu(1)+ ε2u(2)+ ε3u(3)+ · · · , (6)

where the 0th order displacement needs special attention, because it is related to the asymptotic conver-
gence [Buannic and Cartraud 2001; Kim et al. 2008]. Each order displacement is given by

u(0)(yα)= [0 0 u(0)3 ]
t , u(k)(yi )= [u(k)1 u(k)2 u(k)3 ]

t , k ≥ 1, (7)

where u(0)3 (yi )≡ v
(0)
3 (yα). The variables vi represent functions of the in-plane coordinates yα only.

The components of body force and surface traction, which are regarded as prescribed quantities, are
also scaled as follows:

b̃α = εbα, b̃3 = ε
2b3, p̃α = εpα, p̃3 = ε

2 p3, g̃α = ε2gα, g̃3 = ε
3g3, (8)

and the prescribed displacement is presupposed by

ū3 ∼ O(1), ūα ∼ O(ε). (9)

Substituting (6) and (8) into (2) yields the recursive forms

Lt
3σ

(k+1)
,3 =−Lt

ασ
(k)
,α −b(k), ε(k+1)

= L3u(k+2)
,3 +Lαu(k+1)

,α , σ (k+1)
= Cε(k+1), k ≥−1, (10)

where σ (k+1) and ε(k+1) are expanded based on the displacement expansions, (6), and the coordinate
scale, (1).

The associated boundary conditions at the edge boundaries are

u(k+1)
= ū(k+1) on Su, σ (k+1)ν = p(k+1) on Sσ , (11)

and at the top and bottom surfaces of the plate

σ (k+1)ν = g(k+1) on �±, (12)

where ū(k) = 0 if k 6= 0 or 1, b(k) = 0 and p(k) = 0 if k 6= 1 or 2, and g(k) = 0 if k 6= 2 or 3. Notice here
that the negative powers of the quantities vanish.

2.3. Fundamental solution. The very first equation (k =−1) from (10) can be obtained as

Lt
3σ

(0)
,3 = 0. (13)

Its solution can be easily found by σ (0) = ε(0) = 0 since it is well posed [Buannic and Cartraud 2001;
Kim et al. 2008]. From ε(0) = 0 the particular solution is obtained by

u(1)p = [−y3v
(0)
3,1 −y3v

(0)
3,2 0]t . (14)
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The solution is defined up to a rigid body displacement (uR = {v1, v2, v3}). This forms the fundamental
solutions such that

u(1) = ũ(1) ≡ u(1)p +u(1)R =2(y3)ṽ(1)(yα), (15)

where

2(y3)=

1 0 0 −y3 0
0 1 0 0 −y3

0 0 1 0 0

 , ṽ(1)(yα)=

{
v
(1)
i

v
(0)
3,α

}
. (16)

This fundamental solution appears repeatedly in each order problem.

2.4. Virtual displacement concept to recursive equations. It is more convenient to rewrite the recursive
equilibrium equation, (10), in terms of virtual displacements in order to find the solutions of microscopic
and macroscopic problems as well as to handle the surface traction on �±. To this end, one can mul-
tiply by the virtual displacement δu(k+2)t in (10) and (12). By applying integration by parts for the y3

coordinate, it takes the form∫
�

[∫
hε
δu(k+2)t
,3 Lt

3σ
(k+1)dy3−

∫
hε
δu(k+2)t Lt

ασ
(k)
,α dy3

−

∫
hε
δu(k+2)t b(k)dy3− δu(k+2)t g(k+1)

∣∣∣
y3=�±

]
d�= 0, (17)

where hε denotes the scaled thickness of a plate. The edge boundary conditions on Su and Sσ will be
considered and discussed in Section 4.

Furthermore the asymptotic displacement u(k) can be decomposed into two terms such that

u(k)(yi )= ũ(k)(yi )+u(k)w (yi ), k ≥ 2, (18)

where the first term is the fundamental solution and the second the warping solution. By substituting this
into (17), one can obtain two equations corresponding to δũ(k+2) and δu(k+2)

w . They are referred to as the
macroscopic problem (or the plate analysis) and the microscopic problem (or the through-the-thickness
analysis), respectively.

3. Microscopic and macroscopic problems

In this section, we seek the solutions of the microscopic problems and the macroscopic 2D plate equations
from (17). The through-the-thickness 1D finite analysis for the microscopic problems is described first.
Then the macroscopic 2D plate equilibrium equations, which are built upon the results of microscopic
analysis, are derived.

3.1. Microscopic problems. The microscopic problems can be obtained from (17) by collecting the
terms associated with the virtual displacement form of the warping solution, δu(k)w . These can be solved by
applying the through-the-thickness 1D finite element discretization. Subsequently the warping solution
is generalized for each level of the problems.
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The second microscopic problem and finite element discretization. The first nontrivial microscopic prob-
lem (k = 0), which is associated with δu(2)w in (17), is given by∫

hε
δ
(
L3u(2)w,3

)t C
(
8e(1)+L3u(2)w,3

)
dy3 = 0, (19)

where

8(y3)=



1 0 0 −y3 0 0
0 1 0 0 −y3 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 1 0 0 −y3


, e(1) = [v(1)1,1 v

(1)
2,2 v

(1)
1,2+ v

(1)
2,1 v

(0)
3,11 v

(0)
3,22 2v(0)3,12]

t . (20)

In order to solve (19), the finite element discretization is employed by using the standard 1D La-
grangian interpolation function. The warping solution is then expressed by

uw(yi )= Nu(y3)ūw(yα), (21)

where Nu is the shape function matrix and ūw is the nodal vector. Plugging (21) into (19) yields

Kū(2)w +F3E e(1) = 0, (22)

where
K≡ 〈B t

3 C B3〉, F3E ≡ 〈B t
3 C 8〉, B3 ≡ L3Nu,3, (23)

in which
〈•〉 =

∫
hε
• dy3. (24)

One can solve (22) by applying the orthogonality condition to a rigid body displacement [Cesnik et al.
1996; Kim et al. 2008]. Consequently its solution is represented by

ū(2)w = 0
(1)e(1), 0(1) ≡KI F3E , (25)

where the matrix KI is related to the inverse matrix of K and the orthogonality condition to a rigid body
displacement [Kim et al. 2008]. Note that each column of 0(1) represents the warping distribution through
the thickness of a plate, which corresponds to six warping functions due to two in-plane extensions, one
in-plane shear, two bending curvatures, and one twisting curvature. These functions explain the 3D
Poisson effect.

The third and higher microscopic problems. The third microscopic problem (k = 1) from (17) can be
summarized as follows:∫

hε
δu(3)tw,3Lt

3σ
(2)dy3 =

∫
hε
δu(3)tw Lt

ασ
(1)
,α dy3+

∫
hε
δu(3)tw b(1)dy3+ δu(3)tw g(2)

∣∣∣
y3=�±

, (26)

where the last term represents the prescribed surface shear traction on �±, which is explicitly expressed
by

σ
(2)±
α3 = g±α at y3 =±

hε
2
. (27)
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After applying the finite element discretization and carrying out tedious but straightforward manipu-
lation, one can obtain

Kū(3)w =−F3E e(2)+
[
Vα+(Wα−W t

α) 0(1)
]

e(1),α +F(2)g +F(1)b , (28)

where
Vα ≡ 〈B t

αC8〉, Wα ≡ 〈B t
αCB3〉, Bα ≡ LαNu, (29)

and the last two terms on the right side are force vectors that represent the prescribed traction and the
body force, respectively. Once we solve (28), the warping solution has the form

ū(3)w = 0
(1)e(2)+0(2)α e(1),α + ū(3)f , (30)

where
0(2)α ≡KI

[
Vα+(Wα−W t

α) 0(1)
]
, ū(3)f ≡KI

(
F(2)g +F(1)b

)
. (31)

By following the same procedure described in the previous microscopic problems, the solution of the
fourth microscopic problem (k = 2) can be obtained by

ū(4)w = 0
(1)e(3)+0(2)α e(2),α +0

(3)
αβ e(1),βα + ū(4)f , (32)

where
0
(3)
αβ ≡KI

[
Wαβ0

(1)
+(Wα−W t

α) 0
(2)
β

]
, Wαβ ≡ 〈B t

αCBβ〉,

ū(4)f ≡KI
[
(Wα −W t

α)ū
(3)
f,α +F(3)g +F(2)b

]
.

(33)

Similarly, the solutions of the higher than fourth microscopic problems can be now generalized as
follows:

ū(k)w = 0
(1)e(k−1)

+0(2)α e(k−2)
,α + · · ·+0

(k−2)
αβ...ψe(2),ψ...βα +0

(k−1)
αβ...ψωe(1),ωψ...βα + ū(k)f , (34)

where k ≥ 5, and

ū(m+1)
f ≡KI

[
Wαβ ū(m−1)

f,βα + (Wα −W t
α)ū

(m)
f,α

]
, (35)

0
(m)
αβγ ...ψω ≡KI

[
Wαβ0

(m−2)
γ ...ψω+ (Wα −W t

α)0
(m−1)
ωψ...γβ

]
, (36)

in which m ≥ 4.

3.2. Macroscopic problems. One can also derive the macroscopic 2D equilibrium equations from (17)
by collecting the terms associated with δũ(k). In this subsection, the equations at each level are derived
and the macroscopic 2D constitutive equations are set up, in which the warping solutions obtained in
Section 2 are smeared into the macroscopic 2D stiffness.

Equilibrium equations. From (17), the k-th macroscopic problem that is associated with δũ(k+2) can be
summarized as follows:

δv(k+2)
α : N (k)

αβ,β + n(k)α = 0,

δv
(k+1)
3,α : M (k)

αβ,β + Q(k+1)
α −m(k)

α = 0, k ≥ 0,

δv
(k+2)
3 : Q(k)

α,α + q(k) = 0,

(37)
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where
N (k)
αβ ≡

〈
σ
(k)
αβ

〉
, M (k)

αβ ≡
〈
−y3σ

(k)
αβ

〉
, Q(k)

α ≡
〈
σ
(k)
α3

〉
, (38)

and the other terms are the contributions of the body force and prescribed traction, which are

n(k)α ≡
{
〈bα〉+ g+α + g−α

}
δ(k− 1),

m(k)
α ≡

{
〈y3bα〉+

hε
2
(g+α − g−α )

}
δ(k− 1),

q(k) ≡
{
〈b3〉+ g+3 + g−3

}
δ(k− 2),

(39)

where δ(k− n) indicates the Kronecker delta function.
The very first macroscopic problem, which corresponds to k = 0 in (37), yields the classical assumption

of zero shear force such that Q(1)
α = 0. The second macroscopic problem (k = 1) forms the classical plate

theory, which contains the trivial terms related to the first-order shear forces Q(1)
α = 0 from the previous

macroscopic problem. This problem also includes the second-order shear forces Q(2)
α that are presented

in the third macroscopic problem. From these one obtains the first set of equilibrium equations,

N (1)
αβ,β + n(1)α = 0, M (1)

αβ,βα +m(1)
α,α = q(2). (40)

Similarly the second and higher sets of equilibrium equations are now generalized by

N (k)
αβ,β = 0, M (k)

αβ,βα = 0, k ≥ 2. (41)

It is worth noting that there are no external loadings in the equations with k ≥ 2 but the solutions of the
equations of the preceding level form the fictive volume force acting like the external loading.

Constitutive equations. The k-th order stress resultants (k ≥ 1) can be defined by

Ñ
(k)
≡ 〈8tσ (k)〉 =A(1)e(k−1)

+A(2)
α e(k−2)

,α + · · ·+A(k−1)
αβ...ψωe(1),ωψ...βα + Ñ

(k)
f , (42)

where
Ñ
(k)
≡ [N (k)

11 N (k)
22 N (k)

12 M (k)
11 M (k)

22 M (k)
12 ]

t , Ñ
(k)
f ≡ V t

αū(k)f,α +Ft
3E ū(k+1)

f , (43)

and
A(1)
≡ 〈8t C8〉+Ft

3E0
(1),

A(2)
α ≡ V t

α0
(1)
+Ft

3E0
(2)
α ,

. . .

A(n)
αβ...ω ≡ V t

α0
(n−1)
β...ω +Ft

3E0
(n)
αβ...ω, n ≥ 3.

(44)

The macroscopic constitutive equations include the terms related to the prescribed surface traction on
�±, Ñ

(k)
f , which are not considered in a conventional way to derive the constitutive equations.

4. Weak form of macroscopic 2D equations

A finite element formulation for the macroscopic 2D equilibrium equations presented in Section 3 is
described. To this end, we first apply a Galerkin method to the 2D equilibrium equations with edge
boundary conditions as constraints, and then transform them to a weak form through integrating by parts
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with respect to the in-plane coordinates yα. This process allows us to have boundary conditions for the
problem.

4.1. 2D plate finite element formulation. To convert the sets of macroscopic equilibrium equations in
(40) and (41) to the corresponding weak formulations, it is essential to consider the edge boundary
conditions given in (11). These edge boundary conditions can be rewritten in the weak forms∫

Sσ
δu(k+2)t(σ (k+1)ν−p(k+1))d S+

∫
Su

δu(k+2)t(σ (k+1)ν+λ(k+1))d S = 0, (45)

which are subject to the constraint∫
Su

δλ(k+1)t(u(k+2)
− ū(k+2))d S = 0, (46)

where k ≥ 0, and λ is a Lagrange multiplier which is introduced to enforce the displacement boundary
condition on Su .

The sets of macroscopic equilibrium equations in (40) and (41) can be recast by applying a Galerkin
method, where the weighting function is chosen to be a displacement vector such that

v(k) = [v
(k)
1 v

(k)
2 v

(k−1)
3 ]

t , k ≥ 1, (47)

combining (45). Subsequently integrating by parts yields the following weak formulation for the problem:∫
�

{(
δe(k)

)t
Ñ
(k)
−
(
δv̂(k)

)t
B̃
(k)
}
δ�=

(
δv̂(k)

)t
∫

Sσ
F̃
(k)d S, k ≥ 1, (48)

where

v̂(k) = [v(k)α v
(k−1)
3 v

(k−1)
3,α ]

t , B̃
(k)
= [n(k)α q(k+1) m(k)

α ]
t , F̃

(1)
=2t
[p1 p2 p3]

t , (49)

where F̃
(k)
= 0 if k ≥ 2. Notice here that there are remaining boundary conditions associated with δu(k+2)

w

which will be discussed in Section 4.2.
Applying a standard finite element discretization procedure to (48) yields the following recursive linear

equations:
K(1)

2DV̂(k)
= P(k)F −P(k)N

(
K(n)

2D, V̂(n))
n=2,3,...,k, (50)

where k ≥ 1, V̂(k) is the k-th order nodal degrees of freedom vector, and P(k)F indicates the forcing vector
coming from F̃

(k) and B̃
(k). The calculation of the 2D stiffness matrices K(k)

2D is associated with the k-th
order stress resultant vector Ñ

(k) that includes higher order derivatives with respect to the coordinates
yα. The fictive volume force vector P(k)N is computed from the preceding nodal vectors and 2D stiffness
matrices. Their explicit forms are omitted for brevity, since they are lengthy but straightforward.

4.2. Boundary conditions. In the process of integrating by parts in Section 4.1, there are remaining
boundary conditions associated with δu(k+2)

w and the displacement boundary Su . These are summarized
as follows:∫

Sσ
δu(k+2)t
w

(
σ (k+1)ν−p(k+1))d S+

∫
Su

δu(k+2)t
w

(
σ (k+1)ν+λ(k+1))d S+

∫
Su

δũ(k+2)tλ(k+1)d S = 0, (51)
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with the constraint given in (46). These boundary conditions carry physical significance, which implies
that one cannot exactly satisfy the 3D edge boundary conditions even for stress edge data unless the
boundary layer problem is solved. The first term, which is the edge traction, is dismissed in the weighted
average sense. The second and third terms are also dismissed if one can properly prescribe the funda-
mental and warping displacements at the edge on Su .

A clue to this displacement boundary condition can be sought by examining the displacement con-
straint. From (51), a Lagrange multiplier can be found. Substituting this into the constraint in (46)
yields ∫

Su

δ
(
σ (k+1)ν

)t(u(k+2)
− ū(k+2))d S = 0, (52)

which leads to the so-called averaged displacement boundary condition. For example, this can be sim-
plified for the straight edge perpendicular to the y1 coordinate by∫

Su

δσ
(k+1)
i1

(
u(k+2)

i − ū(k+2)
i

)
d S = 0. (53)

Furthermore if one assumes linear variations of in-plane stresses and a constant transverse shear stress,
the stress edge data is expressed by σα1 = τα + y3ωα and σ31 = τ3. Plugging this into (53) yields five
equations such that

δτα :
〈
u(k+2)
α − ū(k+2)

α

〉
= 0,

δωα :
〈
y3
(
u(k+2)
α − ū(k+2)

α

)〉
= 0,

δτ3 :
〈
u(k+2)

3 − ū(k+2)
3

〉
= 0,

(54)

which in matrix form is

δτ t 〈2t(u(k+2)
− ū(k+2))〉

= 0. (55)

This actually yields the same form as the orthogonality condition of asymptotic displacements to the
fundamental displacement [Kim et al. 2008]. The displacement condition given in (55) was proven to be
asymptotically correct up to O(ε2) for a transversely isotropic semiinfinite beam [Horgan and Simmonds
1991]. In this way, one can avoid the overwhelming complexity of using the decay analysis method
[Gregory and Wan 1984] to find the asymptotically correct boundary conditions up to any desired order.
It is however limited to asymptotic analysis up to O(ε2) when the displacement prescribed boundary is
considered (for example, for clamped boundaries) [Horgan and Simmonds 1991; Duva and Simmonds
1992].

The orthogonality condition of asymptotic displacements [Kim et al. 2008], which generalizes the
averaged displacement boundary condition, is given by∫

Su

(
δũ(k)

)t(u(k)− ū(k)
)
d S = 0, (56)

in which ū(k) is the scaled displacement edge data. Plugging (15) into this yields(
δṽ(k)

)t U(k)
= 0, U(k)

≡

∫
Su

2t(y3)
(
u(k)− ū(k)

)
d S, (57)
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where U(k) is a 6× 1 residual displacement vector. This yields five kinematic boundary conditions. For
instance, the clamped boundary condition (that is, ū(k) = 0∀k) can be realized as follows:

ṽ(1) = 0, ṽ(2) =−H−1
θ 〈2

t Nu〉0
(1)e(1), . . . , ṽ(k) =−H−1

θ 〈2
t Nu〉

(
ū(k)w + ū(k)f

)
, k ≥ 3, (58)

where Hθ ≡ 〈2
t2〉. This however should be rearranged for each macroscopic problem so that

v̂(k) = [ṽ(k)1 ṽ(k)2 ṽ(k−1)
3 ṽ(k)4 ṽ(k)5 ]

t . (59)

5. Numerical examples and discussion

Laminated and sandwich plates are considered as illustrative examples for the present asymptotic formu-
lation. In order to investigate the edge effects, semiinfinite plates (that is, the 3D plane strain problem)
with simply supported or clamped-free boundary conditions are analyzed (see Figure 2). The present
results are compared to those obtained by 3D elasticity and Reissner–Mindlin plate theory, also known
as first-order shear deformation theory (FSDT). The shear correction factor is assumed to be 5/6 for
FSDT. For convenience, the present approach is referred to as a formal asymptotic method-based plate
analysis (FAMPA) throughout the numerical examples.

The ply material properties of all the laminated plates are taken from [Pagano 1970], and are

EL = 172.4 GPa, ET = 6.9 GPa, GLT = 3.45 GPa, GT T = 1.38 GPa, νLT = νT T = 0.25, (60)

where L denotes the direction of the fiber and T denotes the direction perpendicular to the fiber. For
sandwich plates, the material properties of the face sheets are the same as those in (60), and the core
material properties are given by

E1 = 0.1 GPa, G12 = 0.04 GPa, ν12 = 0.25,

E2 = E3 = E1, G23 = G13 = G12, ν23 = ν13 = ν12.
(61)

Four cases including a sandwich plate are considered for two sets of boundary conditions, which are
listed in Table 1. The elastic constants ci jkl can be then calculated by using the moduli given in (60) and
(61) and the fiber angle given in Table 1. Their explicit form can be found in [Reddy 2004].

q q

Figure 2. Loading and boundary conditions of semiinfinite plates: simply supported
plate under sinusoidal pressure (left) and clamped-free plate under uniform pressure
(right).
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In all figures and tables, the k-th order solutions of the FAMPA are represented by

u<k>
=

k∑
i=0

[εi+1u(i+1)
α εi u(i)3 ]

t , σ<k>
=

k+1∑
i=1

εiσ (i), k ≥ 0, (62)

so that the zeroth-order solution represents that of classical lamination theory (CLT) with σi3 = 0 and the
second-order solution represents that of the FSDT-like theory. Unlike in FSDT, the present second-order
solution produces all the stress states including the transverse normal stress via the constitutive law. In
the figures, the transverse stresses of the FSDT are calculated by using 3D equilibrium equations.

The displacement and stresses reported herein are normalized as follows [Pagano 1970]:

u∗α = 100ET
uα
qo

hS3, u∗3 = 100ET
u3

qo
hS4, σ ∗αβ =

σαβ

qo
S2, σ ∗α3 =

σα3

qo
S, σ ∗33 =

σ33

qo
, (63)

where S = L1/h is the length-to-thickness ratio and qo is the maximum of the applied pressure q .

5.1. Simply supported plates. For the problem of simply supported laminated and sandwich plates under
sinusoidal pressure, the elasticity solution is available from [Pagano 1970], and has been used as the
benchmark problem. In this case, problematic displacement prescribed boundary conditions are not
involved. It is therefore possible to find the asymptotic solutions up to any desired order. For the purpose
of comparison, the solutions of 3D elasticity and FSDT are also reproduced.

Case Layup x3/h

1 [0.5 / 90.5 / 90.5 / 0.5] {−1/2,−1/4, 0, 1/4, 1/2}
2 [90.5 / 0.5 / 90.5 / 0.5] {−1/2,−1/4, 0, 1/4, 1/2}
3 [−30 / 30 /−30 / 30] {−1/2,−1/4, 0, 1/4, 1/2}
4 [0.05 /Core / 0.05] {−1/2,−2/5, 0, 2/5, 1/2}

Table 1. Lamination sequences for laminated and sandwich plates.
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Figure 3. Transverse stresses of a simply supported plate, case 3, S = 4: σ ∗13 (a) and
σ ∗33 (b). Exact (•), FSDT (4), FAMPA 0th (−−), FAMPA 2nd (− ·−), FAMPA 4th (· · ·),
and FAMPA 6th (—).
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S Models Case 1 e% Case 2 e% Case 3 e% Case 4 e%

4 Exact 3.3364 0 4.1812 0 3.2915 0 75.58 0
FSDT 2.7299 –18 3.2964 –21 2.7868 –15 8.27 –89
FAMPA 0th 0.5586 –83 1.1251 –73 0.9988 –70 1.01 –99
FAMPA 2nd 3.5912 8 4.5380 9 3.4428 5 108.07 43
FAMPA 4th 3.2689 –2 4.0805 –2 3.2655 –1 61.00 –19
FAMPA 6th 3.3553 1 4.2121 1 3.2963 0 82.15 9

10 Exact 1.0359 0 1.6600 0 1.3854 0 17.01 0
FSDT 0.9061 –13 1.4726 –11 1.2849 –7 2.17 –87
FAMPA 0th 0.5586 –46 1.1251 –32 0.9988 –28 1.01 –94
FAMPA 2nd 1.0438 1 1.6712 1 1.3899 0 18.14 7
FAMPA 4th 1.0356 –0 1.6595 –0 1.3853 –0 16.93 –0

20 Exact 0.6794 0 1.2609 0 1.0963 0 5.22 0
FSDT 0.6455 –5 1.2120 –4 1.0703 –2 1.30 –75
FAMPA 0th 0.5586 –18 1.1251 –11 0.9988 –9 1.01 –81
FAMPA 2nd 0.6799 0 1.2617 0 1.0966 0 5.29 1

Table 2. Comparison of center deflections of simply supported plates under sinusoidal loads.

Normalized center deflections of simply supported plates are listed and compared to the 3D elasticity
solution in Table 2. FSDT shows significant improvement compared to the FAMPA-0th or CLT for
laminated plates, cases 1–3. It however does not yield accurate predictions for the case of a sandwich
plate. In fact, FSDT just produces comparable results to CLT even for S ≥ 20. In contrast, the FAMPA-
2nd results are practically identical to the 3D elasticity solution. Although the FAMPA-6th is necessary
for accurate prediction in the case of very thick plates, S = 4, the FAMPA-2nd produces reasonable
accuracy when S ≥ 10 for both laminated and sandwich plates. Local through-the-thickness distributions
of stresses are also important in analysis of composite plates. Transverse stresses for an antisymmetric
laminated plate are presented in Figure 3 and those for a sandwich plate in Figure 4. It is seen that
the FAMPA asymptotically converges to the 3D elasticity with increasing ε-order level. The transverse
shear stress of the FAMPA-2nd is identical to that of FSDT, whereas the transverse normal stress of FSDT
significantly deviates from the FAMPA-2nd and the 3D elasticity, which is clearly shown in Figure 4b.

5.2. Clamped-free plates. We now consider clamped-free plates, investigating displacement-prescribed
and traction-free boundary conditions. Unlike the simply supported plate with sinusoidal loadings, our
analysis is restricted to the FAMPA-2nd because the asymptotically correct displacement boundary con-
dition is only available up to the second order, which is given in (59). In addition, there is difficulty in
calculating higher-order derivatives with respect to yα in the framework of a finite element method.

Normalized tip deflections of clamped-free laminated and sandwich plates with a function of the
length-to-thickness ratio S are shown in Figure 5 for cases 3 and 4. The FAMPA-2nd performs similarly
to FSDT for case 3. For a sandwich plate, FSDT significantly deviates from the 3D FEM, whereas the
FAMPA-2nd is very close to it. This clearly indicates that it is of great importance to apply a proper
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Figure 4. Transverse stresses of a simply supported plate, case 4, S = 4: σ ∗13 (a) and
σ ∗33 (b). Exact (•), FSDT (4), FAMPA 0th(−−), FAMPA 2nd (− ·−), FAMPA 4th (· · ·),
and FAMPA 6th (—).

set of edge boundary conditions especially for a plate weak in shear. To more clearly demonstrate this,
the bending deflection and slope along the normalized in-plane coordinate are illustrated in Figure 6
for a sandwich plate with S = 10. The error of the FSDT is more than 400% in terms of tip deflection,
whereas the FAMPA-2nd shows reasonable accuracy. This is achieved by improving a clamped boundary
condition in which the bending slope is not zero, as shown in Figure 6b, where the interior solution is ap-
proximately valid for 30% to 80% from the clamped end. Local stress distributions are also investigated,
and stresses of a thick antisymmetric cross-ply plate at the midspan of the plate are illustrated in Figure 7.
The transverse shear stress of the FAMPA-2nd coincides with that of FSDT, since σ13 is calculated by
using the 3D equilibrium equation for FSDT. In-plane and transverse normal stresses calculated by the
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Figure 5. Tip deflections of clamped-free laminated and sandwich plates: antisym-
metric angle-ply (a), case 3, and sandwich (b), case 4. 3D FEM (•), FSDT (− ·−),
FAMPA 0th (−−), and FAMPA 2nd (—).
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Figure 6. A clamped-free sandwich plate, case 4, S = 10: bending deflection (a), and
bending slope (b). 3D FEM (•), FSDT (− ·−), FAMPA 0th (−−), and FAMPA 2nd (—).
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Figure 7. Stresses of a clamped-free antisymmetric cross-ply laminated plate, case 2,
S = 4: σ ∗11 (a), σ ∗13 (b), and σ ∗33 (c). 3D FEM (◦), FSDT (4), FAMPA 0th (−−), and
FAMPA 2nd (—).

FAMPA-2nd are well correlated with the 3D FEM, whereas FSDT yields erroneous results qualitatively
as well as quantitatively.

To investigate the edge layer effects, the in-plane normal stresses calculated at near the clamped-end,
midspan, and near the free-end, which are located at the 12%, 49%, and 87% axial positions from
the clamped end, respectively, are plotted in Figure 8 for a thick symmetric cross-ply plate. The best
approximation of the FAMPA-2nd to the 3D FEM can be seen in the midspan where the interior solution is
valid. Near the clamped end, the FAMPA-2nd tends to produce a through-the-thickness stress distribution
similar to that in the interior region because we applied the asymptotically correct boundary condition
up to the second order only. It can however accurately capture the stress-free edge layer effect, as shown
in Figure 8c where the FAMPA-2nd drastically improves the prediction of the in-plane stress compared
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Figure 8. In-plane normal stress of a clamped-free symmetric cross-ply laminated plate,
case 1, S = 4: near the clamped-end (a), midspan (b), and near the free-end (c).
3D FEM (◦), FSDT (4), FAMPA 0th (−−), and FAMPA 2nd (—).

to FSDT and the FAMPA-0th. It is of interest that the in-plane normal stress is not that small even if the
in-plane stress is zero at the free-end.

5.3. Usefulness of the FAMPA. Through-the-thickness warping functions are discussed in this subsec-
tion. An antisymmetric angle-ply laminated plate, case 3, is considered as an example. The proposed
asymptotic analysis method may be limited to second-order analysis because higher-order analysis re-
quires both higher-order asymptotically correct displacement boundary conditions as well as higher-order
derivatives. The requirement of higher-order derivatives of the macroscopic strain measure e(k) makes it
difficult to realize the FAMPA with a finite element method. Although the FAMPA-2nd yields reasonable
accuracy for most engineering applications, one may want to look at higher-order effects. In this case, the
warping functions 0(k)αβ...ψω can provide useful information without solving the macroscopic problems.

The first-order through-the-thickness deformation mode of case 3 is shown in Figure 9. This mode
mainly illustrates the 3D Poisson effect that represents the deformation along the thickness direction.
Figure 9 implies that the out-of-plane displacements consist of linear and quadratic variations, in which
the linear variation accounts for the in-plane tension induced deformation and the quadratic variation
explains the bending induced deformation. In general these variations are smeared into the reduced
stiffness models that are often derived by applying the plane stress assumption of σ33 = 0. The first
nonclassical through-the-thickness mode, such as a transverse shear deformation effect, can be found in
0
(2)
α . For example, 0(2)1 are plotted in Figures 10 and 11. Unlike the first deformation mode 0(1), the in-

plane displacements uα play a major role in this mode. Figure 10 depicts the displacement component u1,
which clearly shows a transverse shear deformation effect due to the bending deformations corresponding
to κ11,1 and κ22,1. The contribution of κ22,1 to u1 is obvious because of the antisymmetric configuration.
For this reason, the higher-order bending curvature κ11,1 also contributes to the displacement component
u2 as shown in Figure 11. The through-the-thickness warping functions presented in Figure 11 have an
unique pattern depending on the lamination configurations, which could be very difficult to presuppose.
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Figure 9. The first-order through-the-thickness deformation mode (u3) of an antisym-
metric angle-ply laminated plate, case 3, 0(1).
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Figure 10. The second-order through-the-thickness deformation mode (u1) of an anti-
symmetric angle-ply laminated plate, case 3, 0(2)1 .
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Figure 11. The second-order through-the-thickness deformation mode (u2) of an anti-
symmetric angle-ply laminated plate, case 3, 0(2)1 .

6. Conclusions

A formal asymptotic method-based plate analysis (FAMPA) is developed to analyze general anisotropic
plates. To assess the FAMPA capability for various sets of boundary conditions, simply supported and
clamped-free boundary conditions are considered. For a simply supported boundary condition, it is
demonstrated that the FAMPA can provide the exact solutions by increasing the order up to the sixth order
for very thick plates. The orthogonality condition of asymptotic displacements to the fundamental solu-
tion is adopted to avoid the complexity of using the decay analysis method for a displacement prescribed
boundary. The boundary conditions obtained, which are asymptotically correct up to the second order, are
applied to plates with clamped-free boundary conditions. The results are compared to those of the three-
dimensional FEM and FSDT. It is demonstrated that the FAMPA-2nd is simple enough for engineering
applications and accurate enough for high precision analysis. It can also simulate the free-edge boundary
layer effect qualitatively, whereas FSDT cannot. Although a higher-order computation of the FAMPA is
practically limited due to the displacement boundary conditions and the higher order derivatives of the
macroscopic strain measure, one can have in-depth understanding of the higher-order behaviors of such
composite plates via the microscopic analysis up to any desired order. The through-the-thickness warping
functions obtained can be also used for development and validation of any higher-order plate theories.
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