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YURIY A. ROSSIKHIN, MARINA V. SHITIKOVA AND TATIANA SHCHEGLOVA

This article deals with force-driven vibrations of nonlinear mechanical oscillators whose constitutive
equations involve fractional derivatives, defined as fractional powers of the conventional time-derivative
operator. This definition of fractional derivatives enables one to analyze approximately the vibratory
regimes of the oscillator. The assumption of small fractional derivative terms allows one to use the
method of multiple time scales, whereby a comparative analysis of the solutions obtained for different
orders of low-level fractional derivatives and disturbing force terms can be carried out. The relationship
between the fractional parameter (order of the fractional operator) and nonlinearity manifests itself in full
measure when the orders of the small fractional derivative term and of the cubic nonlinearity appearing
in the oscillator’s constitutive equation coincide.

1. Introduction

Fractional derivatives have been useful in describing, among other things, the frequency-dependent damp-
ing behavior of nonlinear structural systems [Padovan and Sawicki 1998; Rossikhin and Shitikova 1997a;
1998; 2000; 2003; 2006; Li et al. 2003; Seredyńska and Hanyga 2005; Nasuno et al. 2006]. Since the
methods of integral transformations are unusable in nonlinear problems, different perturbation techniques
or numerical methods must be used for investigating vibrations of such nonlinear structures.

The dynamics of the fractionally damped Duffing oscillator has been examined by several authors
[Padovan and Sawicki 1998; He 1998; Sheu et al. 2007; Seredyńska and Hanyga 2000; Gao and Yu 2005;
Singh and Chatterjee 2006; Wahi and Chatterjee 2004; Chen and Zhu 2009; Atanackovic and Stankovic
2008]. In particular, a Duffing-like oscillator with positive linear stiffness and weak damping defined
by a fractional derivative has been studied in [Padovan and Sawicki 1998] using an energy-constrained
Lindstedt–Poincaré perturbation procedure that involves a diophantine version of the fractional operator
powers. The influence of fractional damping on the frequency amplitude response has been examined
when the oscillator is subjected to the action of an external harmonic force.

The case of free vibrations with a half-order Riemann–Liouville fractional derivative was analyzed
in [He 1998] using variational iteration method, allowing the author to obtain an approximate analytical
solution.

The occurrence and nature of chaotic motion in a single-degree-of-freedom system described by a
Duffing-like equation with negative linear stiffness have been studied using different numerical methods
in [Sheu et al. 2007], including the use of Caputo-type fractional derivatives. The Galerkin projection
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method and the finite element method were adopted in [Singh and Chatterjee 2006] for solving a similar
equation but with the dissipative force modeled via Riemann–Liouville fractional derivatives of half-
order, while the possibilities of using other values of the fractional parameter were also discussed.

The method of averaging was applied in [Wahi and Chatterjee 2004] for investigating the equations
with a different type of small damping including Riemann–Liouville half-order fractional derivative terms
and delayed terms, as well as in [Chen and Zhu 2009] for treating the case of combined external harmonic
and parametric white noise excitations.

In [Rossikhin and Shitikova 2009], departing from earlier practice in the literature, we suggested an
approximate approach to the analysis of free vibrations of mechanical oscillators whose constitutive
equations involve fractional derivatives. The approach is based on the representation of the fractional
derivative as a fractional power of the ordinary time derivative operator d/dt , a representation typically
given by the equality ( d

dt

)γ
x(t)= Dγ

+x(t) (1-1)

(see formula (5.82) of [Samko et al. 1993]), where

Dγ
+x(t)=

d
dt

∫ t

−∞

x(t − t ′)dt ′

0(1− γ)t ′γ
(1-2)

is the Riemann–Liouville fractional time-derivative. Since the lower limit of the integral here is −∞,
the equality in (1-1) allows one to use the Liouville representation of the fractional derivative applied to
the exponential function:

Dγ
+e

iωt
= (iω)γeiωt . (1-3)

This latter formula is no longer valid when the lower limit of integration is 0. For this case there exists
another formula (see Appendix for details) based on the Riemann–Liouville fractional derivative

Dγ
0+e

iωt
=

d
dt

∫ t

0

eiω(t−t ′)dt ′

0(1− γ)t ′γ
= (iω)γeiωt

+
sin γπ
π

∫
∞

0

uγe−ut du
u+ iω

, (1-4)

which turns into (1-3) when t→+∞.
If one uses the exact formula (1-4) for the fractional differentiation of the exponent, in many cases

the integral appearing in (1-4) can also be neglected compared with the first term in the same formula
[Rossikhin and Shitikova 1997a; 1997b; 1998; 2000; 2003], since this integral decays rapidly with time.
For example, if γ is small, while the frequency ω lies within the range of interest in engineering, the
integral on the right-hand side of (1-4) can be ignored, what allows one to use formula (1-3).

Calculations of the magnitude of the fractional parameters carried out on the basis of experimental
data [Abdel-Ghaffar and Scanlan 1985] show that this value for suspension bridges is of the order of
0.05–0.1 [Rossikhin and Shitikova 1998; 2008]. The value γ = 0.118 was reported in [Giovagnoni and
Berti 1992] when studying the experimental response of a deformable single-link mechanism, which
was realized by means of a brass bar fixed onto a vertical shaft. The fractional parameters γ1 = 0.1991
and γ2 = 0.2499 were identified in [Schmidt and Gaul 2006] from experimental measurements of a
cantilever made of DelrinTM. The value γ = 0.28 was obtained in [Cooke and Keltie 1987] in a beam
impact experiment. A series of experiments measuring the frequency responses of viscoelastic rods of
materials like teflon, polyamide, polyurethane, polyvinyl chloride, and polyethylene was reported in
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[Schäfer 2000; Schäfer and Seifert 2002], where it was found that the fractional parameter lies in the
range of 0.086–0.11. During flexible polyurethane foam modeling via a nonlinear fractional oscillator
in [Deng et al. 2003], viscoelastic parameters for automotive seating applications were identified with a
fractional parameter equal to 0.019.

The evaluation of the second term in (1-4) is of great importance only during the consideration of linear
vibrations, since ignoring this term allows one to solve the equation of linear vibrations of a fractionally
damped oscillator

ẍ +ω2
0τ
γ
σ

( d
dt

)γ
x(t)+ω2

0x = 0, (1-5)

where ω2
0 = E0m−1, E0 is the spring rigidity, m is the oscillator’s mass, and τσ is the relaxation time,

with the help of the Euler substitution as done in [Rossikhin and Shitikova 2009]:

x(t)= CeλT . (1-6)

Indeed, substituting (1-6) into (1-5) we obtain the characteristic equation

λ2
+ω2

0τ
γ
σλ

γ
+ω2

0 = 0, (1-7)

which possesses two complex conjugate roots [Rossikhin and Shitikova 1997b]

λ1,2 =−α± iω, (1-8)

where α and ω are the damping coefficient and the frequency of vibrations, respectively.
The solution of (1-5) with due account for (1-8) can be written as [Rossikhin and Shitikova 2009]

x(t)= Ae−αt cos(ωt +ϕ), (1-9)

where A and ϕ are arbitrary constants to be determined from the initial conditions.
The Green’s function for (1-5) with the second term of (1-4) taken into consideration is written in the

form [Rossikhin and Shitikova 1997b]

x(t)= A0(t)+ Ae−αt cos(ωt +ϕ), (1-10)

where A0(t) is the term governing the drift of the position of equilibrium.
In the present paper, the approach suggested in [Rossikhin and Shitikova 2009] for the analysis of free

vibrations of nonlinear mechanical oscillators is generalized to the case of forced vibrations. It will be
shown that the second term in (1-4) can altogether be ignored in nonlinear problems, since it does not
affect the first approximations to be constructed here using the method of multiple time scales.

The need for studying fractional oscillators is motivated by two reasons: first, engineers often use
one-degree-of-freedom models as a first approximation or as a benchmark before preceding to more
intricate models or multi-degree-of-freedom structural systems (for example, as the simplest model of a
vibration-isolation system [Koh and Kelly 1990; Makris and Constantinou 1991; Hwang and Ku 1997;
Aprile et al. 1997; Munshi 1997; Hwang and Hsu 2001; Gusella and Terenzi 2001; Sjöberg and Kari
2003]), and second, the study of vibrations of more complex structures can be reduced to vibrations of a
set of fractional oscillators [Giovagnoni and Berti 1992; Rossikhin and Shitikova 2001; 2004; Agrawal
2004; Schäfer and Kempfle 2004].
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In all the examples considered below the emphasis will be on investigating the influence of a small
external force on vibratory motion, because many of our recent publications have already examined
the influence of the order γ of the fractional derivative on nonlinear free damped vibrations of such
fractionally damped structures as oscillators [Rossikhin and Shitikova 2009], two-degree-of-freedom
mechanical systems [2000], plates [2003; 2006], and suspension bridges [1998; 2008]. We have shown
that the fractional parameter plays the role of a structural parameter of the whole system and influences the
character of the system’s damping coefficient as a function of the natural frequencies of linear vibrations.
For example, the power relationships obtained in [Rossikhin and Shitikova 1998; 2008] between the
damping coefficient of the system and its natural frequencies of linear vibration correlate well with the
experimental data describing the natural frequency dependence of the damping ratio for the Golden
Gate suspension bridge [Abdel-Ghaffar and Scanlan 1985]. When the fractional parameter tends to
one, i.e., when the fractional derivative transforms into the common derivative with respect to time, the
system’s damping coefficient does not depend on the natural frequencies of linear vibrations, which is
in contradiction with experimental data. Thus, nonlinear viscoelastic models with fractional derivatives
with respect to time are to be preferred over models with integral derivatives for describing the damping
features of a combined suspension system.

2. Problem formulation

We will consider force-driven vibrations of the Duffing-like oscillator with positive linear stiffness and
damping defined by a fractional derivative (1-1):

mẍ(t)+β
( d

dt

)γ
x(t)+ k1x(t)+ k2x(t)3 = f cos(ωt), (2-1)

where x , β, k1, and k2 are, respectively, the oscillator’s displacement, damping coefficient, linear stiffness,
and small parameter of nonlinear stiffness, f is the force amplitude, and ω is its frequency.

Dividing (2-1) by the mass and introducing dimensionless values

t̃ = t�0, x̃ =
x
x0
, ω̃ =

ω

�0
, ω̃2

0 =
ω2

0

�2
0
, (2-2)

where

ω2
0 =

k1

m
, �0 =

√
g
l0
, x0 =

mg
k1
=

g
ω2

0

(g being the acceleration of gravity and l0 the undeformed spring length) yields

¨̃x +
β

m
�
γ−2
0

( d
dt̃

)γ
x̃ + ω̃2

0 x̃ +
k2

m
x2

0�
−2
0 x̃3

=
f

m
�−2

0 x−1
0 cos(ω̃t̃ ), (2-3)

which we then turn into the dimensionless form of Equation (2-1):

¨̃x + εkµ
( d

dt̃

)γ
x̃ + ω̃2

0 x̃ + k̃2 x̃3
= εk+1 F cos(ω̃t̃ ) (k = 1 or 2), (2-4)

where

εkµ=
β

m
�
γ−2
0 , k̃2 =

k2

m
x2

0�
−2
0 , εk+1 F =

f
m
�−2

0 x−1
0 .
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Here ε is a small parameter which is of the same order of magnitude as the amplitudes, and µ and F are
finite values. The choice of k in (2-4) depends on the order of smallness of the exciting force amplitude
and viscosity coefficient.

To lighten the notation, tildes over dimensionless values will be omitted henceforth.
We will assume that the linear natural frequency ω0 is approximately equal to the frequency of the

external excitation ω, i.e.,
ω0 ≈ ω. (2-5)

3. Method of solution

An approximate solution of (2-4) for small amplitudes varying weakly with time can be represented by
an expansion in terms of different time scales in the following form [Nayfeh 1973]:

x(t)= εx1(T0, T1, T2, . . . )+ ε
2x2(T0, T1, T2, . . . )+ ε

3x3(T0, T1, T2, . . . )+ · · · (3-1)

Here, Tn = ε
nt (n = 0, 1, 2, . . . ) are new independent variables, among them: T0 = t is a fast scale,

characterizing motions with ω and the natural frequency ω0, and T1 = εt and T2 = ε
2t are slow scales

characterizing the modulations of the amplitude and phase.
Recall that the first, the second and fractional derivatives are defined by

d
dt
= D0+ εD1+ ε

2 D2+ · · · ,
d2

dt2 = D2
0 + 2εD0 D1+ ε

2 (D2
1 + 2D0 D2

)
+ · · · ,( d

dt

)γ
= (D0+ εD1+ ε

2 D2+ · · · )
γ
= Dγ

++ εγDγ−1
+ D1+

1
2 ε

2γ
(
(γ− 1)Dγ−2

+ D2
1 + 2Dγ−1

+ D2
)
+ · · · ,

where Dn = ∂/∂Tn , and Dγ
+, Dγ−1

+ , Dγ−2
+ , . . . are the Riemann–Liouville fractional time derivatives:

Dγ−n
+ x =

d
dt

∫ t

−∞

x(t − t ′)dt ′

0(1− γ+ n)t ′γ−n (n = 0, 1, 2, . . . ).

Using this and substituting (3-1) into (2-4), after equating the coefficients at equal powers of ε, we are
led to a set of recurrence equations to various orders:

to order ε:
D2

0 x1+ω
2
0x1 = 0, (3-2)

to order ε2:
D2

0 x2+ω
2
0x2 =−2D0 D1x1−µ(2− k)Dγ

+x1+ (2− k)F cosωT0 (3-3)

to order ε3:

D2
0 x3+ω

2
0x3 =−2D0 D1x2−

(
D2

1 + 2D0 D2
)

x1−µ(2− k)Dγ
+x2

−µγ(2− k)Dγ−1
+ D1x1−µ(k− 1)Dγ

+x1− k2x3
1 + (k− 1)F cosωT0. (3-4)

The general solution of (3-2) has the form

x1 = A1(T1, T2)eiω0T0 + Ā1(T1, T2)e−iω0T0, (3-5)

where A1 and Ā1 are yet unknown complex conjugate functions.
For further analysis we need to specify the order of weak damping and external excitation.
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3A. Viscosity of the order of ε. Consider first the case where the viscosity is of the order of ε. Then
(2-4) reduces to

ẍ + εµ
( d

dt

)γ
x +ω2

0 x + k2 x3
= ε2 F cos(ωt). (3-6)

Substituting (3-5) in the right-hand side of (3-3) with k = 1 and taking (1-4) into account, we obtain

D2
0 x2+ω

2
0x2=−2iω0

( 1
2(iω0)

γ−1µA1+ D1 A1
)

eiω0T0+2iω0
( 1

2(−iω0)
γ−1µ Ā1+ D1 Ā1

)
e−iω0T0

+
1
2 F(eiωT0 + e−iωT0)−µA1

sin γπ
π

∫
∞

0

uγe−uT0du
u+ iω0

−µ Ā1
sin γπ
π

∫
∞

0

uγe−uT0du
u− iω0

. (3-7)

The functions exp(±iω0T0) on the right-hand side of (3-7) produce secular terms, so the coefficients
affecting these functions must be made to vanish. Taking (2-5) into account, we have as a result

D1 A1+
1
2(iω0)

γ−1µA1−
F

4iω0
= 0, (3-8)

whence it follows that

A1(T1, T2)= a1(T2) exp
(
−

1
2(iω0)

γ−1µT1
)
+

F
2µ(iω0)γ

, (3-9)

where a1(T2) is yet unknown function.
In view of (3-9), Equation (3-7) takes on the form

D2
0 x2+ω

2
0x2 =−µ

sin γπ
π

∫
∞

0
uγe−uT0

(
A1

u− iω0

u2+ω2
0
+ Ā1

u+ iω0

u2+ω2
0

)
du. (3-10)

Writing the function A1(T1, T2) defined by (3-9) and its complex conjugate Ā1(T1, T2) as

A1 = a+ ib, Ā1 = a− ib (3-11)

and substituting (3-11) into (3-10) yields

D2
0 x2+ω

2
0x2 =−2µ

sin γπ
π

f (T0, T1, T2), (3-12)

where

f (T0, T1, T2)=

∫
∞

0

uγ(au+ bω0)

u2+ω2
0

e−uT0du. (3-13)

Then the solution of (3-12) has the form

x2 = A2(T1, T2)eiω0T0 + Ā2(T1, T2)e−iω0T0 +C(T0, T1, T2)eiω0T0 +C(T0, T1, T2)e−iω0T0, (3-14)

where A2 and Ā2, and C and C are yet unknown complex conjugate functions. The first two terms of
(3-14) represent the general solution of the homogeneous part of (3-12), while the second pair of terms
is the particular solution of the inhomogeneous equation (3-12).

Substituting the particular solution from (3-14) in (3-12), we find

C(T0, T1, T2)=−2µ
sin γπ
π

∫ T0

0
e−2iω0T ′0 dT ′0

∫ T ′0

0
f (T ′′0 , T1, T2)eiω0T ′′0 dT ′′0 . (3-15)
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Substituting (3-5), (3-9), (3-14), and (3-15) in the right-hand side of (3-4) with k = 1, we are led to the
equation for determining x3. Eliminating the terms that produce secular terms, we obtain the solvability
condition

D2a1(T2)+ a1

(
1
8µ

2(1− 2γ)(iω0)
2γ−3
− κ

3k2 F2

4µ2ω
2γ+1
0

)
= 0,

whence it follows that

a1 = a11 exp
(
−

1
8µ

2(1− 2γ)(iω0)
2γ−3
+ κ

3k2 F2

4µ2ω
2γ+1
0

)
T2, (3-16)

where a11 is a constant to be determined from the initial conditions and κ = i cos 2γπ + sin 2γπ .
Considering (3-16), the coefficients a and b appearing in the expression (3-13) of f (T0, T1, T2) take

the form

a(T1, T2)= a11 exp
(
−

1
2µT1ω

γ−1
0 sin

( 1
2γπ

)
+

1
8µ

2T2(1− 2γ)ω2γ−3
0 sin γπ

)
× cos

(
1
2µT1ω

γ−1
0 sin

( 1
2γπ

)
+

1
8µ

2T2(2γ−1)ω2γ−3
0 cos γπ +

3k2 F2

4µ2ω
2γ+1
0

T2 cos 2γπ
)

+
F
µω

γ
0

cos
γπ

2
, (3-17)

b(T1, T2)= a11 exp
(
−

1
2µT1ω

γ−1
0 sin

(1
2γπ

)
+

1
8µ

2T2(1− 2γ)ω2γ−3
0 sin γπ

)
× sin

(
1
2µT1ω

γ−1
0 sin

( 1
2γπ

)
+

1
8µ

2T2(2γ−1)ω2γ−3
0 cos γπ +

3k2 F2

4µ2ω
2γ+1
0

T2 cos 2γπ
)

−
F
µω

γ
0

sin
γπ

2
, (3-18)

Combining (3-9) and (3-16) with (3-5) yields

x1=

[
a11 exp

(
−

1
8 µ

2(1−2γ)(iω0)
2γ−3
+κ

3k2 F2

4µ2ω
2γ+1
0

)
T2 exp

(
−

1
2(iω0)

γ−1µT1
)
+

F
2µ(iω0)γ

]
× exp(iω0T0)+ c.c., (3-19)

where c.c. stands for the complex conjugate to the preceding terms.
Reference to (3-19) shows that the second term of formula (1-4) does not affect the solution within

the limits of this approximation.
Limiting ourselves to the first term in (3-1) with due account for (3-19), we find the solution of (3-6)

in the form

x = ε
(

a0e−αt cos�t +
F
µω

γ
0

cos
(
ω0t − 1

2γπ
))
, (3-20)

where we have introduced the quantities a0 = 2a11,

α = 1
2εµω

γ−1
0 sin 1

2γπ
(
1+ 1

2εµ(2γ− 1)ωγ−2
0 cos 1

2γπ
)
− ε2 3k2 F2

4µ2ω
2γ+1
0

sin 2γπ, (3-21)
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and

�= ω0

(
1+ 1

2εµω
γ−2
0 cos 1

2γπ +
1
8ε

2µ2(2γ− 1)ω2(γ−2)
0 cos γπ + ε2 3k2 F2

4µ2ω
2(γ+1)
0

cos 2γπ
)
. (3-22)

Reference to (3-20) shows that the solution involves two parts: the first corresponds to the damping
vibrations and describes the transient process, while the second one is nondamping in character and de-
scribes forced vibrations with the frequency of the exciting force and with the phase difference depending
on the fractional parameter γ. Note that in the first term of (3-20) the amplitude of the external force F
does not affect the damping coefficient α (3-21), while it weakly influences the nonlinear frequency �
of vibrations (3-22).

When γ = 1, Equation (3-20) goes over into the equation describing vibrations of the viscoelastic
Duffing oscillator with ordinary Kelvin–Voigt constitutive relations, i.e.,

x = ε

{
a0e−εµt/2 cosω0

[
1−

ε2µ2

4ω2
0

(
1
2
−

3k2 F2

µ4ω2
0

)]
t +

F
µω0

cos
(
ω0t − π

2

)}
. (3-23)

It can be noted that if in the right-hand part of (3-6) one takes sinωt instead of the cosine function,
then the first term in the solution remains unchanged, while in the second term of (3-20) or (3-23) the
cosine function should be simply substituted with the sine function.

3B. Viscosity of the order of ε2. Now let us consider vibrations of a nonlinear oscillator putting k = 2
in the equation of motion (2-4):

ẍ + ε2µ
( d

dt

)γ
x +ω2

0x + k2x3
= ε3 F cosωt. (3-24)

Substituting (3-5) into the right-hand side of (3-3) with k = 2, we obtain

D2
0 x2+ω

2
0x2 =−2iω0 D1 A1 exp (iω0T0)+ c.c. (3-25)

To eliminate circular terms in (3-25), it is necessary to vanish to zero the coefficient standing at
exp (iω0T0), i.e.,

D1 A1(T1, T2)= 0,

whence it follows that A1 is T1-independent.
Then the general solution of (3-25) has the form

x2 = A2(T1, T2)eiω0T0 + Ā2(T1, T2)e−iω0T0 . (3-26)

Substituting (3-5) and (3-26) in the right-hand side of (3-4) with k = 2 and considering formula (1-4)
and condition (2-5), we are led to this equation for determining x3:

D2
0 x3+ω

2
0x3 =−2iω0 D1 A2 exp (iω0T0)− k2 A3

1 exp (3iω0T0)

−
(
2iω0 D2 A1+µ(iω0)

γA1+ 3k2 A2
1 Ā1−

1
2 F
)

exp (iω0T0)−µA1
sin γπ
π

∫
∞

0

uγe−uT0du
u+ iω0

+ c.c. (3-27)

From (3-27) it is evident that its last term does not generate secular terms and thus does not affect the
solution constructed thereafter.
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Eliminating secular terms in (3-27), we obtain the solvability conditions

D1 A2(T1, T2)= 0, (3-28)

2iω0 D2 A1+µ(iω0)
γA1+ 3k2 A2

1 Ā1−
1
2 F = 0. (3-29)

From (3-28) it follows that A2 is independent of T1.
We multiply (3-29) by Ā1 and write its complex conjugate. Separately adding and subtracting together

the two conjugate equations, we find

3k2ω
−1
0 A2

1 Ā2
1+ i( Ā1 D2 A1− A1 D2 Ā1)+ 2µωγ−1

0 A1 Ā1 cos π2 γ−
F

4ω0
(A1+ Ā1)= 0, (3-30)

i( Ā1 D2 A1+ A1 D2 Ā1)+ 2µiωγ−1
0 A1 Ā1 sin π

2 γ+
F

4ω0
(A1− Ā1)= 0. (3-31)

Representing the function A1(T2) in the polar form

A1 = a exp(iϕ),

we obtain from (3-30) and (3-31)

ϕ̇−
1
2
δ−

3k2

2ω0
a2
+

1
4ω0

Fa−1 cosϕ = 0, (a2)̇+ sa2
+

1
2ω0

Fa sinϕ = 0, (3-32)

where the superscript dot denotes the T2-derivative, δ = µωγ−1
0 cos π2 γ, and s = µωγ−1

0 sin π
2 γ.

Dividing the second equation in (3-32) by a we obtain

ȧ+ 1
2 sa+

1
4ω0

F sinϕ = 0 (3-33)

and then integrating (3-33), we obtain

a =
(

a0−
F

4ω0

∫ T2

0
esT2/2 sin

(
ϕ(T2)

)
dT2

)
e−sT2/2 (3-34)

To obtain the equation for determining the function ϕ(T2), rewrite (3-32)2 as

(ln a2)̇=−s−
F

2ω0
a−1 sinϕ, (3-35)

multiply it by cosϕ and add it to (3-32)1 multiplied by −sinϕ. Considering (3-35), as a result we obtain

(cosϕ)̇−
(

a0−
F

4ω0

∫ T2

0
esT2/2

√
1− cos2 ϕ dT2

)−1 F
4ω0

esT2/2 cosϕ
√

1− cos2 ϕ

+

(
a0−

F
4ω0

∫ T2

0
esT2/2

√
1− cos2 ϕ dT2

)2 3k2

2ω0
e−sT2

√
1− cos2 ϕ+ 1

2 δ
√

1− cos2 ϕ = 0. (3-36)

Integrating (3-36), we find the T2-dependence of cosϕ, and then substituting the function sinϕ(T2)

thus found in (3-35), we can obtain T2-dependence of a.
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To find the functions ϕ(T2) and a(T2), we use another approach. Dividing (3-32)1 by (3-33), we get

dϕ
da
=

F(4ω0)
−1a−1 cosϕ− 3k2(2ω0)

−1a2
− 2−1δ

2−1sa+ F(4ω0)−1 sinϕ
(3-37)

or

tanχ(F)=
dϕ

d(ln a)
=

F(4ω0)
−1 exp(−ln a) cosϕ− 3k2(2ω0)

−1 exp(2 ln a)− 2−1δ

2−1s+ F(4ω0)−1 exp(−ln a) sinϕ
(3-38)

From (3-38) first we find the function ϕ(a) and substituting it in (3-33), we can determine the function
a(T2), hence, ϕ[a(T2)] = ϕ(T2).

If on the right-hand part of (3-24) one takes sinωt instead of the cosine function, (3-38) takes on the
form

tanχ(F)=
dϕ

d(ln a)
=

F(4ω0)
−1 exp(−ln a) sinϕ− 3k2(2ω0)

−1 exp(2 ln a)− 2−1δ

2−1s+ F(4ω0)−1 exp(−ln a) cosϕ
(3-39)

3B1. The case of free vibrations. At F = 0, the system (3-32) is reduced to the form

ϕ̇− 1
2δ−

3k2

2ω0
a2
= 0,

(
a2)
˙+ sa2

= 0. (3-40)

Integration yields

a2
= a2

0e−sT2, ϕ =
1
2
δT2−

3k2

2ω0s
a2

0e−sT2 +ϕ0, (3-41)

where a0 and ϕ0 are the initial magnitudes of a and ϕ, respectively. Eliminating T2 from (3-41), we find

ϕ =−
δ

s
ln

a
a0
−

3k2

2ω0s
(a2
− a2

0)+ϕ0, (3-42)

or
G(ln a, ϕ)= 1

2ϕs+ 1
2δ ln a+

3k2

4ω0
exp(2 ln a)= G0(ln a0, ϕ0) (3-43)

This relationship can be interpreted as the stream-function for the phase fluid moving in the plane with
the coordinates ln a, ϕ. Really, considering (3-40), it is followed from (3-43) that the components of the
vector of the phase fluid motion EV

{
vln a = (ln a)̇, vϕ = ϕ̇

}
are determined by the formulas

(ln a)̇=−
∂G
∂ϕ
, ϕ̇ =

∂G
∂(ln a)

. (3-44)

Since
dG =

∂G
∂ϕ

dϕ+
∂G

∂(ln a)
d(ln a)= 0,

we obtain, taking into account (3-44),

−vln adϕ+ vϕd(ln a)= 0, or
dϕ
vϕ
=

d(ln a)
vln a

. (3-45)

This is the equation of the streamline.
In the case of free vibrations, it follows from (3-38) that tanχ |F=0 defines the angle of inclination of

the tangent to the streamline. If a is small, then

tanχ(0)=−
δ

s
=− cot

γπ

2
or χ =

π

2
+
γπ

2
. (3-46)
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For large a from (3-38) it follows that

tanχ(0)→−∞ or χ→
π

2
+ . (3-47)

The streamlines for the oscillator with natural frequency ω0 = 1 are presented in Figure 1 in the
semilogarithmic coordinates ln a, ϕ. The top pane shows streamlines constructed for various G0 and
fixed γ = 0.5 and k2 = 0.1. On the bottom left we have G0 = 0 and k2 = 0.1 fixed and varying γ. The
bottom right pane presents the streamlines constructed for the fixed G0 = 0 and γ = 0.5, while k2 is used
as the parameter.
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The asymptotic character of the curves in Figure 1 is verified by relationships (3-46) and (3-47). In
the first and last panes of the figure, the fractional parameter γ is fixed for all curves. Therefore their
left branches are asymptotically parallel in the first case (Figure 1, top) due to the different values of G0,
and they tend to the same asymptote in the latter case (Figure 1, bottom right) since the value of G0 is
shared. Further, from (3-46) and the bottom left pane of the figure it is seen that, for small values of a,
the left branches of the curves approach infinitely close the vertical and horizontal axes as γ→ 1 and
γ→ 0, respectively. Thus the curves in Figure 1 show that the various parameters have different effects
upon the behavior of the curves.

The solution for nonlinear free damped vibrations has the form

x = εa0e−αt/2 cos
(
�t +ϕ0− da2

0e−αt) , (3-48)

where

α = ε2µω
γ−1
0 sin π

2 γ, d = 3
2 k2

(
µω

γ
0 sin π

2 γ
)−1

, �= ω0
(
1+ 1

2ε
2µω

γ−2
0 cos π2 γ

)
.

In the particular case when γ = 1, the solution takes the form

x = εa0e−ε
2µt/2 cos

(
ω0t +ϕ0−

3k2
2µω0

a2
0e−ε

2µt
)
, (3-49)

3B2. The case of small force amplitude. If the amplitude F of the external force is small, Equation
(3-37) takes the form

dϕ
da
=−

δ
s

a−1
−

3k2

ω0s
a+ F f (a, ϕ), (3-50)

where

f (a, ϕ)=
cosϕ

2ω0sa2 +
sinϕ
ω0s2a2

(
3k2a2

2ω0
+

1
2
δ

)
.

Integrating (3-50) yields

ϕ =−
δ
s

ln
a
a0
−

3k2

2ω0s
(a2
− a2

0)+ϕ0+ F
∫ a

a0

f [a, ϕ(a)] da, (3-51)

or
1
2 ϕs+ 1

2 δ ln a+
3k2

4ω0
e2 ln a

= G0+
1
2 s F

∫ a

a0

f [a, ϕ(a)] da. (3-52)

From this relationship it is evident that the streamlines do not remain unchanged; they vary even for
small external forces.

3B3. The case of finite force amplitude. To investigate the influence of a finite exciting force F cosωt (or
F sinωt) on the character of the oscillator’s vibratory motions, let us choose some streamline and assume
that at t = 0 a phase fluid point lie somewhere on this line. If the external force F cosωt or F sinωt
acts on the oscillator beginning from the moment t = 0, the phase fluid point under consideration moves,
according to (3-38) or (3-39), respectively, along a trajectory that does not coincide with the chosen
streamline. We can take another point on the same streamline and calculate the trajectory according to
the same equations, and so on. If after some instant of time we connect with a curve the points thus found,
lying on the different trajectories, and compare this curve to the reference streamline, we can judge by
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the departure of one line from the other the character of the transient vibratory motion occurring in the
mechanical system after the external force begins to act.

Relationships (3-38) and (3-39) define the angle of inclination of the tangent to the trajectory of the
phase fluid point. For small a from (3-38) it follows that

tanχ = cotϕ or χ =
π

2
−ϕ or χ =

3π
2
−ϕ, (3-53)

while from (3-39) for small a we have

tanχ = tanϕ or χ = ϕ or χ = π +ϕ. (3-54)

The tangent vectors to the trajectories of motion for the phase fluid points (i.e., the polarization vector
of motion of the given system) at different points of the streamline with the parameters G0 = 0, γ = 0.5,
and k2 = 0.1 are presented in Figure 2, at the instant the force F cosωt or F sinωt begins to take effect
(T2 = 0).

Examination of the left half of the figure shows that under the action of the force F cosωt the po-
larization vector executes a vibrational motion with a decrease in ln a: first it rotates counterclockwise
until attaining the maximal angle χ = 164.5◦ at the point with the coordinates ln a0 =−1.18, ϕ0 = 1.18,
and it then begins to rotate in a clockwise direction. From the right half of the figure it is seen that for
the oscillator driven by the force F sinωt the polarization vector executes a counterclockwise rotational
motion with the decrease in ln a: the angle χ increases monotonically starting from 90◦ and tending to
make a complete turn as a0→ 0.
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Figure 2. Directions of the polarization vectors of the system’s vibrational motions at
the instant the force F cosωt (left) or F sinωt (right) takes effect, for F = 0.5.
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Figure 2 makes it clear that at the instant the external exciting force begins to take effect on the system
the points of the phase fluid leave the stream line either to the left or to the right of it and start to move
along their own trajectories. In other words, the stream lines disappear the moment the force is applied.

4. Conclusion

The engineering analytical approach proposed in [Rossikhin and Shitikova 2009] for the approximate
analysis of the dynamic behavior of linear and nonlinear fractional oscillators has been generalized to
the case of forced vibrations. It allows the authors to analyze the force-driven vibrations of a fractional
oscillator of Duffing type at different low-level orders of damping and external force terms using the
method of multiple time scales.

In the case of viscosity of the order of ε and the external exciting force of the order of ε2, it has been
shown that the solution involves two parts, where the first term corresponds to damping vibrations and
describes the transient process, while the second one is nondamping in character and describes forced
vibrations with the frequency of the exciting force and with a phase difference depending on the fractional
parameter γ.

In the case of free vibrations with a weak damping term of the order of ε2, the nonlinear fractional
oscillator performs steady-state vibrations, which are in compliance with the phase fluid motion in the
phase plane along the streamlines in the direction of decreasing amplitude of vibrations. At the instant
the small external force of the order of ε3 begins to take effect, vibrations of the nonlinear fractional
oscillator go over into transient ones, leading to the disappearance of the stream lines, while the phase
fluid points lying on the streamlines at the moment of the force application start to follow their own
phase trajectories.

It has been shown that the integral term in formula (1-4) does not affect the solution of either problem
within the chosen approximation framework, so it is sufficient to use formula (1-3) regardless of the
values of the driving frequency or the fractional parameter.

Appendix

It is well known [Janke et al. 1960; Abramowitz and Stegun 1964] that many special functions exist in
two equivalent representations: as incomplete integrals and as infinite power series.

To show the validity of formula (1-4), we apply the Laplace transformation to the expression x(t)=
Dγ

0+e
iωt , obtaining

x̄(p)=
pγ

p− iω
. (4-1)

Applying the Mellin–Fourier inversion formula

x(t)=
1

2π i

∫ c+i∞

c−i∞

pγept

p− iω
dp, (4-2)

to go back to the time domain, and using the integration contour presented in Figure 3, we find

x(t)=
∑

k

res
(
x̄(pk)epk t)

+
1

2π i

∫
∞

0

(
x̄(ue−iπ )− x̄(ueiπ )

)
e−ut du. (4-3)
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Figure 3. Integration contour used in the proof of (1-4).

Formula (1-4) follows immediately from (4-3).
For the function x(t), it is possible to obtain another representation in the form of an infinite series.

For this purpose, we rewrite formula (4-1) as

x̄(p)=
pγ−1 p
p− iω

=
pγ−1

1− iωp−1 (4-4)

Now express this last fraction as the sum of an infinite descending geometric progression with initial
term pγ−1 and ratio iωp−1:

pγ−1

1− iωp−1 =

∞∑
n=1

(iω)n−1 pγ−n
=

∞∑
n=0

(iω)n pγ−n−1. (4-5)

The inversion of formula (4-5) gives

x(t)= tν
∞∑

n=0

Zn

0(n+ 1+ ν)
=

tν

0(ν)

∞∑
n=0

Zn

ν(ν+ 1) . . . (ν+ n)
, (4-6)

where ν =−γ and Z = iωt . We next use the equalities [Janke et al. 1960]
∞∑

n=0

Zn

ν(ν+ 1) . . . (ν+ n)
= eZ Z−νγ(ν, Z)

and

γ∗(ν, Z)=
Z−ν

0(ν)
γ(ν, Z),

where γ(ν, Z) is the incomplete gamma function [Janke et al. 1960; Abramowitz and Stegun 1964],
finally we obtain

x(t)= tνeZγ∗(ν, Z)= t−γeiωtγ∗(−γ, iωt). (4-7)

Formula (4-7) coincides (apart from notation) with that discussed in [Miller and Ross 1993].
In the present paper, the first representation for the function x(t), resulting in formula (1-4), has been

adopted, since it is more convenient and physically admissible for engineering applications.
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Formulas (1-3) and (1-4) can also be easily obtained from the similar expressions for fractional inte-
grals presented in [Samko et al. 1993, Tables 9.1 and 9.2].
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[Seredyńska and Hanyga 2000] M. Seredyńska and A. Hanyga, “Nonlinear Hamiltonian equations with fractional damping”, J.
Math. Phys. 41:4 (2000), 2135–2156.
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