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POROMECHANICS RESPONSE OF AN INCLINED BOREHOLE SUBJECT TO
IN-SITU STRESS AND FINITE LENGTH FLUID DISCHARGE

YOUNANE N. ABOUSLEIMAN AND SHENGLI CHEN

The analytical approach developed in this paper calculates the poroelastic coupled time-dependent stress
and pore pressure variations for an inclined borehole drilled in a fluid saturated porous medium and
subjected to the far-field three-dimensional in-situ stresses in addition to a fluid discharge over a finite
length of its surface. This problem is encountered in many engineering applications, in particular, in
wellbore drilling, fluid injection, and production. A superposition scheme is employed to obtain the
analytical solutions within the linear theory of poromechanics. The comparison with an earlier published
solution shows a discrepancy in the poroelastic boundary conditions applied at the wellbore wall. In this
solution a systematic analysis is being carried out to evaluate the effects of the mechanical parameters
on the calculated time-dependent effective tangential stress and pore pressure in addition to the effects
of the borehole inclination and the geometry of the flux loading area are also included.

1. Introduction

The generalized poromechanics solutions of an inclined borehole, which extend the isotropic plane strain
solution of Carter and Booker [1982] and the one slightly modified by Detournay and Cheng [1988] to
an anisotropic porous medium (coupled with thermal and chemical effects) [Abousleiman and Ekbote
2005; Ekbote and Abousleiman 2005; 2006], have seen many applications in engineering problems,
in particular in the oil and gas industry [Abousleiman et al. 1999], where these problems are of great
economic value to operations. Lately, these solutions have been extended for estimating stress and pore
pressure distributions in a borehole drilled in naturally fractured fluid saturated medium [Abousleiman
and Nguyen 2005] following the mixture theory approach in [Bowen 1982].

Poromechanics theory was first established by [Biot 1941] and has served as the basis for many of the
later works on borehole problems. Cui et al. [1997; 1998; 1999] presented the analytical solutions for
the general case, where the borehole is inclined to the three-dimensional principal axes of the far-field
in-situ stresses using a loading decomposition scheme. In an earlier study, Rajapakse [1993] obtained
a set of general stress solutions associated with free stress boundaries, yet a fluid source applied over a
finite segment of the borehole wall.

For a wide range of engineering applications in the oil and gas industry it has been customary practice
to inject fluid into a sealed segment of the borehole at great depth. In reservoir stimulation, hydraulic
fracturing is one of the most widely used techniques, it also extends to applications in environmental
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engineering for clean ups. In addition, from such geometries an extended leak-off test is commonly
performed to estimate the far field in-situ stresses. For these important problems, the poromechanics
solution does not exist in the literature. Although Rajapakse [1993] considered the fluid flowing into the
finite length of the borehole, and its effects on the stress and pore pressure perturbation, the assumptions
were that the formation is initially unstressed and consists of incompressible constituents. Moreover,
it was clearly incorrect in his study to claim that the total radial stress be zero over the fluid injection
segment of the borehole wall. While in the existing solutions [Cui et al. 1997; 1998; 1999; Abousleiman
and Ekbote 2005], efforts were focused upon an infinite length inclined borehole with only stress and
pore pressure boundary conditions. Therefore, a more general solution, which could take into account
the fluid injection on a finite geometry of the wellbore coupled with the three-dimensional far field in-situ
stresses is needed.

The purpose of this paper is to present the analytical stress analysis and pore pressures of an inclined
borehole subjected to fluid discharge over a finite segment of the surface and to the three-dimensional
in-situ far field state of stress. Based on linear poromechanics and a careful inspection of the boundary
conditions, the problem is divided into two fundamental parts, specifically, a fluid discharge problem,
and a stress boundary problem. These time-dependent problems are solved using the Laplace and Fourier
integral transforms. The final stress solutions thus may be deduced by simple superposition. Comprehen-
sive numerical analyses are carried out in the paper to present comparison with the existing solutions and
to investigate the influences of the material properties, borehole inclination, as well as the flux loading
area on the calculated effective tangential stress and pore pressure.

2. Governing equations

Consider an inclined borehole with radius R drilled in an infinite porous medium which is characterized
by a nonhydrostatic in-situ stress field, see Figure 1a. The borehole is subjected to a radial fluid discharge
over a segment of the surface. Using the cylindrical coordinates system (r, θ, z), see Figure 1b, the
governing equations for deformations of the isotropic homogeneous saturated medium can be expressed
as follows [Biot 1941; Rice and Cleary 1976; Wang 2000]:
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Figure 1. Geometry of inclined borehole and decomposition scheme: (a) borehole in-
clined to principal stresses; (b) equivalent far field stresses in local coordinate system;
(c) fluid discharge problem; (d) stress boundary problem.

is the matrix dilation and εv is the variation of fluid content per unit reference volume; B is Skempton
pore pressure coefficient;

c =
2GκB2(1− ν)(1+ νu)

2

9(1− νu)(νu − ν)

is the diffusion coefficient, G is the shear modulus, ν and νu are the drained and undrained Poisson’s
ratios, and κ is defined by κ = k/µ, with k denoting the intrinsic permeability (mD) and µ the fluid
viscosity; and ∇2 denotes the Laplacian operator which is given by

∇
2
=
∂2

∂r2 +
1
r
∂

∂r
+

1
r2

∂2

∂θ2 +
∂2

∂z2 .

The constitutive relations can be expressed as

σi j = 2Gei j +
2Gν

1− 2ν
δi j ev −αδi j p, (i, j = r, θ, z), (5)

p =−
2G B(1+ νu)

3(1− 2νu)
ev −

2G B2(1− ν)(1+ νu)
2

9(ν− νu)(1− 2νu)
εv, (6)
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where σi j and ei j are the total stress tension and strain tension, respectively;

α =
3(νu − ν)

B(1− 2ν)(1+ νu)

is the Biot effective stress coefficient or the pore pressure coefficient (PPC); δi j is the Kronecker delta
function; and p is the excess pore water pressure. Note that tension stress and compressive pore pressure
are taken as positive in the present analysis.

3. Formulation of the problem

As shown schematically in Figure 1a, before drilling, the saturated medium is under in-situ compressive
stress condition with the three principal stresses Sx ′ , Sy′ , and Sz′ coinciding with the Cartesian coordi-
nate system (x ′, y′, z′). The initial pore pressure is assumed to be hydrostatic with a magnitude of p0.
Following the treatment by Cui et al. [1997] and Abousleiman and Nguyen [2005], a borehole local
coordinate system (x, y, z), which is defined by a rotation of an azimuth angle ϕz′ about the z′ axis
and then by an inclination of a zenith angle ϕy towards the x-axis, is introduced for convenience of the
solution presentation. The borehole axis is consistent with the z axis (Figure 1a). It is also assumed that
the borehole is being pumped at a steady rate Q0 (l/min) over a finite length 2b.

The six components of the far-field stress tensor in the local coordinate system, Sx , Sy , Sz , Sxy , Syz ,
and Sxz (See Figure 1b, where r and θ are the polar coordinates), are readily obtainable from the three
principal stresses via a transformation matrix [Jaeger and Cook 1969]. So the stress boundary conditions
at the far field (r→∞), under the local coordinate system, can be written as

σxx =−Sx , σyy =−Sy, σzz =−Sz, σxy =−Sxy, σyz =−Syz, σxz =−Sxz, p = p0. (7)

While on the surface of the wellbore, r = R,

σrr =

{
−p 0≤ |z| ≤ b,
0 b < |z|<∞,

(8a)

σrθ = 0, (8b)

σr z = 0, (8c)

q =
{

Q0/4πRb 0≤ |z| ≤ b,
0 b < |z|<∞,

(8d)

where q = −κ dp/dr is the fluid flow rate in units of cm/min. Note that in [Rajapakse 1993], instead
of (8a), a simpler but incorrect boundary condition for radial stress at the borehole wall was adopted
(σrr = 0 for |z| ≤∞).

Equation (8d) identifies a flow boundary condition that the borehole is drilled with an impermeable
casing but perforated over a length of 2b for fluid injection, a commonly encountered case in drilling
practice. It must be noted that in the above the far field boundary conditions are expressed in the Cartesian
coordinates, but at the borehole surface the polar coordinates are used for convenience.

Combining the governing equations (1)–(6) and boundary conditions (7)–(8) fully defines the con-
cerned problem of an inclined borehole subjected to in-situ stresses and fluid loading. To simplify the
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analysis it is better to employ the superposition method and decompose the problem into two fundamental
parts, solving (1)–(6) separately with the incorporation of the following two boundary conditions:

I: Fluid discharge problem. In the far field (r→∞),

σxx = σyy = σzz = σxy = σyz = σxz = p = 0. (9)

At the borehole wall (r = R),

σrθ = σr z = 0, σrr =

{
−p 0≤ |z| ≤ b,
0 b < |z|<∞,

q =
{

Q0/4πRb 0≤ |z| ≤ b,
0 b < |z|<∞.

(10)

II: Stress boundary problem. In the far field (r→∞),

σxx =−Sx , σyy =−Sy, σzz =−Sz, σxy =−Sxy, σyz =−Syz, σxz =−Sxz, p = p0. (11)

At the borehole wall (r = R),

σrr =

{
−p if |z| ≤ b,

0 if |z|> b,
σrθ = 0, σr z = 0, q = 0. (12)

Figures 1c–1d illustrate the detailed decomposition scheme. It is obviously observed that after the addi-
tion of (9)–(12) the original boundary equations (7)–(8) are identically recovered.

4. Solutions for fundamental problems

The decomposition methodology demonstrated above enables us to find the solutions of individual prob-
lems and subsequently superpose the results yielding the final solution. Among them, problem I can
be treated using the conventional integral transform technique, while the solutions of problem II will
be approximated by directly employing the results of Cui et al. [1998] for an impermeable wellbore
problem.

I: Fluid discharge problem. This problem is axially symmetric (all quantities independent of θ), so
Equations (1)–(6) can be simplified as follows:
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2

9(ν− νu)(1− 2νu)
ε(I )v , (16)
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2Gν
1− 2ν
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σ (I )zz = 2G
∂u(I )z

∂z
+

2Gν
1− 2ν

e(I )v −
3(νu − ν)

B(1− 2ν)(1+ νu)
p(I ), (18)

σ
(I )
θθ = 2G

u(I )r

r
+

2Gν
1− 2ν

e(I )v −
3(νu − ν)

B(1− 2ν)(1+ νu)
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σ (I )r z = G
[
∂u(I )r

∂z
+
∂u(I )z

∂r

]
, (20)

u(I )θ = σ
(I )
rθ = σ

(I )
θ z = 0, (21)

where the superscript (I ) is added to distinguish the displacement and stress components for the first
problem (fluid discharge) from those corresponding to problem II (stress boundary).

Introduce the Laplace and Fourier integral transforms with respect to t and z coordinates

f̃ (r, z, s)=
∫
∞

0
f (r, z, t)e−st dt, f (r, z, t)=

1
2π i

∫ γ+i∞

γ−i∞
f̃ (r, z, s)est ds, (22)

f̂ (r, ξ, t)=
1
√
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∫
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f (r, z, t)eiξ z dz, f (r, z, t)=
1
√

2π

∫
∞
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f̂ (r, ξ, t)e−iξ z dξ, (23)

where s and ξ are parameters for the Laplace and Fourier transforms, respectively, and γ is greater than
the real part of all singularities of f̃ (r, z, s).

Equation (15) becomes, after Laplace and Fourier transformations,[
d2

dr2 +
1
r

d
dr
−

(
ξ 2
+

s
c

)]
ˆ̃ε(I )v = 0, (24)

which has the solution
ˆ̃ε(I )v = A(ξ, s)K0(ηr), (25)

where η =+
√
ξ 2+ s/c and A(ξ, s) is an arbitrary function of ξ and s.

Application of the transforms to (13) and (14) results in(
d2

dr2 +
1
r

d
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− ξ 2
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B(1+ νu)

3(1− νu)

(
d2

dr2 +
1
r

d
dr
− ξ 2

)
ˆ̃ε(I )v . (26)

It then follows from (25) and (26) that

ˆ̃e(I )v = C(ξ, s)|ξ |K0(ρ)+
B(1+ νu)

3(1− νu)
A(ξ, s)K0(ηr), (27)

where ρ = |ξ |r and C(ξ, s) is another arbitrary function of ξ and s. The pore pressure can thus be
obtained by back substitution of (25) and (27) into the Laplace and Fourier transforms of (16), yielding
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2
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Similarly, by substituting (25) and (27) into (13) and (14), one has for the displacement components(
d2

dr2 +
1
r

d
dr
−

1
r2 − ξ

2
)
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and the resulting solutions are
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where D(ξ, s) is again an arbitrary function of ξ and s.
Finally, it is not difficult to derive the stress expressions from (17)–(20) as follows:
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In deriving these displacement and stress solutions, the far field boundary condition (9) has been
already taken into account. The three unknown functions A(ξ, s), C(ξ, s), and D(ξ, s) should be deter-
mined from the transformed versions of the boundary conditions (10), that is,

ˆ̃σ (I )r z (R, ξ, s)= 0, (38)



54 YOUNANE N. ABOUSLEIMAN AND SHENGLI CHEN

1
√

2π

∫
∞
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[ ˆ̃σ (I )rr (R, ξ, s)+ ˆ̃p(I )(R, ξ, s)] e−iξ z dξ = 0, 0≤ |z| ≤ b,
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∫
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On incorporating (29), (34), and (37) into (38) and (40), one can easily determine the three unknown
functions in terms of ˆ̃σ (I )rr (R, ξ, s) as follows:

A(ξ, s)= 1
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−α23α32 ˆ̃σ
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α22 = 2G
{

iξ |ξ |R
4(1− 2νu)

[K0(|ξ |R)+ K2(|ξ |R)] +
iξ
2

K1(|ξ |R)
}
, α23 =−2Gξ 2K1(|ξ |R),

α31 =
2GκB2(1− ν)(1+ νu)

2

9(ν− νu)(1− 2νu)
ηK1(ηR), α32 =

2GκB(1+ νu)

3(1− 2νu)
ξ 2K1(|ξ |R).

It is obvious that if ˆ̃σ (I )rr (R, ξ, s) = 0, which is the case in [Rajapakse 1993], A(ξ, s), C(ξ, s), and
D(ξ, s) can be expressed in explicit form with �(ξ, s). However, for the current boundary conditions
where ˆ̃σ (I )rr (R, ξ, s) 6= 0, one has to seek the numerical solutions of these three unknown functions, as
discussed below.

Substituting (41) and (42) into (28), one has

ˆ̃p(I )(R, ξ, s)= f1(ξ, s) ˆ̃σ (I )rr (R, ξ, s)+ f2(ξ, s)�(ξ, s), (44)
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where
f1(ξ, s)= 1

1
(−α23α32α31p +α23α31α32p),

f2(ξ, s)= 1
1

(
(α21α13−α11α23)α32p + (α12α23−α22α13)α31p

)
with

α31p =−
2G B2(1− ν)(1+ νu)

2

9(ν− νu)(1− νu)
K0(ηR), α32p =−

2G B(1+ νu)

3(1− 2νu)
|ξ |K0(|ξ |R).

Now the boundary condition (39), combined with (44), can be transformed into the following dual
integral equations∫

∞

−∞

[1+ f1(ξ, s)] ˆ̃σ (I )rr (R, ξ, s)e−iξ zdξ =−
∫
∞

−∞

f2(ξ, s)�(ξ, s)e−iξ z dξ, 0≤ |z| ≤ b,∫
∞

−∞

ˆ̃σ (I )rr (R, ξ, s)e−iξ z dξ = 0, b < |z|<∞.
(45)

It is found that f1(ξ, s), f2(ξ, s), and ˆ̃σ (I )rr (R, ξ, s) are all real even functions of ξ , so the above dual
integral equations can be further simplified as∫

∞

0
ξ 1/2
[1+ f1(ξ, s)] ˆ̃σ (I )rr (R, ξ, s)J−1/2(ξ z) dξ =

√
2
π z

g(z, s), 0≤ z ≤ b,∫
∞

0
ξ 1/2 ˆ̃σ (I )rr (R, ξ, s)J−1/2(ξ z) dξ = 0, b < z <∞,

(46)

where

g(z, s)=−
∫
∞

0
f2(ξ, s)�(ξ, s) cos(ξ z) dξ (47)

and limξ→∞ f1(ξ, s)= 0. Introducing the function θ(x, s) by [Noble 1963]

ˆ̃σ (I )rr (R, ξ, s)=
2
π

∫ b

0
θ(x, s) cos(xξ) dx; (48)

equations (46) are equivalent to the following Fredholm integral equation of the second kind

θ(x, s)+
2
π

∫ b

0
M(x, y, s)θ(y, s) dy = g(x, s), (49)

where

M(x, y, s)=
∫
∞

0
f1(ξ, s) cos(xξ) cos(yξ)dξ. (50)

Equations (48)–(50) determine ˆ̃σ (I )rr (R, ξ, s) in the Laplace–Fourier transformed domain, and the three
unknown functions A(ξ, s), C(ξ, s), and D(ξ, s) can thus be numerically obtained from (41)–(43). Once
A(ξ, s), C(ξ, s), and D(ξ, s) are known, one can obtain the final solutions for the physical quantities
such as displacement and stress components of the solid matrix, pore water pressure, and fluid discharge
through the inversion of Laplace and Fourier transforms. It is important to note that A(ξ, s), C(ξ, s), and
1 are real even functions of ξ while D(ξ, s) a pure imaginary odd function of ξ , the infinite integrals
for the inverse Fourier transforms are thus reduced to the evaluation of a semiinfinite integral.
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Note that the plane strain problem can be obtained by keeping the fluid flow rate q0 = Q0/(4πRb)
constant but allowing b→∞. As b approaches infinity, all the quantities with respect to z vanish. The
fluid discharge problem for the borehole is thus governed only by (13) and (15). In this case the Fourier
transform become redundant and it is found that the solutions can be solved directly in the Laplace
domain as follows, where we have introduced τ =

√
s/c:

p̃(I ) =
K0(rτ)q0

sκτK1(Rτ)
, (51)

ũ(I )r =
q0

2GκτK1(Rτ)r

(
R2K0(Rτ)+

α(1− 2ν)
1− ν

RK1(Rτ)− r K1(rτ)
τ

)
, (52)

σ̃ (I )rr =−
q0

sκτK1(Rτ)r2

(
R2K0(Rτ)+

α(1− 2ν)
1− ν

RK1(Rτ)− r K1(rτ)
τ

)
, (53)

σ̃
(I )
θθ =

q0

sκτK1(Rτ)

{
R2

r2 K0(Rτ)+
α(1− 2ν)

1− ν

(
RK1(Rτ)

r2τ
−

K1(rτ)
rτ

− K0(rτ)
)}
. (54)

II: Stress boundary problem. Since the pore pressure due to borehole drilling in case of an impermeable
wall is much less than the pressure generated by the flux loading, the boundary condition for σrr can
be modified to σrr = 0, without causing appreciable mathematical or applications errors. The modified
boundary conditions at the borehole wall now correspond to a generalized plane stain problem. As first
noted by Cui et al. [1997; 1998], such a problem can be subdivided further into three cases and the stress
and pore pressure solutions, σ (II)rr , σ (II)θθ , σ (II)zz , σ (II)rθ , σ (II)r z , σ (II)θ z , and p(II), may again be obtained using
the principle of superposition. These solutions will not be repeated herein and the interested readers
should refer to [Cui et al. 1997; 1998] for details.

5. Superposition

Once the stress solutions have been found for the two fundamental problems, the final solutions can be
obtained by superposition based on these results, as formally shown below

σrr = σ
(I )
rr + σ

(II)
rr , σθθ = σ

(I )
θθ + σ

(II)
θθ , σzz = σ

(I )
zz + σ

(II)
zz ,

σrθ = σ
(II)
rθ , σr z = σ

(I )
r z + σ

(II)
r z , σθ z = σ

(II)
θ z , p = p(I )+ p(II),

(55)

in which the trivial stress components are dropped.

6. Numerical schemes and comparisons

Due to the complexity of the integrands involved in conducting the Fourier and Laplace inversions, the
stress components in the time domain corresponding to problems I and II have to be obtained numerically
by applying approximate numerical schemes. As mentioned in the preceding section, the inverse Fourier
transform arising from problem I turns to a semiinfinite integral which can be numerically integrated
very accurately with Wolfram Mathematica 6.0, provided the upper limit of the integral is sufficiently
large. In the ensuing numerical analyses, only the effective tangential stress and pore pressure will be



POROMECHANICS RESPONSE OF AN INCLINED BOREHOLE 57

1.0 1.2 1.4 1.6 1.8 2.0 2.2 2.4 2.6 2.8 3.0
0.00

0.05

0.10

0.15

0.20

0.25

 tc/R2 = 0.01, Present study 
 tc/R2 = 0.01, Rajapakse's solution (1993) 
 tc/R2 = 1, Present study 
 tc/R2 = 1, Rajapakse' solution (1993) 
 tc/R2 = 100, Present study 
 tc/R2 = 100, Rajapakse's solution (1993)

 

 

r/R 

(a) 

(I)
��
1 c   

1.0 1.2 1.4 1.6 1.8 2.0 2.2 2.4 2.6 2.8 3.0
0.0

0.2

0.4

0.6

0.8

1.0

1.2

 tc/R2 = 0.01, Present study 
 tc/R2 = 0.01, Rajapakse's solution (1993) 
 tc/R2 = 1, Present study 
 tc/R2 = 1, Rajapakse's solution (1993) 
 tc/R2 = 100, Present study 
 tc/R2 = 100, Rajapakse's solution (1993)

 

 

r/R 

(b) 

(I)
��
1 c   

Figure 2. Comparison of effective tangential stress due to fluid injection over segment
of length (a) b/R = 0.25; (b) b/R = 1.

considered as these are of critical importance to the study of borehole stability and fracturing, and the
method of [Stehfest 1970] will be adopted in inverting the Laplace transform.

The Stehfest formula is

f (t)=
ln 2

t

N∑
n=1

Xn f̃
(

n
ln 2

t

)
, (56)

with the coefficient Xn given by

Xn = (−1)n+N/2
min(n,N/2)∑
j=b(n+1)/2c

j N/2(2 j)!
(N/2− j)! j !( j − 1)!(n− j)!(2 j − n)!

. (57)

The number of terms N in the series is even and a selection of N = 8 generally gives satisfactory results.
The errors caused by assuming a zero radial total stress at the borehole wall — that is, σ̃ (I )rr (R, z, t)= 0

for |z| ≤∞— are tested by revisiting the fluid discharge problem of a borehole drilled in an infinite porous
medium having incompressible constituents [Rajapakse 1993]. To make the comparison, the parameters
B = 0.999, νu = 0.499, ν = 0.3 are adopted. Figure 2 shows the normalized effective tangential stress

σ̄
′(I )
θθ =

κ
[
σ
(I )
θθ (r, 0, tc/R2)+ p(I )(r, 0, tc/R2)

]
Rq0

versus the radial distance r/R for tc/R2 ranging from 0.01 to 100 and for two values of b/R: 0.25 and 1.
Although the two results exhibit a similar trend and the effective tangential stress is tensile along the
radial distance, it is obvious that Rajapakse’s solutions [1993] considerably underestimate the effective
tangential stress near the borehole. This will accordingly lead to an overestimation of the fluid discharge
needed to perform hydraulic fracturing.

7. Numerical results and discussions

We conducted some detailed parametric studies to examine the influence of permeability, borehole in-
clination, and the length of discharge loading on the stress distribution surrounding the borehole. To
cover a wide range of permeabilities, three typical rocks, Ruhr sandstone, Danian chalk, and Gulf of
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Rock type G (MPa) ν νu B α c (m2/day) k (mD)

Ruhr sandstone 13000 0.12 0.3 0.849 0.645 424 0.2
Danian chalk 2200 0.227 0.354 0.709 0.725 3.67 0.01
Gulf of Mexico shale 760 0.219 0.447 0.868 0.968 0.0143 0.0001

Table 1. Poromechanics constants for various rocks.

Mexico shale [Abousleiman et al. 1996], are considered with their poromechanics properties listed in
Table 1. In addition, the following parameters are adopted in the analysis: far field in-situ stress and pore
pressure Sx ′ = 20 MPa, Sy′ = 18 MPa, Sz′ = 25 MPa, p0 = 9.8 MPa, borehole radius R = 0.1 m, borehole
rotation ϕz′ = 30◦, borehole inclination ϕy = 60◦ (varying from 0◦ to 90◦ in investigating the influence
of inclination), and unless otherwise stated, the fluid flow rate Q0 = 1.4 l/min.

Figure 3 presents isochrones of the maximum effective tangential stress around the borehole (here
max0≤θ≤2π σ

′

θθ = σθθ +αp occurs at the θ =−4.8◦ direction for the current in-situ stresses and borehole
geometries involved) and the corresponding pore pressure against the radial distance at position z = 0,
for the case of Ruhr sandstone. It is found that both the effective tangential stress and the pore pressure

1 10 100
-20

-10

0

10

20

30

40

50

60

 

 

 

 

 t = 0.0001 day
 t = 0.001 day
 t = 0.01 day
 t = 1 day

r/R 

z = 0, � = -4.8°, 3y = 60° 

Q0 = 1.4 l/min 

r 

Q0 2b 

2R 

z 

(a) 

-12.14 MPa 

��
1c (MPa) 
 

(b) 

      p (MPa) 

1 10 100
0

20

40

60

80

100

120

 t = 0.0001 day
 t = 0.001 day
 t = 0.01 day
 t = 1 day

 

 

 

 

r/R 

z = 0, � = -4.8°, 3y = 60° 
Q0 = 1.4 l/min 

r 

Q0 2b 

2R 

z 

9.8 MPa 

Figure 3. Isochrones of (top) maximum effective tangential stress and (bottom) pore
pressure for Ruhr sandstone (b/R = 1).
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generally increase as time progresses, deviating gradually from their in-situ values (It is recalled that
positive values correspond to tension stress and compressive pore pressure, respectively). For all the time
intervals considered, the induced pore pressures decrease monotonically as the radial distance increased,
and fall uniformly to the virgin pore pressure p0 = 9.8 MPa. Notice that all the four pore pressure curves
exhibit the same slope at the borehole wall as a direct consequence of the constant flux (q0) boundary
condition. It is also observed that the effective tangential stresses achieve their maximum values at the
borehole wall and then gradually reduce to the in-situ compression stress of

σ ′θθ =
1
2(Sx + Sy)−

√
S2

xy +
1
4(Sx − Sy)2−αp0 =−12.14 MPa

as r/R approaches infinity. This indicates that under the combined effects of borehole drilling and fluid
flowing into the formation (The effective tangential stress attributed to the drilling of the borehole is
compressive, while the fluid flowing into the borehole generates a tensile effective tangential stress), the
tensile fracturing would most likely occur at the borehole wall and at a delayed time. This is not the case
encountered in a purely drilling problem where the highest failure potential is usually located at some
distance from the wellbore [Cui et al. 1997].

Figure 4 shows the influences of the discharge length b on the maximum effective tangential stress
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Figure 4. Influences of discharge length on (top) maximum effective tangential stress
and (bottom) pore pressure for Ruhr sandstone (t = 0.001 day).
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Figure 5. Variations of (top) maximum effective tangential stress and (bottom) pore
pressure with discharge length for Ruhr sandstone in case of constant flow rate per unit
length (2πRq0 = Q0/2b = 70 cm3/min/cm, t = 0.001 day).

and the pore pressure at θ =−4.8◦ direction for a specified time t = 0.001 day. It can be observed that
both the effective tangential stress and the pore pressure generally decrease with the increasing discharge
length. This is expected, because the fluid flow rate q0 = Q0/(4πRb) is inversely proportional to b which
will lead to a reduced contribution of the tensile stress at z = 0 as b becomes larger, while the compressive
effective tangential stress induced by the borehole opening, on the other hand, is independent of b. Indeed,
the decrease in the flow rate q0 due to increasing b has been clearly linked to the gradual slope drop of
the pore pressure curves at r/R = 1. Figure 5 shows similar results for the maximum effective tangential
stress and the pore pressure distributions at θ = −4.8◦ direction with varying discharge length b/R
yet constant flow rate per unit length of 2πRq0 = Q0/2b = 70 cm3/min/cm (Q0 in this case however
becomes proportional to b/R). Also shown in this figure are the limiting plane strain solutions as b→∞
calculated directly from (51) and (54). It can be concluded from Figure 5 that the flux discharge length of
b/R = 10 is sufficient large to approximate the planar flow conditions at the mid-section of the borehole.

To visualize variations of the effective tangential stress versus the whole range of the directional
angle θ near the borehole drilled in Ruhr sandstone, Figures 6 and 7 present the contours of effective
tangential stress at various inclination angles ϕy = 0◦, 30◦, 60◦, and 90◦ and time intervals t = 0.0001,
0.001, 0.01, and 1 day, for z = 0 position and for the region of 1 ≤ r/R ≤ 5. In these two figures the
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x ′′-axis coincides with the direction of the minimum compressive principal in-situ stress in x-y plane
and y′′ with the maximum in-situ stress direction. Note that the angle between the x and the x ′′ axes,
θr (θr =

π
2 +arctan 2Sxy

Sx−Sy
), varies with the inclination angle ϕy via Sxy , Sx , and Sy . For the four inclination

angles changing from 0◦ to 90◦ (Figure 6), the resulting values of θr are found to be 60◦, 73.9◦, 85.2◦, and
90◦, respectively. As displayed in Figures 6 and 7, the stress distributions are symmetric with respect to
the two principal in-situ stress directions, the highest value occurring along the y′′-axis direction. When
the inclination angle increases, the stress contours tend to rotate counterclockwise with the maximum
effective tangential stress slightly increased from 40.7 MPa (Figure 6a) to 44.2 MPa (Figure 6d). For the
four different times considered, however, the stress contours will retain almost the same shape, although
from Figure 7a to 7d a steady increase in the maximum stress magnitude is clearly seen as time increases.
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Figure 6. Effective tangential stress contours around the wellbore drilled in Ruhr sand-
stone with different inclination angles (b/R = 1, t = 0.001 day, z = 0, 1≤ r/R ≤ 5): (a)
ϕy = 0◦, θr = 60◦; (b) ϕy = 30◦, θr = 73.9◦; (c) ϕy = 60◦, θr = 85.2◦; (d) ϕy = 90◦,
θr = 90◦.
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Figure 7. Effective tangential stress contours around the wellbore drilled in Ruhr sand-
stone at various times (b/R = 1, ϕy = 60◦, θr = 85.2◦, z = 0, 1 ≤ r/R ≤ 5): (a)
t = 0.0001 day; (b) t = 0.001 day; (c) t = 0.01 day; (d) t = 1 day.

It is noteworthy that the flux induced effective tangential stress is independent with both ϕy and θ , thus the
influences of these two parameters on the combined effective tangential stress are entered only through
the stress term corresponding to the borehole drilling.

In Figure 8 the influence of the borehole inclination on the maximum effective tangential stress
max0≤θ≤2π σ

′

θθ , at the borehole wall and z = 0 position, are further illustrated for the Ruhr sandstone
case. It is found that for all the time intervals, the variation of the maximum effective tangential stress
with the inclination is somewhat complex and no longer monotonic. For small values of ϕy , an increase
in the inclination angle is accompanied by a nearly indistinguishable reduction in the maximum effective
tangential stress. As inclination reaches ϕy = 20◦, however, the influence of the inclination becomes
more noticeable and there is a tendency for the effective tangential stress to increase gradually with the
inclination angle.
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Figure 8. Variation of maximum effective tangential stress with borehole inclination for
Ruhr sandstone (b/R = 1, r/R = 1).

Additionally, to see how the permeability of the saturated rock affects the stress behavior around the
borehole, the solutions for Danian chalk and Gulf of Mexico shale are provided for t = 0.0001, 0.001,
0.01, and 1 day and b/R = 1, 2, 5, and 10, as plotted in Figures 9 and 10. In general, the influences of
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Figure 9. Variations of maximum effective tangential stress with radial distance at (top)
various times and (bottom) various discharge length for Danian chalk.
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Figure 10. Variations of maximum effective tangential stress with radial distance at
(top) various times and (bottom) various discharge lengths for Gulf of Mexico shale.

the fluid discharge length and the time duration on the maximum effective tangential stress, which still
occurs at θ =−4.8◦ direction for Danian chalk and Gulf of Mexico shale, are similar for the three rock
formations with different permeabilities. However, when the permeability becomes smaller, say Danian
chalk and Gulf of Mexico shale, the produced effective tangential stress under fixed fluid flow rate
Q0 = 1.4 l/min could be much greater and tend to level off much faster than in the relatively permeable
formation like Ruhr sandstone. For example, in Figure 10 for Gulf of Mexico shale the predicted effective
tangential stress may be as high as 120000 MPa. As in this case the effective tangential stress caused by
the borehole drilling is maintained at a low level of around 20 MPa, very high effective tangential stress
must be induced as a result of the fluid penetrating into the shale. This indicates that for low-permeable
formations, the effective tangential stress is actually dominated by the flux loading. In reality, however,
such large an effective tangential stress will never be reached since the tensile strength of a typical shale
is less than 10 MPa.

Finally, it should be remarked that having known the stress distribution around a borehole, the analyses
of the borehole fracturing will then become a simple matter. Moreover, the current solution can be
employed to estimate the fluid flow rate that is required to trigger hydraulic fracturing, which will provide
important guidance in the drilling practice.
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8. Conclusions

An analytical method has been presented for the stress and pore pressure solutions of an inclined borehole
subjected to the far-field three-dimensional in-situ stresses and to a fluid discharge applied over a finite
segment of its surface. With the concept of superposition, the problem is decomposed into two fundamen-
tal parts whose solutions are simpler to handle. Comprehensive numerical analyses are also presented
to examine the effects of some mechanical and geometrical parameters on the effective tangential stress
and pore pressure distributions. The following conclusions are drawn:

(a) The existing solution for the limiting case of incompressible constituents which assumes a zero
radial total stress along the whole wellbore surface tends to considerably underestimate the effective
tangential stress near the borehole, which thus will lead to an overestimation of the fluid discharge
needed to perform hydraulic fracturing.

(b) The effective tangential stress around a borehole subjected to a constant fluid flow rate generally
increases with the time duration and with the decreasing loading length. The maximum effective
tangential stress takes place at the borehole wall, which is not the case encountered in a purely
drilling problem where the highest failure potential is usually located at some distance from the
wellbore.

(c) The permeability has a pronounced influence on the predicted stress behavior. For a fixed fluid
flow rate, the generated effective tangential stresses corresponding to highly impermeable Gulf of
Mexico shale would be much greater and degrade much faster than those for Ruhr sandstone.

(d) In the particular case for Ruhr sandstone, the effective tangential stress distributions around the
borehole are symmetric with respect to the two principal in-situ stress directions, the highest value
occurring along the direction of the maximum compressive principal stress. An increase in the
inclination angle ϕy has little influence on the estimated maximum effective tangential stress at the
borehole wall for small values of ϕy , but will increase the maximum effective tangential stress and
hence the possibility of a fracturing failure when ϕy exceeds 20◦.

(e) The present analysis can also be used to backfigure the fluid flow rate that is required to initiate a
fracture around the borehole. This will provide important guidance in the drilling practice.
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