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EXACT CLOSED-FORM SOLUTION OF THE
DYNAMIC COUPLED THERMOELASTIC RESPONSE

OF A FUNCTIONALLY GRADED TIMOSHENKO BEAM

MOSTAFA ABBASI, MEHDY SABBAGHIAN AND M. REZA ESLAMI

We present the analytical solution for a beam made of a functionally graded material based on first-
order shear deformation theory and subjected to lateral thermal shock loads. The beam is assumed to
be graded across the thickness direction. The material properties across the thickness direction follow
the volume fraction of the constitutive materials in power law form. The solution is obtained under the
coupled thermoelastic assumption. The equation of motion and the conventional coupled energy equation
are simultaneously solved to obtain the transverse deflection and temperature distribution in the beam.
The governing partial differential equations are solved using the finite Fourier transformation method.
Using the Laplace transform, the unknown variables are obtained in the Laplace domain. Applying the
analytical Laplace inverse method, the solution in the time domain is derived. Results are presented for
different power law indices and the coupling coefficients for a beam with simply supported boundary
conditions. The results are validated with data reported in the literature.

1. Introduction

Recently developed functionally graded materials (FGM) show promise for their adaptability to high
temperature environments, and have thus attracted international attention. Therefore, it is desirable to
analyze FGM structures subjected to thermal loadings such as thermal shock, which have a wide range
of applications in engineering and science. Very rapid thermal processes, under the action of a thermal
shock are interesting from the standpoint of thermoelasticity. Under thermal shock, the characteristic
times of structural and thermal disturbances are of comparable magnitudes, the equations of motion of
a structure are coupled with the energy equation, and the solution of the coupled system of equations
provides the stress and temperature fields.

The equations for a coupled thermoelastic beam, including the effects of the shear deformation and
rotatory inertia, are derived in [Jones 1966]. McQuillen and Brull [1970] presented an analytical solution
for the dynamic thermoelastic response of cylindrical shells using the variational theorem. The coupled
thermally induced vibrations of the Euler–Bernoulli and Timoshenko beams with one-dimensional heat
conduction are investigated in [Seibert and Rice 1973]. The coupled thermoelasticity of beams made
of homogeneous and isotropic material is discussed in [Massalas and Kalpakidis 1983; 1984]. The
analytical solution of the coupled thermoelasticity of beams with the Euler–Bernoulli assumption is given
in the first of these papers, that with the Timoshenko assumption in the second. In the treatment of these
problems, a linear approximation for temperature variation across the thickness direction of the beam is

Keywords: functionally graded material, thermal shock, first-order shear deformation theory, coupled thermoelasticity, finite
Fourier transformation method.
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considered. Eslami and Vahedi [1988] studied the one-dimensional coupled thermoelasticity problem of
rods with the classical coupled thermoelastic assumption using the Galerkin finite element method.

A finite element coupled thermoelastic analysis of composite Timoshenko beams is given in [Maruthi
Rao and Sinha 1997], where the temperature variation across the thickness direction is neglected. The
coupled thermoelastic behavior of shells of revolution is analyzed in [Eslami et al. 1999]. Manoach and
Ribeiro [2004] developed a numerical procedure to study the coupled large amplitude thermoelastic vibra-
tions of the Timoshenko beams subjected to the thermal and mechanical loads using finite difference ap-
proximations and modal coordinate transformations. Sankar [2001; Sankar and Tzeng 2002] considered
an FGM Euler beam and computed the thermal stresses based on the uncoupled thermoelastic assump-
tion. The coupled thermoelasticity of functionally graded cylindrical shells is investigated in [Bahtui and
Eslami 2007] using the Galerkin finite element method with two element types (C0- and C1-continuous)
under impulsive thermal shock load. Babaei et al. [2008] present the behavior of an FGM Euler–Bernoulli
beam under lateral thermal shock with the coupled thermoelastic assumption. The analysis is based on
the Galerkin finite element method, using a C1-continuous shape function, where the temperature change
across the thickness direction is assumed to be linear and the axial inertia effect is neglected.

The aim of this paper is to present the analytical solution for the behavior of an FGM beam under
lateral thermal shock with the coupled thermoelastic assumption. The analysis is based on first-order
shear deformation theory. The mathematical functions of unknown variables such as lateral deflection and
temperature are presented using the finite Fourier transformation and analytical Laplace inverse method.
The time constants and frequencies of oscillations are presented for different power law indices. The
novelty of the analytical solution presented in this work in comparison with prior researches is the absence
of the unbalance of the members of matrices appearing in the numerical methods. Random dimensionless
parameters are used to overcome this problem in previous studies about coupled thermoelasticity of FGM
structures [Bahtui and Eslami 2007; Babaei et al. 2008]. Also, in analytical analysis, the coupled effect
is stronger than perceived especially for long time periods, in comparison with the numerical methods.

2. Derivation of the governing equations

Consider a beam of rectangular cross section with length l, height h, and width b, as shown in Figure 1.
Using first-order shear deformation theory, the displacement components are

u(x, z, t)= u0− zψ,x , w(x, z, t)= w(x, t), (1)

where u is the axial displacement component, u0 the displacement of a point on the reference plane, w
is the lateral deflection, ψ is the rotation angle of the cross section with respect to the longitudinal axis,

Figure 1. The beam and coordinates.
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t is the time variable, and z is measured across the thickness direction from the middle plane of the beam
at x = 0. A comma in subscripts indicates partial differentiation.

The FGM profile across the thickness direction of the beam, made of ceramic and metal constituent
materials, may be assumed to follow a power law form as

f (z)= fm + fcm

(2z+h
2h

)n
, (2)

where f is any material property of the FGM, fm is the metal property of FGM, fcm = fc − fm , fc

being the ceramic property of FGM, and n is the power law index. The density, modulus of elasticity,
coefficient of specific heat, coefficient of thermal expansion, and conduction coefficient may be assumed
to follow the power law form, indicated by Equation (2).

Assuming that the beam material is linear elastic, the stress-strain relations for the FGM beam based
on the assumed displacement components, including the shear deformation, are [Manoach and Ribeiro
2004]

σx = E(z)[εx −α(z)θ ], σxz = ks G(z)εxz, (3)

where E is the modulus of elasticity, G is the shear modulus, ks is the shear correction factor, α is
the coefficient of thermal expansion, θ = T − T0 is the temperature change, and T0 is the reference
temperature.

The bending moment, the shear force, and the in-plane stress resultants are expressed by the stresses
as follows:

M =
∫

z
σx z dz, Q =

∫
z
σxz dz, N =

∫
z
σx dz. (4)

The temperature change across the thickness direction is assumed to be linear. This assumption is
justified considering that the thickness of the beam is small with respect to its length [Massalas and
Kalpakidis 1983; 1984] and thus

θ(x, z, t)= 1
2

(
θ1(x, t)+ θ2(x, t)

)
+

z
h
(
θ1(x, t)− θ2(x, t)

)
(5)

where θ1 and θ2 are unknowns to be found across the beam’s height and are coupled with the displacement
components of the beam.

Equation of motion. The equations of motion of a beam based on first-order shear deformation theory
are [Manoach and Ribeiro 2004]

N,x = I0u0,t t − I1ψ,t t , M,x − Q = I1u0,t t − I2ψ,t t , Q,x = I0w,t t − p(x, t), (6)

where p is the applied surface lateral mechanical load, Ii =
∫

z ρ(z)z
i dz (i = 0, 1, 2) is the mass moment

of inertia, and ρ is the mass density of the beam.
Substituting (3), (4), (5) into (6), the equations of motion become

A1u0,xx + A2ψ,xx + A3θ1,xx + A4θ2,xx + A5u0,t t + A6ψ,t t = 0,

B1u0,xx + B2ψ,xx + B3ψ + B4w,x + B5θ1,xx + B6θ2,xx + B7u0,t t + B8ψ,t t = 0,

C1ψ,x +C2w,xx +C3w,t t = 0,

(7)
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where the coefficients are given by

A1 =

∫
E(z)dz, A3 =

∫ (
−

1
2
−

z
h

)
E(z)α(z)dz, A5 =−I0, B1 =

∫
E(z)z dz,

A2 =

∫
−E(z)z dz, A4 =

∫ (
−

1
2
+

z
h

)
E(z)α(z)dz, A6 = I1, B2 =

∫
−E(z)z2 dz,

B3 =

∫
ks

2(1+ν)
E(z)dz, B5 =

∫ (
−

z
2
−

z2

h

)
E(z)α(z)dz, B7 =−I1, C1 = B3, C2 = B4,

B4 =

∫
ks

2(1+ν)
E(z)dz, B6 =

∫ (
−

z
2
+

z2

h

)
E(z)α(z)dz, B8 = I2, C3 =−I0.

Considering a beam with simply supported boundary conditions with initial zero deflection and zero
velocity, the boundary and initial conditions may be assumed to be

u0,x(0, t)= u0,x(l, t)= 0, t > 0,

ψ,x(0, t)= ψ,x(l, t)= 0, t > 0,

w(0, t)= w(l, t)= 0, t > 0,

u0(x, 0)= ψ(x, 0)= w(x, 0)= 0, 0≤ x ≤ l.

(8)

Energy equations. The first law of thermodynamics for heat conduction in the beam in coupled form is
[Hetnarski and Eslami 2009]

(kθ,i ),i − ρcvθ,t −α(3λ+ 2µ)T0(εi i ),t = 0, i = 1, 2, 3, (9)

where k, cv , α, and εi i are the thermal conductivity, specific heat, coefficient of linear thermal expansion,
and normal strain tensor, respectively, and λ and µ are the Lamé constants. The energy equation for the
beam based on first-order shear deformation theory is reduced to

Res.= k(z)θ,xx + (k(z)θ,z),z − ρ(z)cv(z)θ,t −α(z)E(z)T0[u0,xt − zψ,xt ] = 0. (10)

The thermal boundary conditions may be assumed in form of an applied heat flux q , convection hc, or
specified temperature shock on the upper or lower surfaces of the beam. The energy equation is obtained
assuming that the upper surface of the beam is exposed to a known heat flux q(x, t) and the lower surface
is under convection to the ambient with coefficient hc.

The beam is initially assumed to be at ambient temperature and the thermal boundary and initial
conditions are assumed as

θ(0, t)= θ(l, t)= 0, t > 0, θ(x, 0)= 0, 0≤ x ≤ l. (11)

Using (10), the residue, Res., of the energy equation may be made orthogonal with respect to dz and
z dz to provide two independent equations for two independent functions θ1 and θ2 as [McQuillen and
Brull 1970]

D1θ1,xx+D2θ2,xx+D3θ1,t+D4θ2,t+D5u0,xt+D6ψ,xt+D7θ2+D8q(x, t)= 0,

E1θ1,xx+E2θ2,xx+E3θ1+E4θ2+E5θ1,t+E6θ2,t+E7u0,xt+E8ψ,xt+E9θ2+E10q(x, t)= 0,
(12)
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where the coefficients are given by

D1 =

∫ (1
2
+

z
h

)
K (z) dz, D3 =

∫ (
−

1
2
−

z
h

)
ρ(z)cv(z) dz, D5 =

∫
−E(z)α(z)T0 dz,

D2 =

∫ (1
2
−

z
h

)
K (z) dz, D4 =

∫ (
−

1
2
+

z
h

)
ρ(z)cv(z) dz, D6 =

∫
E(z)α(z)T0z dz,

E1 =

∫ ( z
2
+

z2

h

)
K (z)dz, E3 =

∫
−

K (z)
h

dz, D7 =−hc,

E2 =

∫ ( z
2
−

z2

h

)
K (z)dz, E4 =

∫
K (z)

h
dz, D8 = 1,

E5 =

∫ (
−

z
2
−

z2

h

)
ρ(z)cv(z)dz, E7 =

∫
−E(z)α(z)zT0 dz, E9 =−

h
2

hc,

E6 =

∫ (
−

z
2
+

z2

h

)
ρ(z)cv(z)dz, E8 =

∫
E(z)α(z)T0z2 dz, E10 =

h
2
.

3. Solution procedure

To solve the simultaneous governing equations, dimensionless values are defined as

ū0 =
kc

qavgαcl2 u0, ψ̄ =
kc

qavgαcl
ψ, w̄ =

kc

qavgαcl2w, x̄ = x
l
, t̄ =

κc

h2 t, θ̄ =
kc

qavgαclT0
θ, (13)

where qavg and κc are, respectively, the average heat flux at the top of the beam and the thermal diffusivity.
The bar indicates dimensionless parameters.

Using the dimensionless parameters, the five coupled governing equations are

a1ū0,x̄ x̄ + a2ψ̄,x̄ x̄ + a3θ̄1,x̄ x̄ + a4θ̄2,x̄ x̄ + a5ū0,t̄ t̄ + a6ψ̄,t̄ t̄ = 0,

b1ū0,x̄ x̄ + b2ψ̄,x̄ x̄ + b3ψ̄ + b4w̄,x̄ + b5θ̄1,x̄ x̄ + b6θ̄2,x̄ x̄ + b7ū0,t̄ t̄ + b8ψ̄,t̄ t̄ = 0,

c1ψ̄,x̄ + c2w̄,x̄ x̄ + c3w̄,t̄ t̄ = 0,

d1θ̄1,x̄ x̄ + d2θ̄2,x̄ x̄ + d3θ̄1,t̄ + d4θ̄2,t̄ + d5ū0,x̄ t̄ + d6ψ̄,x̄ t̄ + d7θ̄2+ d8q(x̄, t̄)= 0,

e1θ̄1,x̄ x̄ + e2θ̄2,x̄ x̄ + e3θ̄1+ e4θ̄2+ e5θ̄1,t̄ + e6θ̄2,t̄ + e7ū0,x̄ t̄ + e8ψ̄,x̄ t̄ + e9θ̄2+ e10q(x̄, t̄)= 0,

(14)

where the as, bs, cs, ds, and es are dimensionless constants of the coupled equations. Simultaneous
solution of these equations provides the distribution of the displacement components of the beam and
the temperature variables θ1 and θ2.

Regarding the boundary conditions given by (8) and (11), to solve (14), the finite Fourier transforma-
tion can be used to obtain

ū0m(t̄)=
∫ 1

0
ū0(x̄, t̄) cos(mπx̄)dx̄, ψ̄m(t̄)=

∫ 1

0
ψ̄(x̄, t̄) cos(mπx̄)dx̄, w̄m(t̄)=

∫ 1

0
w̄(x̄, t̄) sin(mπx̄)dx̄,

θ̄1m(t̄)=
∫ 1

0
θ̄1(x̄, t̄) sin(mπx̄)dx̄, θ̄2m(t̄)=

∫ 1

0
θ̄2(x̄, t̄) sin(mπx̄)dx̄, (15)

where m = 1, 3, 5, . . . .
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The solutions given by (15) automatically satisfy the boundary conditions, (8) and (11). Based on
Fourier series theory, the inverse transformation can be expressed by

ū0(x̄, t̄)= 2
∑

m

ū0m(t̄) cos(mπx̄), ψ̄(x̄, t̄)= 2
∑

m

ψ̄m(t̄) cos(mπx̄), w̄(x̄, t̄)= 2
∑

m

w̄m(t̄) sin(mπx̄),

θ̄1(x̄, t̄)= 2
∑

m

θ̄1m(t̄) sin(mπx̄), θ̄2(x̄, t̄)= 2
∑

m

θ̄2m(t̄) sin(mπx̄), (16)

where the sum is all over m odd and positive. Applying a step function heat flux of intensity q to the
upper beam surface, the Fourier transformation of (14), considering the initial conditions (8) and (11),
yields

−r2a1ū0m − r2a2ψ̄m + ra3θ̄1m + ra4θ̄2m + a5ū0m,t̄ t̄ + a6ψ̄m,t̄ t̄ = 0,

−r2b1ū0m − r2b2ψ̄m ++b3ψ̄m + rb4w̄m + rb5θ̄1m + rb6θ̄2m + b7ū0m,t̄ t̄ + b8ψ̄m,t̄ t̄ = 0,

−rc1ψ̄m − r2c2w̄m + c3w̄m,t̄ t̄ = 0,

−r2d1θ̄1m − r2d2θ̄2m + d3θ̄1m,t̄ + d4θ̄2m,t̄ − rd5ū0m,t̄ − rd6ψ̄m,t̄ + d7θ̄2m +
2d8
r

q = 0,

−r2e1θ̄1m−r2e2θ̄2m+e3θ̄1m+e4θ̄2m+e5θ̄1m,t̄+e6θ̄2m,t̄−re7ū0m,t̄−re8ψ̄m,t̄+e9θ̄2m+
2e10

r
q = 0,

(17)

where r = mπ .

Laplace transform. The system of coupled equations (17) are functions of the Fourier parameter m and
time t . The solution presented in this paper is obtained by the finite Fourier transformation, where time is
eliminated using the Laplace transform. Once the solution in the space domain is obtained, an analytical
scheme is used for the inverse Laplace transformation to find the final solution in the real time domain.
Applying the Laplace transform to (17) gives

−r2a1Ū0m − r2a29̄m + ra32̄1m + ra42̄2m + a5s2Ū0m + a6s29̄m = 0,

−r2b1Ū0m − r2b29̄m ++b39̄m + rb4W̄m + rb52̄1m + rb62̄2m + b7s2Ū0m + b8s29̄m = 0,

−rc19̄m − r2c2W̄m + c3s2W̄m = 0,

−r2d12̄1m − r2d22̄2m + d3s2̄1m + d4s2̄2m − rd5sŪ0m − rd6s9̄m + d72̄2m +
2d8
rs

q = 0,

−r2e12̄1m − r2e22̄2m + e32̄1m + e42̄2m + e5s2̄1m + e6s2̄2m

−re7sŪ0m − re8s9̄m + e92̄2m +
2e10
rs

q = 0,

(18)

where s is the Laplace transform parameter and Ū0m = L[ū0m], 9̄m = L[ψ̄m], W̄m = L[w̄m], and
2̄im = L[θ̄im] for i = 1, 2, where L stands for the Laplace operator. Denoting by

〈Fm j 〉 = 〈Ū0m 9̄m W̄m 2̄1m 2̄2m〉 (19)

the solution for the unknown variables in (18), in the Laplace transformation domain we obtain

Fm j (s)=
Qm j (s)
Pm j (s)

, (20)
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where Qm j (s) and Pm j (s) are polynomial functions of s. As an example, the lateral deflection of the
beam in the Laplace domain for the coupled assumption (d5, d6, e7, e8 6= 0) can be given as

W̄m =
q0+ q1s+ q2s2

+ q3s3

s(p0+ p1s+ p2s2+ p3s3+ p4s4+ p5s5+ p6s6+ p7s7+ p8s8)
, (21)

where the qs and ps are coefficients obtained by solving the system of (18).
Carrying out analytically the inverse Laplace transform of (20) [Massalas and Kalpakidis 1983; 1984],

we obtain solutions for the unknown variables in the real physical time domain:

fm j (m, t̄)=
n p∑
γ=1

Qm j (spγ )

P ′m j
(spγ )

espγ t̄ , (22)

where

〈 fm j 〉 = 〈u0m ψm wm θ1m θ2m〉,

the spγ are the roots of Pm j (s), and n p is the number of roots. A prime indicates a derivative with respect
to s.

Using (16) and (22), the unknown variable functions are obtained in the space variable x and time t .
As an example, the lateral deflection function is computed as

w̄(x̄, t̄)= 2
∞∑

m=1,3,...

w̄m(m, t̄) sin(mπx̄)= 2
∞∑

m=1,3,...

n p∑
γ=1

q0+ q1spγ + q2s2
pγ + q3s3

pγ

Pw̄(spγ )
espγ t̄ sin(mπx̄),

Pw̄ = p0+ 2p1spγ + 3p2s2
pγ + 4p3s3

pγ + 5p4s4
pγ + 6p5s5

pγ + 7p6s6
pγ + 8p7s7

pγ + 9p8s8
pγ .

(23)

Using (16) and (22), and considering m = 1, the dimensionless functions for the midlength lateral
deflection w, upper side temperature θ1 at the midpoint of the beam, maximum u0, and rotation angle ψ
at x̄ = 0 are obtained for the coupled and uncoupled assumptions. For the uncoupled assumption, where
d5, d6, e7, e8 = 0, we obtain

w̄uc(0.5, t̄)= Á1+ Á2eτuc1 t̄
+ Á3eτuc2 t̄

+ Á4 cos(ωuc1 t̄)+ Á5 sin(ωuc1 t̄)

+ Á6 cos(ωuc2 t̄)+ Á7 sin(ωuc2 t̄)+ Á8 cos(ωuc3 t̄)+ Á9 sin(ωuc3 t̄),

θ̄1uc(0.5, t̄)= B́1+ B́2eτuc1 t̄
+ B́eτuc2 t̄ ,

ū0uc(0, t̄)= Ć1+ Ć2eτuc1 t̄
+ Ć3eτuc2 t̄

+ Ć4 cos(ωuc1 t̄)+ Ć5 sin(ωuc1 t̄)+ Ć6 cos(ωuc2 t̄)

+Ć7 sin(ωuc2 t̄)+ Ć8 cos(ωuc3 t̄)+ Ć9 sin(ωuc3 t̄),

ψ̄uc(0, t̄)= D́1+ D́2eτuc1 t̄
+ D́3eτuc2 t̄

+ D́4 cos(ωuc1 t̄)+ D́5 sin(ωuc1 t̄)+ D́6 cos(ωuc2 t̄)

+D́7 sin(ωuc2 t̄)+ D́8 cos(ωuc3 t̄)+ D́9 sin(ωuc3 t̄),

(24)

where the τuci are dimensionless time constants, the ωuci are dimensionless oscillation frequencies, and
the Á, B́, Ć , D́ are dimensionless constants. Similarly, for the coupled assumption,
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w̄c(0.5, t̄)= Ã1+ Ã2eτc1 t̄
+ Ã3eτc2 t̄

+ eτc3 t̄( Ã4 cos(ωc1 t̄)+ Ã5 sin(ωc1 t̄)
)

+eτc4 t̄( Ã6 cos(ωc2 t̄)+ Ã7 sin(ωc2 t̄)
)
+ eτc5 t̄( Ã8 cos(ωc3 t̄)+ Ã9 sin(ωc3 t̄)

)
,

θ̄1c(0.5, t̄)= B̃1+ B̃2eτc1 t̄
+ B̃3eτc2 t̄

+ eτc3 t̄(B̃4 cos(ωc1 t̄)+ B̃5 sin(ωc1 t̄)
)

+eτc4 t̄(B̃6 cos(ωc2 t̄)+ B̃7 sin(ωc2 t̄)
)
+ eτc5 t̄(B̃8 cos(ωc3 t̄)+ B̃9 sin(ωc3 t̄)

)
,

ū0c(0, t̄)= C̃1+ C̃2eτc1 t̄
+ C̃3eτc2 t̄

+ eτc3 t̄(C̃4 cos(ωc1 t̄)+ C̃5 sin(ωc1 t̄)
)

+eτc4 t̄(C̃6 cos(ωc2 t̄)+ C̃7 sin(ωc2 t̄)
)
+ eτc5 t̄(C̃8 cos(ωc3 t̄)+ C̃9 sin(ωc3 t̄)

)
,

ψ̄c(0, t̄)= D̃1+ D̃2eτc1 t̄
+ D̃3eτc2 t̄

+ eτc3 t̄(D̃4 cos(ωc1 t̄)+ D̃5 sin(ωc1 t̄)
)

+eτc4 t̄(D̃6 cos(ωc2 t̄)+ D̃7 sin(ωc2 t̄)
)
+ eτc5 t̄(D̃8 cos(ωc3 t̄)+ D̃9 sin(ωc3 t̄)

)
,

(25)

where the symbols have a similar meaning as in the uncoupled case. Therefore, it can be found from
(24) and (25) that the coupling between the strain and temperature fields causes the damping effect on
the dimensionless lateral deflection, w.

4. Results

To validate the formulations, the results of this paper are compared with the analytical solution of a
homogeneous beam reported in [Massalas and Kalpakidis 1983]. An aluminum beam of length 0.25 m
and height 0.0022 m with simply supported boundary conditions is assumed. The ends of the beam are
assumed to be at ambient temperature T0 = 293 K. The upper surface of the beam is exposed to a step
function heat flux, while the lower surface is assumed to be thermally insulated. Figure 2 shows the mid-
point lateral deflection history of the heated beam for the coupled thermoelasticity assumptions reported
in [Massalas and Kalpakidis 1983] and the present study. Close agreements are observed between the
two studies.

Consider an FGM beam with ceramic upper surface and metal lower surface. The material properties
of metal and ceramic are given in Table 1. The mechanical boundary conditions at the ends of the beam
are assumed to be simply supported. The thermal boundary conditions at the ends of the beam are
assumed to be at ambient temperature at T0 = 293 K. The upper side of the beam is subjected to a step
function thermal shock while the lower side is subjected to convection to the surrounding ambient with
coefficient hc = 10000 W/m2K.

Metal: Ti-6Al-4V Ceramic: ZrO2

Em = 66.2 GPa Ec = 117.0 GPa
ν = 0.322 ν = 0.322
αm = 10.3× 10−6/K αc = 7.11× 10−6/K
ρm = 4.41× 103 kg/m3 ρc = 5.6× 103 kg/m3

km = 18.1 W/(m·K) kc = 2.036 W/(m·K)
cm = 808.3 J/(kg·K) cc = 615.6 J/(kg·K)

Table 1. Material properties of metal and ceramic constituents.
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Figure 2. Lateral deflection history of an aluminum beam at midpoint with the coupled
thermoelasticity assumption.

To compare the results with the numerical solutions presented by Babaei et al. [2008] for the FGM
beam when n = 0, and h/ l = 0.001, Figure 3 is plotted for the midpoint lateral deflection history for the
uncoupled thermoelasticity case. It can be observed that the numerical solution had reasonable agreement
with the present exact solution. The analytical solution presented in this work doesn’t have the difficulties
of numerical methods such as the unbalance of the members of matrices due to coupling between the
strain and temperature fields and a time-consuming process.
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Figure 3. Comparison of the lateral deflection history at the midpoint of the FGM beam
for n = 0 and h/ l = 0.001.
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Figure 4. Lateral deflection history at the midpoint of the beam for different power law indices.

The next few figures show the effect of the power law index of the functionally graded beam in the
uncoupled case. The maximum lateral deflection, frequency, and lateral amplitude of the FGM beam
vibration due to the thermal shock depend on the mechanical and thermal properties of the beam. Thus,
when n changes, the FGM beam shows different behaviors. Figure 4 plots the lateral deflection at
midlength versus time for different values of the power law index n. The value n = 0 corresponds to a
pure ceramic beam. We see in Figure 4, top, that as n increases, the midpoint lateral deflection of the
FGM beam decreases due to the decline of the temperature gradient in the beam. However, this condition
does not always continue. As shown in Figure 4, bottom, when n > 1, the difference in lateral deflection
for different values of n becomes smaller with smaller amplitudes. Ceramic has a larger modulus of



CLOSED-FORM THERMOELASTIC SOLUTION FOR A FUNCTIONALLY GRADED TIMOSHENKO BEAM 89

n τuc1 τuc2 ωuc1 ωuc2 ωuc3

0 −58.6014 −2.5144 538.2486 3.6757× 107

0.5 −84.3941 −6.0998 507.8697 1.8224× 105 3.5470× 107

1 −98.4801 −7.0313 497.3527 1.7778× 105 3.4484× 107

2 −113.3725 −7.7118 492.1442 1.7282× 105 3.3254× 107

7 −131.8458 −8.3314 485.4957 1.6578× 105 3.1632× 107

20 −138.3074 −8.5187 472.9925 1.6288× 105 3.1229× 107

Table 2. Values of the dimensionless time constants and the dimensionless frequencies
of oscillations for different power law indices in the uncoupled solution.

elasticity than metal, but a smaller coefficient of thermal expansion. This causes noncontinuous behavior
in the maximum lateral deflection for FGM beams subjected to thermal shock. Furthermore, for larger
power law indices which provide most metal rich FGM, the lateral deflection and oscillation frequency
begin to slightly increase. In general, the lateral amplitude of vibration of the FGM beam due to the
applied thermal shock is increased when the beam constituent materials change from the ceramic-rich to
the metal-rich condition. Using (24), the dimensionless time constants and the dimensionless frequencies
of oscillations are presented for different power law indices in Table 2.

From Table 2 we see that the frequency of the FGM beam vibration drops when the power law index n
increases. Also, the diffusivity effect of the FGM beam is increased when the beam constituent materials
change from the ceramic-rich to the metal-rich condition, that is when n is increased.

Figure 5 shows the temperature history at the upper side and the midlength of the beam. Due to the
applied step function thermal shock, the beam temperature peaks to a maximum value, and then diffuses
during the time. The figure shows that for the most metal rich FGM beams (higher values of n), the
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Figure 5. Temperature change history at the midpoint of the beam at the upper side for
different power law indices.
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Figure 6. Temperature change distribution at the midpoint of the beam across the thick-
ness direction at t̄ = 3 for different power law indices.

temperature distribution decreases in value due to the higher thermal conductivity of metal. Figure 6
shows the distribution of the temperature changes across the thickness direction at the midpoint of the
beam at t̄ = 3. It is concluded that for higher values of n, the temperature distribution is changed slightly
across the thickness of the FGM beam. By increasing the ceramic share of the beam, the gradient of
temperature increases in value due to the lower thermal conductivity of ceramic.

Using (16) and (22), the expressions for the lateral deflection w and the upper surface temperature θ1

at the midpoint of the beam can be obtained. In terms of the dimensionless quantities, and when m = 1,
n = 0, and h/ l = 0.001, the lateral deflection and the upper surface temperature at the midpoint of the
beam for the coupled and coupled assumptions are

w̄uc(0.5, t̄)= 0.1290−6.6592·10−3e−29.6594t̄
−0.1094e−1.9872t̄

−1.2936·10−2 cos(22.0503t̄)−1.8817·10−2 sin(22.0503t̄)
+1.7574·10−24 cos(1.4703·107 t̄)+1.1840·10−19 sin(1.4703·107 t̄),

w̄c(0.5, t̄)= 0.1290−6.6635·10−3e−29.6531t̄
−0.1094e−1.9862t̄

+e−2.4257·10−3 t̄(
−1.2931·10−2 cos(22.0526t̄)−1.8816·10−2 sin(22.0526t̄)

)
+e−1.2339·10−3 t̄(2.6551·10−18 cos(2.432·104 t̄)+1.1878·10−20 sin(2.432·104 t̄)

)
+e−2.0487·10−8 t̄(1.7574·10−25 cos(1.4703·107 t̄)+1.1840·10−19 sin(1.4703·107 t̄)

)
,

θ̄1uc(0.5, t̄)= 0.7356−0.0355e−29.6594t̄
−0.7001e−1.9872t̄ ,

θ̄1c(0.5, t̄)= 0.7356−0.0355−29.6531t̄
−0.7001e−1.9862t̄

+e−2.4257·10−3 t̄(1.6513·10−5 cos(22.0526t̄)+6.3336·10−6 sin(22.0526t̄)
)

+e−1.2339·10−3 t̄(
−1.0203·10−11 cos(2.432·104 t̄)+1.2627·10−8 sin(2.432·104 t̄)

)
+e−2.0487·10−8 t̄(3.7231·10−22 cos(1.4703·107 t̄)+1.7298·10−16 sin(1.4703·107 t̄)

)
.

(26)
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Figure 7. Lateral deflection history at the midpoint of the FGM beam for n = 0 and
h/ l = 0.001, showing the effects of coupling.

Investigating (26), one sees that the coupling between the strain and temperature fields has a damping
effect on the dimensionless lateral deflection w. The plot of (26) for the lateral deflection history at
the midpoint of a beam when n = 0, h/ l = 0.001, and the coupling factors are d5 = −0.5027, d6 = 0,
e7 = 0, and e8 = 4.1891× 10−5, is shown in Figure 7. As shown in this figure the difference between
the coupled and uncoupled solutions for the lateral deflection is negligible. For the magnified coupled
solution, where the coupling coefficient is made 50 times larger, the amplitude of vibration increases and
the frequency of vibration decreases, compared to the uncoupled solution, as time advances.

Figure 8 shows the lateral deflection history at the midpoint of an FGM beam (n = 20) with
h/ l = 0.003125, where the coupling factors are d5 =−0.1339, d6 = 2.9444× 10−6, e7 = 9.4221× 10−4,
and e8 = 3.5667× 10−5. Figure 9 shows the temperature history on the upper side of the FGM beam
(n = 20) with h/ l = 0.003125 for the coupled and uncoupled solutions, where no distinguishable differ-
ence is observed.

In general, the coupled and uncoupled thermoelasticity solutions of the structural problems do not have
significant differences in the distribution of displacement and stress, except that for the coupled problems
local stress and temperature wave fronts appear, which may cause structural damage. In addition, the
coupled solution for the major part of the stress distribution (except around the wave front) is lower than
that of the uncoupled solution. Now, the magnitudes of the stress and temperature wave fronts depend
upon how short a time the thermal shock is applied. The shorter duration of the applied thermal shock,
the higher the magnitude of the stress wave front becomes.

In Figures 7–9, however, wave fronts for the displacement and temperature do not appear. The reason
is that the stress and temperature wave fronts appear in any structure under thermal shock. But, they are
only detected when the solution is based on the generalized thermoelasticity equations. That is, when
the flexural model is used, such as the beams, plates, and shells, the wave fronts do not appear in the
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Figure 8. Lateral deflection history at the midpoint of the FGM beam for n = 20 and
h/ l = 0.003125, showing the effects of coupling.
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Figure 9. Temperature change history at the midpoint of the FGM beam at the upper
side for n = 20 and h/ l = 0.003125, showing the effects of coupling.

solution. The reason is simple, as we have lumped the stress through the thickness. Figure 9 for the
temperature distribution does not show a wave front, as the classical coupled thermoelasticity theory is
used in this paper, where the temperature equation is of parabolic type and the speed of propagation of
the temperature
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5. Conclusions

In the present paper, the coupled thermoelasticity of a beam based on first-order shear deformation
theory with functionally graded material is investigated. The beam is subjected to a thermal shock of
step function type on the upper side. The lower side of the beam is assumed to have convection to the
surrounding ambient. Boundary conditions of the beam are taken to be simply supported, with ambient
temperature at the ends of the beam. To solve the problem, the finite Fourier transformation is used.
Moreover, to treat the time dependency, the Laplace transform technique is applied. The inverse Laplace
transform is carried out analytically.

Results show that for larger values of power law indices, which provide the most metal rich FGM,
the lateral deflection of an FGM beam due to a applied thermal shock does not decrease proportionally.
There is an optimum value for the FGM parameter at which the beam’s lateral deflection is minimum. By
increasing the metal share of the FGM beam, the distribution of temperature changes slightly across the
thickness of the beam. The amplitude of lateral vibration considerably increases as the aspect ratios of
the beam decrease. Moreover, generally it can be said that there is no significant difference between the
coupled and uncoupled solutions. However, the effect of coupling is in the form of damping. It decreases
the amplitude of vibration and increase the frequency of the vibrations with the increase of time.
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