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FREE FLEXURAL VIBRATIONS OF MASONRY BEAM-COLUMNS

MARIA GIRARDI AND MASSIMILIANO LUCCHESI

We present an analytical study of the free transverse vibrations of masonry beam-columns, focusing on
the role of the material’s inability to sustain traction in modifying the dynamic behavior of such structures.
In particular, for periodic oscillations, an analytical method is presented for obtaining an explicit relation
between the fundamental frequency of the beam and the displacement amplitude.

1. Introduction

In recent years, the dynamic response of age-old masonry structures and buildings has attracted growing
interest, particularly in Italy, where the extraordinary historical architectural heritage is regularly threat-
ened by violent earthquakes. Much effort has been devoted to evaluating the seismic vulnerability of
such structures. The methods developed are based mainly on a classification of the damage mechanisms
consequent to earthquakes [Petrini et al. 1999; MiBAC 2006] and application of some simplification
procedures, which have been adopted by Italian regulations [Norme tecniche 2008]. A number of me-
chanical models have been developed and implemented in numerical codes, involving a limited number
of degrees of freedom and developed for the most part by defining macro-elements [Petrini et al. 1999;
Gambarotta and Lagomarsino 1997].

The dynamic behavior of masonry structures is heavily influenced by a variety of parameters, such as
construction technique, construction geometry, material characteristics, and type of accelerations applied
to the structural supports. Moreover, masonry structures respond differently to tensile and compressive
stresses.

In the 1980s [Del Piero 1989; Di Pasquale 1992], a constitutive equation was formulated to describe
the behavior of a class of materials, termed no-tension or masonry-like, that is able to withstand compres-
sive stresses but only limited or null tensile stresses. This approach appeared to provide a satisfactory
description of the main aspects of the static behavior of old masonry buildings [De Falco and Lucchesi
2002; Lucchesi et al. 2008].

A numerical model was proposed in [Lucchesi and Pintucchi 2007] to describe the dynamic behavior
of slender masonry structures, such as columns or towers, by means of one-dimensional finite elements.
This model is based on a no-tension constitutive equation expressed in terms of generalized stresses
and strains [Zani 2004]. The nonlinear elastic material described by the model provides satisfactory
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predictions for the dynamic behavior of such structures. The model mainly predicts flexural oscillations
and does not include material damage under cyclic stresses.

In this paper, we present a study of the flexural dynamic behavior of slender masonry structures with
the aim of finding an explicit relation between a beam’s fundamental frequency and the total energy
of the system. We begin with the constitutive law described in [Zani 2004] and used in [Lucchesi and
Pintucchi 2007].

The spread of cracks along a beam reduces the stiffness of a structure and gives rise to interactions
between the natural beam oscillation frequencies and the amplitude of the cracked zone. These effects
strongly alter the dynamic behavior of slender masonry structures, which are characterized by a response
to acceleration that deviates considerably from linearity.

Relations between frequencies and amplitudes have been found for several types of softening systems
[Nayfeh and Mook 1995; Nayfeh 2000] mainly by using perturbation methods, such as the multiple scales
method or averaging techniques. However, such relations may be obtained directly from the equations
of motion, as shown in [Whitham 1974] for the propagation of waves in dispersive media.

This work is divided into three parts. Section 2 presents an equation describing the dynamic equi-
librium of a one-dimensional continuous beam composed of an elastic material. Then, under suitable
hypotheses regarding the form of the solution, a relation between the fundamental frequency and the
energy of the system is deduced.

In the two subsequent sections, comprising the second part of the paper, we apply this relation to a
masonry beam. Section 3 is dedicated to materials described by the no-tension constitutive equation, and
Section 4 introduces a simplified cubic polynomial constitutive law that can approximate the no-tension
relation for curvature values near the elastic limit.

Lastly, Section 5 presents some example applications and makes a comparison between the analytical
results and the corresponding numerical solutions obtained via the code described in [Lucchesi and
Pintucchi 2007].

All results presented here were obtained assuming conservative systems and free vibrations. Future
work will study forced and damped oscillations; some results of this kind can already be found in [Girardi
2009; Girardi and Lucchesi 2006].

2. Formulation of the dynamic problem

Consider a rectilinear beam with length l and rectangular cross-section characterized by height h and
width b, subjected to a uniform axial force N . Let χ be the curvature of the beam and M(χ) : R→ R be
the bending moment, a continuous differentiable function with a second derivative that is assumed to be
piecewise continuous. Let E and ρ denote the Young modulus and density of the material, respectively,
and J = bh3/12 denotes the moment of inertia of the beam’s cross-section.

To work with dimensionless quantities, if x and v are, respectively, the abscissa along the beam’s axis
and the transverse flexural displacement of the beam (see Figure 1), and t denotes time, we define

ξ =
x
l
, τ =

t
Tc
, u =

v

l
, κ = χl, (2-1)

where Tc = l2/c and c =
√

E J
ρbh

are the elastic constants of the beam.
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Figure 1. A masonry beam-column: model and notations.

We assume the effects of both the shear strain and the rotary inertia to be negligible. Moreover, we
limit ourselves to considering situations in which the flexural displacement u(ξ, τ ) and its derivative
uξ (ξ, τ ) are small, so that we can neglect the effects of the axial force on the dynamic equilibrium of
the beam, and write

κ(ξ, τ )=−uξξ (ξ, τ ). (2-2)

Under these hypotheses, set

f (κ)=
l

E J
M(κ/ l), (2-3)

the equation of motion is
∂2u
∂τ 2 −

∂2( f ◦ κ)
∂ξ 2 = 0, (2-4)

which coincides with the Euler equation

∂

∂τ

(
∂L
∂uτ

)
−
∂2

∂ξ 2

(
∂L
∂uξξ

)
= 0, (2-5)

corresponding to the Lagrangian

L =
1
2
(uτ )2− F(−uξξ ), (2-6)

where F is the primitive of f such that F(0)= 0, as can be easily verified. The goal is to find approximate
solutions to (2-4) of the form [Nayfeh and Mook 1995; Nayfeh 2000]

u(ξ, τ )=
n∑

i=1

φi (ξ)ηi (τ ), (2-7)
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where the functions φi are twice continuously differentiable and satisfy the orthogonality condition∫ 1

0
φiφ j = δi j for i, j ∈ 1 . . . n. (2-8)

From (2-6), we deduce that

L = L(φi , φ
′′

i , ηi , η
′

i )=
1
2

( n∑
i=1

φiη
′

i

)2

− F
(
−

n∑
i=1

φ′′i ηi

)
, (2-9)

where the primes denote differentiation.
Let us introduce the averaged Lagrangian L̄ over the normalized length of the beam

L̄(ηi , η
′

i )=

∫ 1

0
L(φi , φ

′′

i , ηi , η
′

i )dξ =
1
2

∫ 1

0

( n∑
i=1

φiη
′

i

)2

dξ −
∫ 1

0
F
(
−

n∑
i=1

φ′′i ηi

)
dξ . (2-10)

By virtue of (2-8), we can write

L̄(η, η′)= 1
2

n∑
i=1

η′2i − V (ηi ), (2-11)

where

V (ηi )=

∫ 1

0
F
(
−

n∑
i=1

φ′′i ηi

)
dξ. (2-12)

First, we will verify that each function ηi satisfies the equation

∂

∂τ

∂ L̄
∂η′i
−
∂ L̄
∂ηi
= 0. (2-13)

To this aim, we observe that

∂L
∂uτ
=

n∑
j=1

1
φ j

∂L
∂η′j

,
∂L
∂uξξ

=
1
n

n∑
j=1

1
η j

∂L
∂φ′′j

, (2-14)

and, thus, from (2-5), we obtain
n∑

j=1

1
φ j

∂

∂τ

(
∂L
∂η′j

)
−

1
n

n∑
j=1

1
η j

∂2

∂ξ 2

(
∂L
∂φ′′j

)
= 0. (2-15)

Now, multiplying (2-15) by each φi and integrating over [0, 1], we obtain the set of equations

∂

∂τ

(
∂ L̄
∂η′i

)
+

∑
j 6=i

∫ 1

0

φi

φ j

∂

∂τ

∂L
∂η′j
−

1
n

∫ 1

0
φi

n∑
j=1

1
η j

∂2

∂ξ 2

∂L
∂φ′′j

dξ = 0. (2-16)

In view of (2-9) and (2-8), equation (2-16) becomes

∂

∂τ

(
∂ L̄
∂η′i

)
+

∑
j 6=i

∫ 1

0

φi

φ j

∂

∂τ
(φ2

j η
′

j )−
1
n

∫ 1

0
φi

n∑
j=1

1
η j

∂2 f
∂ξ 2 η j dξ =

∂

∂τ

∂ L̄
∂η′i
−

∫ 1

0

∂2 f
∂ξ 2 φi dξ = 0, (2-17)

where, for the sake of brevity, we write ∂2 f/∂ξ 2 for ∂2( f ◦ κ)/∂ξ 2.
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Now, under the assumption that f ′φi = φ
′

i f = 0 at the ends of the beam, we obtain

∂

∂τ

∂ L̄
∂η′i
−

∫ 1

0

∂2 f
∂ξ 2 φi dξ =

∂

∂τ

∂ L̄
∂η′i
−
∂ f
∂ξ
φi

∣∣∣1
0
+

∫ 1

0

∂ f
∂ξ
φ′i dξ

=
∂

∂τ

∂ L̄
∂η′i
+ f φ′i

∣∣∣1
0
−

∫ 1

0
f φ′′i dξ =

∂

∂τ

∂ L̄
∂η′i
−

∫ 1

0
f φ′′i dξ . (2-18)

From (2-10), we deduce that

∂ L̄
∂ηi
=−

∂

∂ηi

∫ 1

0
F(−

n∑
j=1

φ′′j η j ) dξ =
∫ 1

0
f φ′′i dξ, (2-19)

and (2-13) follows from (2-18).
Because f (κ) is, in general, a nonlinear function, the corresponding equations (2-13) are coupled. For

our purposes, it is sufficient to limit ourselves to unimodal solutions of the form

u(ξ, τ )= φ(ξ)η(τ ), (2-20)

and, thus, (2-13) reduces to
∂

∂τ

∂ L̄
∂η′
−
∂ L̄
∂η
= 0. (2-21)

If we set
η = η(θ), θτ = ω, (2-22)

where the frequency ω indicates a slowly varying system parameter [Whitham 1974], and

L̄1 =
∂ L̄
∂η′

, L̄2 =
∂ L̄
∂η
, (2-23)

then equation (2-21) becomes ω
∂ L̄1

∂θ
− L̄2 = 0. Multiplying this by

∂η

∂θ
, and recalling that

∂ L̄
∂θ
= ω

∂2η

∂θ2 L̄1+ L̄2
∂η

∂θ
, (2-24)

we obtain

ω
∂ L̄1

∂θ

∂η

∂θ
−
∂ L̄
∂θ
+ L̄1ω

∂2η

∂θ2 =
∂

∂θ

(
ωL̄1

∂η

∂θ

)
−
∂ L̄
∂θ
= 0, (2-25)

whose first integral is

ωL̄1
∂η

∂θ
− L̄ = a, (2-26)

where a is the total energy of the system, which is constant with respect to θ and is related to the amplitude
of the motion.

In view of (2-11), with i = 1, equation (2-26) becomes

1
2
ω2
(∂η
∂θ

)2
+ V (η)= a, (2-27)
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from which we have
dθ
dη
=

ω
√

2(a− V (η))
. Then,

2π
ω
=

∮
dη

√
2(a− V (η))

, (2-28)

where the integral is taken over a complete loop of the motion [Whitham 1974].
Equation (2-28) links the frequency ω to the total energy a of the system and is exactly the relation

we are seeking.

3. No-tension material

3A. The constitutive equation. Let the beam described in Section 2 be composed of a no-tension mate-
rial with zero tensile strength and infinite compressive strength (see Figure 2).

Let ε denote an infinitesimal axial deformation. Under the classical Euler–Bernoulli hypothesis, we
can deduce a relation between the generalized deformations ε and χ and the generalized stresses N and
M . For each normal section of the beam, let

6 =
{
(N ,M) : N ≤ 0, 1

2 Nh ≤ M ≤− 1
2 Nh

}
(3-1)

be the set of all admissible generalized stresses, and let us consider the subsets of 6 (see Figure 2)

61 =
{
(N ,M) ∈6 : 1

6 Nh ≤ M ≤− 1
6 Nh

}
,

62 =
{
(N ,M) ∈6 : − 1

6 Nh ≤ M ≤− 1
2 Nh

}
,

63 =
{
(N ,M) ∈6 : 1

2 Nh ≤ M ≤ 1
6 Nh

}
.

(3-2)

Figure 2. The σ -ε relation for a no-tension material with infinite compressive strength
and zero tensile strength and the admissible generalized stresses M , N for a rectangular
section of height h.
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Then, we can write the constitutive equation [Zani 2004]:

(N ,M) ∈61 : ε =
N

Ebh
, χ =

12M
Ebh3 ,

(N ,M) ∈62 : ε =
8

9Eb
N 2(Nh+ 3M)
(Nh+ 2M)2

, χ =−
8

9Eb
N 3

(Nh+ 2M)2
,

(N ,M) ∈63 : ε =
8

9Eb
N 2(Nh− 3M)
(Nh− 2M)2

, χ =−
8

9Eb
N 3

(Nh− 2M)2
.

(3-3)

(N ,M) in 61 corresponds to a fully compressed section. 62 and 63 correspond to regions in which
the section is only partially compressed. The outer boundaries of 62 and 63 are reached when the
eccentricity M/N in the section is equal to −h/2 and h/2, respectively, corresponding to a situation that
is allowed given that the material is assumed to have infinite compressive strength.

Equations (3-3) can be inverted to obtain N = N (ε, χ), M = M(ε, χ). To this aim, we introduce the
subsets of the set E of all generalized strains (ε, χ):

E1 :
{
(ε, χ) ∈ E : 2ε ≤ χh ≤−2ε, ε ≤ 0

}
,

E2 :
{
(ε, χ) ∈ E : χh > 2 |ε| , χ > 0

}
,

E3 :
{
(ε, χ) ∈ E : χh < 2 |ε| , χ < 0

}
.

(3-4)

Then, from (3-3) we obtain

(ε, χ) ∈ E1 : N = Ebhε, M =
Ebh3

12
χ,

(ε, χ) ∈ E2 : N =−
Eb(χh− 2ε)2

8χ
, M =

Eb(ε+χh)(χh− 2ε)2

24χ2 ,

(ε, χ) ∈ E3 : N =
Eb(χh+ 2ε)2

8χ
, M =−

Eb(ε−χh)(χh+ 2ε)2

24χ2 .

(3-5)

If the axial force N acting on the section is a known quantity, then from (3-5) we can obtain a relation
M = M(χ, N ) between the bending moment and the curvature. To this aim, we define

χ0 =−
2N

Ebh2 , (3-6)

the curvature corresponding to the elastic limit. Therefore, from (3-5), we have

M(χ)
ρbh

=

{
c2χ for |χ | ≤ χ0,

c2χ0 sign(χ)
(
3− 2
√
χ0/|χ |

)
for |χ |> χ0,

(3-7)

which represents the constitutive equation we are looking for.
The function (3-7) is plotted in Figure 3. For increasing values of χ in the nonlinear region, we see

that the stiffness of the section decreases quickly and the bending moment tends toward its limit value
|Nh/2|. Moreover, we observe that M(χ) is continuous with its first derivative, whereas the second
derivative undergoes a jump in value for |χ | = χ0.
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Figure 3. The constitutive equation M-χ for a rectangular section made of no-tension
material with infinite compressive strength.

3B. The dynamic problem. From (3-7), we can obtain the nondimensionalized equation

F(κ)=
{1

2κ
2 for ξ ≤ ξ0,

κ0
(
3 |κ| − 4

√
κ0 |κ|

)
+

3
2κ

2
0 for ξ > ξ0,

(3-8)

where F is the primitive of f = Ml/(E J ) such that F(0) = 0, κ0 = −2Nl/(Ebh2) represents the
dimensionless limit of the elastic curvature of the section, and ξ0(τ ) is the dimensionless abscissa along
the beam of the section in which κ0 is reached (see Figure 1).

We assume that the beam is hinged at its ends and that the axial force N is constant along the axis.
As a first approximation, provided that no internal resonance is allowed in the first mode [Nayfeh and
Mook 1995; Nayfeh 2000], we choose a solution of the form

u(ξ, τ )=
√

2 sin(πξ)η(τ ). (3-9)

Then, from (2-6) and (3-8), taking into account the symmetry of the problem, the averaged Lagrangian
L̄ becomes

L̄(τ )= 2
∫ 1

2

0

1
2

(∂u
∂τ

)2
dξ − 2

∫ ξ0

0

1
2

(∂2u
∂ξ 2

)2
dξ − 2

∫ 1
2

ξ0

κ0

(
3
∣∣∣∣−∂2u
∂ξ 2

∣∣∣∣− 4

√
κ0

∣∣∣∣−∂2u
∂ξ 2

∣∣∣∣+ 3
2
κ0

)
dξ,

(3-10)
from which we obtain

L̄(τ )= 1
2 [η
′(τ )]2−π4η2(τ )ξ0+

1
2π

3η2(τ ) sin(2πξ0)+−6
√

2πκ0 | η(τ)| cos(πξ0)

+
16
π

√
2κ3

0π
2 |η(τ)| E

(
π
4 (1− 2ξ0), 2

)
+ 3κ2

0ξ0−
3
2κ

2
0 , (3-11)
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where we have used the elliptic integral

E
(
π
4 (1− 2ξ0), 2

)
=

∫ π
4 (1−2ξ0)

0

1√
1− 2 sin2 ζ

dζ . (3-12)

We can find the abscissa ξ0 from the relation

|κ(ξ0, τ )| = κ0, (3-13)

such that with the help of (2-2) and (3-9), we obtain

ξ0(η)=
1
π

arcsin
κ0

π2
√

2 |η|
for |η| ≥

κ0

π2
√

2
. (3-14)

Moreover, when the beam is entirely in the elastic field, we have

ξ0(η)=
1
2 for |η|<

κ0

π2
√

2
. (3-15)

Now, in view of (2-11), the potential function V (η) for |η|< κ0

π2
√

2
becomes

Vel(η)=
π4η2

2
, (3-16)

and the potential function for |η| ≥ κ0

π2
√

2
becomes

Vnl(η)= π
4η2(τ )ξ0−

1
2π

3η2(τ ) sin(2πξ0)+ 6
√

2πκ0 |η(τ)| cos(πξ0)

−
16
π

√
2κ3

0π
2 |η(τ)| E

(
π
4 (1− 2ξ0), 2

)
− 3κ2

0ξ0+
3
2κ

2
0 . (3-17)

In Figure 4, V is plotted as a function of η for different values of κ0 and compared with the linear
elastic case, represented by a parabolic curve.

We can now apply equations (3-16) and (3-17) to relation (2-28) and write

ω =
π

2

/∫ R1

0

dη
√

2(a− Vel(η))
= π2 for η ≤

κ0

π2
√

2
,

ω =
π

2

/(∫ κ0
π2
√

2

0

dη
√

2(a− Vel(η))
+

∫ R2

κ0
π2
√

2

dη
√

2(a− Vnl(η))

)
for η >

κ0

π2
√

2
,

(3-18)

where R1, R2 are roots of the equation
a− V (η)= 0. (3-19)

Equations (3-18) can be solved numerically for different values of the total energy a and the elastic
bending limit κ0 to obtain the curves shown in Figure 5.

By way of example, let us now consider a hinged-hinged beam subjected to an initial deformed shape

u(ξ, 0)= A sin(πξ), A > 0. (3-20)
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Η

5´10-6

0.00001

0.000015

0.00002

V

κ0 = 0.0001 κ0 = 0.001 Linear elasticity

Figure 4. The potential function V (η) for different values of κ0.

2´10-6 4´10-6 6´10-6 8´10-6
a

7.5

8.5

9

9.5

Ω

κ0 = 0.0001 κ0 = 0.0015 κ0 = 0.002

Figure 5. The function ω as a function of a, as given by (3-18), for different values of
the limit-elastic curvature κ0.

The deformed shape of the beam is represented in Figure 1 on page 145, where lξ0 and l(1− ξ0)

delimit the cracked region.
The particular form chosen for the initial deformed shape, together with the absence of internal reso-

nances in the first mode [Nayfeh and Mook 1995; Nayfeh 2000], allows us to describe the motion of the
beam using the unimodal expression (3-9).

We can write the total energy a of the beam as a function of the amplitude A of the motion, observing
that

η(0)= A/
√

2, η′(0)= 0. (3-21)
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Therefore, from (3-16), we have

a(A, κ0)= V (0)= 1
2π

4 A2ξ̄0−
1
4π

3 A2 sin(2πξ̄0)+ 6πκ0 A cos(πξ̄0)

−
16
π

√
κ3

0 A π2 E
(
π
4 (1− 2ξ̄0), 2

)
− 3κ2

0 ξ̄0+
3
2κ

2
0 , (3-22)

the initial cracked region being delimited by 1− 2ξ̄0 and

ξ̄0(A, κ0)=
1
π

arcsin
κ0

π2 A
. (3-23)

Now, from (3-18) we can find the frequency ω of the oscillations as a function of A and κ0.

4. The cubic approximation

Next, we present a simpler constitutive law that approximates equation (3-7) for values of χ near χ0. To
this aim, we introduce the cubic equation

Mc(χ)

ρbh
= c2χ

(
1− σ̄ χ2) , (4-1)

where σ̄ is a positive parameter that depends on the axial force N , which can approximate (3-7) for
values of χ in the range −

√
1/3σ̄ ≤ χ ≤

√
1/3σ̄ , where the cubic function is increasing. Figure 6 shows

a comparison of the behavior of equations (3-7) and (4-1) for a given value of N .
From (4-1), we obtain the dimensionless equation

Fc(κ)=
1
2κ

2
− σ 1

4κ
4, (4-2)

where σ = σ̄ /l2. This represents a classical cubic nonlinearity problem for softening systems.
If the displacement u(ξ, τ ) is again expressed by (3-9), we can write the potential

V (η)= 1
2π

4η2
−

3
8σπ

8η4. (4-3)

Figure 6. Comparison between equations (3-7) and (4-1).
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Η

V

a > a��
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0 £ a £ a��

a £ 0

Η

η′

Figure 7. Solutions to the equations of motion for the cubic equation with different
values of the total energy a.

Then

ω = 2π
/∮ dη√

2(a− 1
2π

4η2+ 3
8σπ

8η4)
=
π
2

/∫ R1

0

dη√
2(a− 1

2π
4η2+ 3

8σπ
8η4)

, (4-4)

by (2-28), where

R1 =

√
2

π2

√
1−
√

1− 6aσ
3σ

(4-5)

is the smallest positive root of the equation

a− V (η)= 0. (4-6)

If we draw the graph of the function V (η) and represent different values of energy a by horizontal
lines (see Figure 7), the condition a ≥ V (η) can be easily studied in the phase plane (η-η′), observing
that, from (2-11), we have

η′ =
√

2(a− V (η)). (4-7)

For no-tension materials and under the present hypotheses (neglecting geometric nonlinearities and
assuming an infinite material compressive strength), periodic motion is possible for every positive value
of a, because V , given by (3-16) and (3-17), is a convex function. In this case, we see that periodic
solutions, represented by closed trajectories in Figure 7, are possible only for

0≤ a ≤ ā and − R1 ≤ η ≤ R1. (4-8)

From Figure 8, where ω is plotted as a function of a for different values of σ using (4-4), we see
that the frequency is a decreasing function of the total energy. All curves originate from the value of the
fundamental frequency of the linear beam.

For increasing values of the axial force N , corresponding to decreasing values of σ , the nonlinear
behavior becomes weaker.

Let us now consider a hinged-hinged beam subjected to an initial deformation of the form (3-20). With
the help of (4-3) and (3-21), we can express the total energy a of the beam as a function of the maximum
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Figure 8. Frequency ω as a function of a for different values of σ .

amplitude A of the motion, a(A) = V (0) = 1
4π

4 A2
−

3
32σπ

8 A4. A relation between the fundamental
frequency ω and the amplitude A of the motion along the beam can now be obtained by substituting this
equality into (4-4).

5. Example applications

Consider a masonry column, of length l, with a square cross-section, hinged at
its supports, as in the figure on the left. Let its dimensions and material properties
be l = 7 m (beam length), h = b = 0.6 m (side of cross section), ρ = 1800 kg/m3

(material density), and E = 3 · 109 Pa (modulus of elasticity). We consider an axial
force N = 105 N applied as shown.

Under the previous hypotheses, we can predict the dynamic characteristics of the
beam using the relations (3-18) for no-tension materials and, for curvature values
near the elastic limit, relation (4-4) for the cubic constitutive equation.

We choose the following parameter values:

c =
√

E J/(ρbh)= 223.607 m2 / s elastic constant of the beam
χ0 = 2N/(Ebh2)= 0.0003086 m−1 limit elastic curvature
T = 2l2/(πc)= 0.1395 s fundamental elastic period
ν = 1/T = 7.17 Hz fundamental elastic frequency

Figure 9 shows a plot of the constitutive equation (3-7) together with the cor-
responding cubic approximation (4-1) for σ̄ = 528400 m2. Such a value of σ̄ is
obtained by minimizing the function

K (σ̄ )=
∫ √1/3σ̄

0

∣∣Mnt(χ)−Mc(χ, σ̄ )
∣∣ dχ,
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Figure 9. Constitutive equations for the beam section: N.T.M. (solid) and cubic approx-
imation (dashed).

where Mnt and Mc are given by (3-7), and (4-1), respectively. We assign the initial displacement

v(x, 0)= Ā sin
πx
l
, (5-1)

and consider five cases:

Ā1 = 0.0017 m χ1 = Ā1π
2/ l2
= 0.00034 m−1

Ā2 = 0.0019 m χ2 = Ā2π
2/ l2
= 0.00038 m−1

Ā3 = 0.0023 m χ3 = Ā3π
2/ l2
= 0.00046 m−1

Ā4 = 0.0030 m χ4 = Ā4π
2/ l2
= 0.00060 m−1

Ā5 = 0.0035 m χ5 = Ā5π
2/ l2
= 0.00070 m−1

For beams composed of no-tension materials, the fundamental frequency νnt = ω/(2πTc) is obtained
from the relations (3-18) and (3-22), with

κ0 = lχ0 = 0.0021605, A =
Ā
l
. (5-2)

In this way, we obtain for the fundamental frequencies

ν1nt = 7.166 Hz ν1nt/ν = 0.999 (ν1c = 7.042 Hz ν1c/ν = 0.982)

ν2nt = 7.151 Hz ν2nt/ν = 0.998 (ν2c = 7.010 Hz ν2c/ν = 0.978)

ν3nt = 7.074 Hz ν3nt/ν = 0.986 (ν3c = 6.935 Hz ν3c/ν = 0.967)

ν4nt = 6.849 Hz ν4nt/ν = 0.955 (ν4c = 6.766 Hz ν4c/ν = 0.944)

ν5nt = 6.662 Hz ν5nt/ν = 0.929 (ν5c = 6.613 Hz ν5c/ν = 0.922)

where the corresponding values for the cubic approximation, given by (4-4), are supplied in parentheses.
The results were compared with those obtained by the numerical methods described in [Lucchesi

and Pintucchi 2007]. The displacements of the midpoint of the beam have been analyzed via Fourier
transform, and the following fundamental frequencies were found:
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ν1num = 7.14 Hz ν1num/ν = 0.999

ν2num = 7.12 Hz ν2num/ν = 0.993

ν3num = 7.02 Hz ν3num/ν = 0.979

ν4num = 6.76 Hz ν4num/ν = 0.943

ν5num = 6.54 Hz ν5num/ν = 0.912

Figure 10 (which shows, by way of example, the Fourier transform of the numerical data corresponding
to Ā4) highlights the lower amplitude peaks at the expense of the predominant peak of the fundamental
frequency ν4num . Other superharmonic terms are observable near ν = 7ν4, the amplitude of which is
just 100 times lower than the amplitude of the fundamental. Therefore, the numerical results appear
to confirm that the displacements of the beam can be represented by the unimodal expression (3-9), by
using the fundamental frequency obtained from (3-18).

6.76 47.76
Ν@HzD

0.0001

0.0002

0.0003

0.0004

0.0005
A
���

@mD

Figure 10. The discrete Fourier transform of the numerical data for Ā = 0.003m.
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Figure 11. Frequencies obtained via the cubic equation (dashed curve) and the no-
tension equation (solid) are compared with the numerical solution (red squares).
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Figure 12. Midpoint displacement of the no-tension material beam for an initial ampli-
tude of Ā3 = 0.0023 m. Solid curve: analytic solution, given by v(t)= Ā3 cos(2πν3nt).
Dashed curve: numerical calculation. The curves are indistinguishable in the scale of
the graph for the first few cycles.

Figure 11 compares the fundamental frequencies obtained using the no-tension equation, the cubic
approximation, and the numerical code. The behavior of the cubic equation exhibits more marked soft-
ening for small values of Ā due to the absence of the linear elastic region. This difference is reduced
for larger values of the amplitude. The numerical results start at values near the no-tension curve and
exhibit a more rapid frequency decrease for greater values of Ā.

Lastly, Figure 12 shows the displacement of the midpoint of the beam as a function of time, comparing
the explicit solution with the numerical solution.

6. Conclusions

The method presented in this paper yields an explicit relation between the fundamental frequency and
the amplitude of the motion for freely vibrating beams composed of nonlinear elastic materials. This
method has been applied to slender masonry structures using the constitutive equation for no-tension
materials [Zani 2004]. The frequencies, determined analytically for some example applications, are in
good agreement with the frequencies predicted from applications of the numerical method presented in
[Lucchesi and Pintucchi 2007].
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