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MULTISCALE ANALYSIS OF NANOSCALE THIN FILM CONSIDERING
SURFACE EFFECTS: THERMOMECHANICAL PROPERTIES

JINBOK CHOI, MAENGHYO CHO AND WONBAE KIM

The classical model for a thin film, based on continuum theory, is independent of size, and ignores surface
effects. But the surface-to-bulk ratio becomes very large in small-scale structures such as nanofilms,
nanowires, and nanobeams, and surface effects play an important role. Molecular dynamics simulation
has been a conventional way to analyze these ultrathin structures, but structures in the range between
submicro and micro are difficult to analyze by molecular dynamics simulation due to the restrictions
of computing resources and time. In the present study, a continuum-based, size-dependent model is
developed for predicting the thermomechanical properties of nanoscale structures, especially thin films.
The proposed continuum-based thin plate finite element is efficient and reliable for the prediction of
nanoscale film behavior.

1. Introduction

As the applications of nanosized structures such as thin films, nanobeams, and nanowires have increased
in the field of electromechanical systems, the analysis of the physical and thermomechanical properties of
these structures has been an issue in the design of these devices and the prediction of their performance.

The properties of nanosized structures can differ sharply from the bulk properties of the same material
[Dingreville et al. 2005; Shenoy 2005], because surface effects, which are negligible in macrosized
materials, play a dominant role as the surface-to-volume ratio becomes larger. These phenomena have
been investigated in previous works with both experiments and molecular dynamics (MD) simulations.
Cuenot et al. [2004] studied the surface tension effect on the mechanical properties of nanomaterials with
electrostatic resonant-contact atomic force microscopy. The elastic properties of a silicon nanocantilever
were calculated via molecular dynamics techniques, and it was shown that the elastic modulus decreases
as the thickness of the specimen decreases [Park et al. 2005]. Miller and Shenoy [2000] and Cammarata
and Sieradzki [1989] demonstrated that this size dependence arises due to the increasing importance that
surfaces play as structures become smaller. It was shown by Cammarata [1994] that for a solid with one
or more dimensions under 10 nm, the surface stress could be a principal factor in determining behavior. It
was also shown that several kinetic and thermodynamic properties of thin polymer film could be changed
by decreasing the film thickness, due to the surface and interface effects [Lang et al. 2006]. The elastic
properties of ZnO nanofilms with different film thicknesses, surface orientations, and loading directions
were investigated in Cao and Chen [2008] using molecular mechanics. Song and Huang [2009] studied
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the effects of surface stress on bending behavior of nanowires with incremental deformation theory and a
high-order continuum model was developed by Song et al. [2010] to study wave propagation in nanowires
with surface effects. Some other researchers also considered size-dependent elasticity of nanowires due
to nonlinearity [Liang et al. 2005; Park and Klein 2008]. But in this study we are focusing on prediction
of the thermoelastic properties of thin film structures under the assumption of linear elasticity considering
small deformation and temperature change.

Recently, it has become possible to simulate these nanosized structures with MD simulations because
of the improvement in their numerical techniques and today’s computing power, but it is still difficult to
simulate structures in the range between the submicro and microscale due to restrictions of computing
resources and time. MD simulations are still limited to problems of several million atoms for just a
few nanoseconds. But it is often necessary to repeatedly analyze such structures to get an optimized
design in practical applications. It is not efficient to apply the classical MD simulations to these prob-
lems. Therefore, continuum methods are appropriate for these problems where it is not tractable to
apply the classical MD simulation. There have been several approaches to analyzing nanostructures
based on continuum theories. Gao et al. [2006] suggested a finite element model to describe the size-
dependent mechanical properties of nanostructures but did not try to obtain the surface elastic constants,
and temperature effects were not considered in their formulation. An energy-based continuum model for
the analysis of nanostructures was developed by Park et al. [2006] by adopting theories utilized in the
Cauchy–Born rules. They also decomposed the total potential energy of the system into a bulk energy
component and a surface energy component, but define the strain energy in terms of a relatively simple
pair potential.

In the present study, the continuum-based method is considered to predict the overall thermomechan-
ical properties of nanoscale structures. A general model for elastically isotropic solids with surface
stress was suggested by [Gurtin and Murdoch 1975a; 1975b; 1978]. This model was adopted recently
by some authors to analyze the elastic responses of nanoscale thin films [Lim and He 2004; Lu et al.
2006]. We especially focus on the investigation of the thermomechanical properties in thin film with a
thickness ranging from a few nanometers to several tens of nanometers, and the finite element method
(FEM) for the thin film structure is also implemented based on the continuum model. The proposed
continuum-based thin film FEM is efficient and reliable for the prediction of nanoscale film behavior.
Basically, the governing equations of this continuum model are based on the modified Kirchhoff plate
theory, including surface effects [Lim and He 2004; Lu et al. 2006]. These equations can describe the
dominant surface effects as the thickness of the thin film becomes very small [Miller and Shenoy 2000].
The conventional thin plate continuum model does not contain the surface energy term because this
effect is negligibly small in the macroscale, as mentioned above; however, the surface energy needs to
be considered in these nanosized structures. The present continuum model considering the size effect
needs three surface parameters to represent the surface effects of the thin film. In this study, the necessary
surface parameters are obtained from the MD simulations. Reliable and accurate surface parameters are
essential for guaranteeing the accuracy of the solution of the continuum-based thin film FEM.
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Figure 1. Thin film structures for the continuum model (a) and atomistic structure of
thin film (b): the alignments of bond chains of an atom in the surface and bulk are
different.

2. Equilibrium equation of the thin film considering surface effects

Kirchhoff plate theory considering surface effects. For a thin film structure with a very small length
scale in the thickness direction, a midplane, along with top and bottom surface layers of S+ and S− at
x3 =±h/2, can be defined, as shown in Figure 1a. In the figure the top and bottom surfaces are shown
with finite thickness, to stress that additional surface energy has to be added to the classical Kirchhoff thin
plate theory in order to consider the surface effects, but in fact, the surface layers do not have thickness
in our continuum model.

The reason we consider the surface and bulk energy separately is that the atoms in the surface layers
have fewer neighbors and consequently excess energy over atoms in the bulk (see Figure 1b). This energy
difference results in unique and interesting properties of nanosized thin film structures.

In Kirchhoff thin plate theory, the displacement fields of the bulk layer are defined as

uα = u0
α − x3u0

3,α, u3 = u0
3. (1)

The displacements of the top and bottom surface layers (s+, s−) are uS+
α , uS−

α , uS+
3 , and uS−

3 . The
displacement continuity conditions at the interface between the interior layer and surface layers can be
represented as

us−
α = uα

∣∣
x3=−h/2 = (u

o
α − x3w,α)

∣∣
x3=−h/2 = uo

α +
h
2
w,α, us+

3 = w,

us+
α = uα

∣∣
x3=h/2 = (u

o
α − x3w,α)

∣∣
x3=h/2 = uo

α −
h
2
w,α, us−

3 = w.
(2)

Temperature effects are considered in this study, so the temperature field is assumed to be linear through
the thickness as 1T (x1, x2) = 1T1+ x31T2. The temperature change of the upper (1T+) and lower
(1T−) surfaces of the thin film are given in the following form, respectively:

1T+ =1T1+
h
2
1T2, 1T− =1T1−

h
2
1T2. (3)

The virtual work principle is adopted to derive the governing equation of the thin film including the
surface energy contribution. The total virtual work is given in the following form for a static problem:
δ5= δU − δWE , where δU is the variation of the internal strain energy, and the variation of the external
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virtual work is given as

δWE =

∫
�

pα δu0
α + p3 δw d A, where d A = dx1 dx2, (4)

where pα is the tangential force intensity per unit area on the reference surface and p3 is the transversal
force intensity to the reference surface. The variation of the internal strain energy (δU ) consists of the
bulk energy and surface energy variations: δU = δUbulk+ δUsurf. The internal virtual bulk energy of the
plate under the Kirchhoff assumption is written as

δUbulk =

∫
v

σi j δεi j dv =
∫
�

∫ h/2

−h/2
σαβ(δε

0
αβ − x3 δw,αβ) dx3d A

=

∫
�

∫ h/2

−h/2
σαβ

1
2
(δu0

α,β + δu
0
β,α)− σαβx3 δw,αβ dx3d A

=

∫
Nαβ δu0

α,β −Mαβ δw,αβ d A, where
∫ h/2

−h/2
(σαβ, σαβx3) dx3 = (Nαβ,Mαβ).

(5)

The surface internal virtual energy is expressed by

δUsurf =

∫
�+
τ+αβ δε

s+
αβ + τ

+

α3 δγ
s+
α3 d A+

∫
�+
τ−αβ δε

s−
αβ + τ

−

α3 δγ
s−
α3 d A. (6)

Using the strain-displacement relationship in the surface, the surface internal virtual work can be written
as

δUsurf =

∫
�+
τ+αβ δε

s+
αβ + τ

+

α3δ(u
s+
α,3+ us+

3,α) d A+
∫
�+
τ−αβδε

s−
αβ + τ

−

α3δ(u
s−
α,3+ us−

3,α) d A

=

∫
�+
τ+αβδε

s+
αβ + τ

+

α3δ(u
s+
3,α) d A+

∫
�+
τ−αβδε

s−
αβ + τ

−

α3δ(u
s−
3,α) d A.

(7)

By replacing the surface displacements us±
i in (7) with the bulk displacements uα and w using the

displacement continuity conditions in (2), the final surface virtual work becomes

δUsurf =

∫
�+
τ+αβ δ

(
u0
α,β −

h
2
w,αβ

)
+ τ+α3 δ(u

s+
3,α) d A+

∫
�+
τ−αβ

(
u0
α,β +

h
2
w,αβ

)
+ τ−α3 δ(u

s−
3,α) d A. (8)

Here, the domains �+ and �− are defined at x3 =+h/2 and x3 =−h/2, respectively, but are all equal to
the midplane domain (�) for plate configurations. Therefore, the surface virtual work can be rewritten
as

δUsurf =

∫
�+
(τ+αβ + τ

−

αβ) δu
0
α,β +

h
2
(−τ+αβ + τ

−

αβ) δw,αβ +(τ
+

α3+ τ
−

α3) δ(w,α ) d A. (9)

Then, we can get the final variational equation as follows:

δ5= δU (δUbulk+ δUsurf)− δWE

=

∫
�

(Nαβ + τ+αβ+τ
−

αβ) δu
o
α,β −

{
Mαβ +

h
2
(τ+αβ − τ

−

αβ)
}
δw,αβ

+(τ+α3+ τ
−

α3) δw,α d A−
∫
�

pα δu0
α + p3 δw d A.

(10)
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From (10), the following equilibrium equations can be obtained (see the Appendix):

Nαβ,β + τ+αβ,β + τ
−

αβ,β + pα = 0, Mαβ,αβ +
h
2
(τ+αβ,αβ − τ

−

αβ,αβ)+ (τ
+

α3,α + τ
−

α3,α)+ p3 = 0. (11)

If we set N ∗αβ = Nαβ + τ+αβ + τ
−

αβ and M∗αβ = Mαβ +
h
2
(τ+αβ + τ

−

αβ), (11) can be simplified as

N ∗αβ,β + pα = 0, M∗αβ,αβ + (τ
+

α3,α + τ
−

α3,α)+ p3 = 0. (12)

The boundary conditions can be of the following forms:

• u0
α prescribed or N ∗αβnβ specified.

•
∂w
∂n

prescribed or M∗αβnαnβ specified.

• w prescribed or
∂(M∗αβ tβ)

∂t
+M∗αβ,β + (τ

+

α3+ τ
−

α3) specified.

Constitutive equations for the bulk and surface layers. If the bulk and surface layers are assumed to be
homogeneous and isotropic material, the constitutive equation for the bulk layers can be expressed as

σi j = λεkk δi j + 2µεi j +
Eα

1−ν
1T δi j , (13)

where λ and µ are Lamé’s constants, α is the coefficient of thermal expansion, and 1T is the temperature
change. In addition, the face-centered cubic crystal structures exhibit elastic anisotropy, which means
the modulus is dependent on orientation. Therefore, the following stress-strain relationship is used for
the bulk in this study:

σ11

σ22

τ12

=
 E/(1− ν2) Eν/(1− ν2) 0

Eν/(1− ν2) E/(1− ν2) 0
0 0 G


ε11

ε22

γ12

+ Eα
1−ν


1T
1T

0

 , (14)

where E and G are the Young’s modulus and shear modulus, respectively, and ν is the Poisson’s ratio.
The constitutive equations for the surface layers are given by [Gurtin and Murdoch 1975a; 1975b; 1978],
and these surface constitutive equations are modified to consider the temperature effects by including the
surface thermal constant (2) [Murdoch 1976]. If the top and bottom surface layers consist of the same
material, the equations are expressed as

τ±αβ = τ0 δαβ + (µ0− τ0)(u±α,β +u±β,α)+ (λ0+ τ0)u±γ,γ δαβ + τ0u±α,β −21T± δαβ, τ±α3 = τ0u±3,α, (15)

where τ0 is the surface residual tension, and µ0 and λ0 are the surface Lamé’s constants.
The surface stress is usually defined as ταβ = τ0 δαβ + Sαβγ δεγ δ [Miller and Shenoy 2000], where ταβ

is the surface stress, Sαβγ δ is surface elastic modulus tensor, and τ0 is the surface residual tension when
the bulk is unstrained. Therefore, the surface stress ταβ depends on the strain but the constant τ0 does not
change with the relaxation of the thin film with different thicknesses. We obtained this surface residual
tension τ0 from the MD simulations and used it in our finite element model. A rigorous formed surface
constitutive relation can be obtained through the surface-Cauchy–Born rule considering atomic potential
[Park et al. 2006]. However, the present approach is valid for linearized small deformation problems.
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3. Finite element formulation including surface effects

The finite element formulation is derived from the variational equation (10). Before writing the final
variational equation for the stiffness matrix, we introduce the necessary notation. First set

T1 = {1T1,1T1, 0}T , T2 = {1T2,1T2, 0}T , Tm = {2τ0, 2τ0, 0}T .

Then write the generalized resultant forces N∗ and moments M∗ in matrix form as
N ∗11
N ∗22
N ∗12

=


2τ0

2τ0

0

− (Ehα
1−ν
+22

)
T1 + Cm


u1,1

u2,2

u1,2+u2,1

 , (16)


M∗11
M∗22
M∗12

=−h2

2
2T2 − Cb


w,11

w,22

w,12+w,21

 , (17)

where the constitutive matrices Cm and Cb for the membrane and bending parts are given by

Cm =


Eh

1−ν2 + 4µ0+ 2λ0
Eνh

1−ν2 + 2λ0+ 2τ0 0

Eνh
1−ν2 + 2λ0+ 2τ0

Eh
1−ν2 + 4µ0+ 2λ0 0

0 0 Gh+ 2µ0− τ0

 , (18)

Cb =


Eh3

12(1−ν2)
+

h2

2
(2µ0+ λ0)

Eνh3

12(1−ν2)
+

h2

2
(λ0+ τ0) 0

Eνh3

12(1−ν2)
+

h2

2
(λ0+ τ0)

Eh3

12(1−ν2)
+

h2

2
(2µ0+ λ0) 0

0 0 Gh3

12
+

h2

2
µ0

 . (19)

We next introduce the vectors

Eq = {ui , vi }
T and Ed = {wi , θxi , θyi }

T ,

representing respectively the nodal degrees of freedom for the membrane components and the element
degrees of freedom for the bending components.

Using the area coordinates L1, L2, L3 as interpolation functions, we can write

Eu =
3∑

i=1

[
L i 0
0 L i

]{
ui

vi

}
= Nm Eq and w =

3∑
i=1

[
Ni Nxi Nyi

]
wi

θxi

θyi

= NT
b
Ed (20)

for the interpolation of in-plane displacements Eu (using isoparametric mapping) and the out-of-plane
displacement w (using subparametric mapping).
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We can now write the final variational equation for the stiffness matrix as

δ5= δU − δWE =

∫
�

N∗ δEε+M∗ δ Eψ + 2τ0 δ Eφ d A−
∫
�

Ep δEu+ Ep3 δ Ew d A

=

∫
�

δEqT BT
m Tm + δEqT BT

m Cm Bm Eq − δEqT BT
m

(Ehα
1−ν

+ 22
)

T1− δ EdT BT
b Cb Bb Ed + 2τ0 δ EdT BT

−δ EdT BT
b

h2

2
2T2 d A−

∫
�

δEqT NT
m Ep+ δ Ed

T NT
b Ep3 d A = 0, (21)

where

Eε =


∂u/∂x
∂v/∂y

∂v/∂x + ∂u/∂y

=
3∑

i=1

∂L i/∂x 0
0 ∂L i/∂y

∂L i/∂y ∂L i/∂x

{ui

vi

}
≡ BT

m Eq, (22)

Eψ =


∂2w/∂x2

∂2w/∂y2

2∂2w/∂x∂y

=
3∑

i=1

 ∂2 Ni/∂x2 ∂2 Nxi/∂x2 ∂2 Nyi/∂x2

∂2 Ni/∂y2 ∂2 Nxi/∂y2 ∂2 Nyi/∂y2

2∂2 Ni/∂x∂y 2∂2 Nxi/∂x∂y 2∂2 Nyi/∂x∂y


wi

θxi

θyi

= BT
b
Ed, (23)

Eφ =

{
∂w/∂x
∂w/∂y

}
=

3∑
i=1

[
∂Ni/∂x ∂Nxi/∂x ∂Nyi/∂x
∂Ni/∂y ∂Nxi/∂y ∂Nyi/∂y

]
wi

θxi

θyi

= BT Ed. (24)

The vector Eψ represents the curvature. The load vectors resulting from the temperature change are∫
�

BT
m

(Ehα
1−ν

+ 22
)

T1 d A,
∫
�

BT
b

(h2

2

)
2T2 d A,

for the membrane and bending components in (21).
In Kirchhoff plate theory, the governing differential equations require transverse displacement and

slope continuity across the element boundary, so a nonconforming C1 continuity finite element is used
[Specht 1988; Cho and Parmerter 1994; Oh and Cho 2004; Oh et al. 2008].

In the present study, the thermomechanical surface parameters τ0, λ0, µ0, and 2 are determined by
fitting them into the results of MD simulations. The detailed procedure is given in the next section. Once
these parameters are determined, the thermomechanical behavior of the nanofilm can be easily analyzed
by the present finite element for various thermal and mechanical loading cases.

The geometry and coordinates for the triangular element are shown in Figure 2. For this bending
element, the nodal displacement vector Ed is

EdT
= {wi , θxi , θyi }, (25)

where θxi = w,y and θyi =−w,x . The primary unknowns are expressed in terms of nodal variables and
shape functions as

w =

3∑
i=1

wi Ni + θxi Nxi + θyi Nyi , (26)

where the shape functions Ni , Nxi , and Nyi , for i = 1, 2, 3, can be written as

Ni = n3i−2, Nxi = n3i−1, Nyi = n3i .



168 JINBOK CHOI, MAENGHYO CHO AND WONBAE KIM

The basis of shape functions in the area coordinate system is given by

na =

9∑
a=1

Z−1
ar zr , a = 1, 2, . . . , 9, (27)

where
z1 = L1, z2 = L2, z3 = L3,

z4 = L1L2, z5 = L2L3, z6 = L3L1,

z7 = L2
1L2+

1
2 L1L2L3

(
3(1−µ3)L1− (1+3µ3)L2+ (1+3µ3)L3

)
,

z8 = L2
2L3+

1
2 L1L2L3

(
3(1−µ1)L2− (1+3µ1)L3+ (1+3µ1)L1

)
,

z9 = L2
3L1+

1
2 L1L2L3

(
3(1−µ2)L3− (1+3µ2)L1+ (1+3µ2)L2

)
,

(28)

with

µ1 =
l2
3 − l2

2

l2
1

, µ2 =
l2
1 − l2

3

l2
2

, µ3 =
l2
2 − l2

1

l2
3

(29)

(recall from Figure 2 that l1, l2, and l3 are the triangle side lengths), and where the inverse transformation
matrix is given by

Z−1
ar =



1 0 0 −1 0 1 2 0 −2
0 0 0 0 0 a12 −a13 0 −a12

0 0 0 0 0 a22 −a23 0 −a22

0 1 0 1 −1 0 −2 2 0
0 0 0 a13 0 0 −a13 −a11 0
0 0 0 a23 0 0 −a23 −a21 0
0 0 1 0 1 −1 0 −2 2
0 0 0 0 a11 0 0 −a11 −a12

0 0 0 0 a21 0 0 −a21 −a22


, (30)
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Figure 2. Geometry and coordinates for plate bending element with nine degrees of freedom.
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with

[ai j ] =

[
2A
∂L j

∂xi

]
=

[
y2− y3 y3− y1 y1− y2

x3− x2 x1− x3 x2− x1

]
.

The determination of z7, z8, and z9 is based on the following considerations. From the boundary
conditions, the energy associated with interelement jumps can be written

1U0s =

∫
0s

M∗nn1
(
∂w
∂n

)
d0+

∫
0s

M∗ns1
(
∂w
∂s

)
d0. (31)

Physically, there should be no energy associated with these interelement discontinuities; so we set
both terms of (31) to zero.

Since w(s) is uniquely determined from the two node data, 1w,s is equal to zero. For a constant state
of bending moments, the following condition should be required to pass the bending patch test:

M∗nn

∫
0s

1
(∂w
∂n

)
d0 = 0. (32)

Thus the quadric polynomials z7, z8, and z9 are determined to satisfy (32). The transformation matrix
Zar is regular for an arbitrary geometry of the triangle.

As is seen above, each of the constitutive matrices for the membrane and bending components contains
the surface parameters which represent the surface effects. The membrane and bending stiffness matrices,
which are required for the finite element implementation, can be expressed as follows from (21):

Km =

∫
�

BT
m Cm Bm d A, Kb =

∫
�

BT
b Cb Bb d A. (33)

4. Molecular dynamics simulations

Determination of surface parameters. The accuracy of the solution obtained from the finite element
analysis based on the continuum model, which considers surface effects, is dependent on the reliability
of the surface parameters τ0, µ0, and λ0.

Generally, these parameter values can be provided by experiments or MD simulations. In this study,
the necessary surface parameters are obtained from MD simulations with open source code [LAMMPS
2008].

Figure 3 shows the configuration of the unit cell of copper thin film. The periodic boundary conditions
are applied along the x1 and x2 directions, and the free boundary condition is applied in the x3 direction.
The dimensions of the unit cell are about 20 nm for the x1 and x2 directions, and 4.3 nm in the x3

1
x

1
x

2
x

3
x

2
x

3
x

[0 0 1]

[1 0 0]
[0 1 0]

Figure 3. Molecular dynamics simulation model for copper thin film with (100) surface.
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direction. The simulation temperature is 0.1 K. The surface crystallographic orientation of the unit cell
is the (100). The simulation cell size to get the bulk properties of copper is about 20 nm in all directions
and the simulation cell satisfies the periodic boundary conditions in the x1 [100], x2 [010] and x3 [010]
directions respectively. The surface parameter values (τ0, µ0, and λ0) are provided by MD simulations
with the embedded atom method potential for the copper thin film. To determine the surface stress,
energy minimization is performed for the atoms at the surface to obtain their equilibrium positions. The
simulation cell, shown in Figure 3, is then strained to calculate the total energy. The total energy of the
thin film consists of the strain energy in the bulk and on the surface; therefore, the surface energy must
be extracted from the total energy. If the area of the surface is defined as A (= dx1dx2), the total energy
can be expressed as a function of strain [Shenoy 2005]: Etotal = Esurface+ Ebulk = 2AEs(ε)+ h AEb(ε),
where Es(ε) and Eb(ε) are the surface energy and bulk energy, respectively. The total energy is linear
with respect to the thickness h of the thin film. Therefore, the linear fit, which is made with the Etotal and
h data, can give the surface energy. Once the total surface energy is obtained, the surface stress can be
obtained from the definition of surface stress: τ 0

i j = 1/A(∂Esurface/∂εi j )ε=0 [Haiss 2001]. The obtained
surface residual tension for copper with a (100) surface is τ0 = 1.0398 N/m.

The MD simulation is performed as well and two elastic constants (C11 and C12) can be obtained. A
thin film with (100) surface orientation has the same directional properties in the x1 [100] and x2 [010]
directions. Therefore, it is possible to calculate both C11 and C22 just with one simulation because the
thin film structure has the same C11 and C22 components in this orientation. But, the thin film with
(110) surface orientation has different directional properties along the [100] and [110] directions. So,
the values of C11 and C22 are different from each other. Two times the strain tests with respect to ε11

and ε22 are required to calculate C11, C22, and C12 respectively. The simulation cell is strained along the
x1 direction, that is, ε11 has a specific value while constraining the deformation along the x2 direction
(ε22 = 0). The correlation between components of the constitutive matrix for the membrane part of the
finite element model (see (18)) and the corresponding two elastic constants from the MD simulations
yield the equations

C11 =
Eh

1−ν2 + 4µ0+ 2λ0, C12 =
Eνh

1−ν2 + 2λ0+ 2τ0. (34)

Here all variables except µ0 and λ0 are already known, so the two unknown surface constants are easily
determined to be µ0 =−8.755 N/m and λ0 = 15.843 N/m at the matching point. The surface parameter
values do not vary significantly as shown in Table 1 for the films with different thicknesses. Here, the
surface residual tension is assumed to be constant as mentioned above.

thickness (Å) τ0 µ0 λ0

14.72 1.0398 −8.571 15.432
29.25 1.0398 −8.643 15.638
43.75 1.0398 −8.755 15.843

Table 1. Surface parameter values.



THERMOMECHANICAL ANALYSIS OF NANOSCALE THIN FILM CONSIDERING SURFACE EFFECTS 171

After the three surface constants are determined, the surface thermal constant is also obtained from the
results of the MD simulations. The temperature is increased from 0 K to 500 K, and the thermal strains
are calculated at every 100 K increment during the simulations.

A certain amount of deviation in the results cannot be avoided due to the nature of MD simulations;
this deviation tends to be larger as the temperature increases. This is the reason why MD simulations
are usually performed several times and averaged values taken. Here, the average of thermal strain can
be considered to be uniform in a relatively low temperature range as shown in the graph (the black
solid line in Figure 4a). Consequently, the averaged strain values are obtained as u1,1 = 0.001291 and
u2,2 = 0.001268 (see Table 2). From the constitutive relation about the membrane components described
in (16), we obtain the following relation:

N ∗11 = 2τ0−

(Ehα
1−ν

+ 22
)
1T1+

( Eh
1−ν2 + 4µ0+ 2λ0

)
u1,1+

( Eνh
1−ν2 + 2λ0+ 2τ0

)
u2,2. (35)

Here, because N ∗11 is zero due to the stress free condition and all other variables are known except the
surface thermal constant (2), the surface thermal constant is determined to be 2=−3.216× 10−4. A
more detailed procedure for finding the equilibrium state and straining process can be found in the next
section.

We could also observe an almost constant coefficient of thermal expansion (CTE) of the copper thin
film in the temperature range lower than 500 K from the MD simulations in Figure 4b. It is thus reasonable
to use the proposed model in the smaller temperature range assuming small temperature variance.

Modulus computations of copper thin film with thickness variations. The mechanical properties of thin
films with different thicknesses, such as the Young’s modulus, the shear modulus, and the Poisson’s ratio,
are provided by the MD simulations and compared with the FEM results. In this study, we consider two
configurations: (100) surface orientation and [100] loading direction ((100)/[100]) and (100) surface
orientation and [110] loading direction ((100)/[110]). Figure 6 shows the simulation configurations and
coordinate systems. The simulation conditions are basically the same as those explained in the previous
section except for thickness variations.

We have five simulation models for the thin film with different thicknesses:

h = 14.64, 29.11, 43.62, 58.23, 115.98 (Å).

The first step of MD simulation is to find the equilibrium states of the simulation cells. To this
end, the NPT ensemble (the number of atoms, pressure, and temperature of the system will remain

Temp. (K) ε11(u1,1) ε22(u2,2)

100 0.001252 0.001281
200 0.001257 0.001234
300 0.001402 0.001228
400 0.001079 0.001421
500 0.001466 0.001178
Avg. 0.001291 0.001268

Table 2. Strains caused by temperature change.
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constant) is adopted and we set the initial conditions of temperature, pressure, and lattice constant (a0)
as T = 0.1 K, P = 0 bar, and a0 = 0.362 nm, respectively. As mentioned in the previous section, the
simulation cell boundary lateral surfaces satisfy periodic boundary conditions and the bounding surface
in the x3 direction is free. MD simulation up to 100 ps is performed with the NPT ensemble to get the
equilibrium state, followed by the NVT ensemble (where the number of atoms, volume, and temperature
of the system will remain constant) for 50 ps to obtain the initial stresses. Then the simulation cell is
strained as ε = 0.01 for 100 ps in each step and the averaged stress is calculated under the equilibrium
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state. Finally, the mechanical properties of the thin film are computed based on the obtained stress and
strain relation. The simulation results are given in the following chapter for both thin film configurations.

5. Numerical examples

Mechanical properties: Young’s modulus, shear modulus, and Poisson’s ratio. The elastic properties
of thin film can be different with respect to the surface orientation and loading direction. In this study,
the elastic properties are obtained from FEM simulation and compared with MD simulation results under
two configurations as mentioned in the previous chapter.

A tensile test for the Cu thin film is performed to compute the Young’s modulus and Poisson’s ratio
with the proposed FEM based on continuum theory considering surface effects. The pure shear test
is also carried out to compute the shear modulus. As explained in the previous section, the surface
parameter values are obtained from the MD simulations when the thickness of the copper thin film is
about 43 Å, that is, this is the matching point between the finite element model and the MD simulations.
If the necessary surface parameters are determined at this point, we do not need to do any more MD
simulations about the thin film with other thickness dimensions to determine surface parameters. This
means that the suggested continuum model does not require excessive computing time and can give us
the mechanical response of the thin film in a very short period of time. The rest of the moduli of the thin
film with different thicknesses can be calculated by the continuum based-finite element model with the
fitted surface parameter values.

In each simulation, 200 finite elements are used as depicted in Figure 7, which also represents the
deformed configuration of the thin film model due to surface effects only. When there are no externally
applied forces, the thin film with positive surface stress shrinks to be in a relaxed state. As is shown in
the left part of Figure 8, the modulus of the thin film with (100) surface and [100] loading direction is
smaller than that of the bulk material by 23% when the thickness is about 14 Å. However, the modulus
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Figure 7. Initial finite element mesh configuration (blue dashed line) and relaxation due
to surface effects only (red solid line).
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Figure 8. Young’s modulus (left) and shear modulus (right) of a copper thin film with
(100) surface, and under [100] loading.

converges to the bulk counterpart as the thickness increases. The moduli calculated by the FEM agree
well with the results from the MD simulation. This softening phenomenon can be explained by the atomic
coordination. The atomic coordination is low on the surfaces compared to the bulk and the modulus tends
to be softer. From MD simulations, the elastic constant of a surface with the (100)/[100] configuration
is negative due to the bond loss. Considering that total stiffness is equal to bulk stiffness plus surface
stiffness, negative surface stiffness causes the overall stiffness of thin film to be smaller than the bulk
counterpart. Moreover, this effect becomes more dominant as the thickness gets smaller as shown in
Figure 8, left. Similar phenomena have also been observed by other researchers [Miller and Shenoy
2000; Gao et al. 2006]. The bulk Young’s modulus (E) of a single crystal structured copper, which is
used in this study, is about 62.09 GPa and the bulk shear modulus (G) is 76.46 GPa. The Poisson’s ratio
(ν) is 0.424. These values are obtained by MD simulation for the bulk copper material and are very close
to the reference values [Simmons and Wang 1971].

Figure 8, right, compares the shear moduli predicted by the FEM and MD calculations. Unlike the
Young’s modulus, the shear modulus is larger for thin films that its bulk value, and it converges to its
bulk counterpart as the thickness increases. To our knowledge, the literature does not so far contain
predictions of shear modulus for a thin film. The shear modulus is calculated by the relation τ = Gγ
where τ , G, and γ are the virial stress, shear modulus, and engineering shear strain. The MD simulation
is carried out in the shear strained unit cell configuration. Virial stress is obtained as a result of the MD
simulation, and increases as the thickness gets smaller, because the pairwise interaction forces between
atoms increase due to the contraction effect caused by surface stress.

The results of the Poisson’s ratio of a copper thin film with (100) surface are plotted in Figure 9. For
a thin film under [100] loading direction, the Poisson’s ratio becomes larger than the bulk counterpart
when the thickness gets smaller. The Poisson’s ratio is defined as ν =−εyy/εxx , where εxx and εyy are
the strains along the x and y directions. In the case of a thin film with the (100)/[100] configuration,
greater contraction in the y direction and less extension in the x direction are observed due to positive
surface stress, because a thin film with positive surface stress shrinks in a relaxed state. Therefore, when
the thickness of the thin film is smaller, a larger Poisson’s ratio is observed. The results of the FEM
agree with those of the MD simulations.
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MD FEM
h (Å) C11,C22 C12 C66 C11,C22 C12 C66

14.64 99.59 70.70 100.98 100.68 73.16 106.77
29.11 87.63 52.48 89.18 87.99 52.72 91.18
43.62 83.73 45.86 85.95 83.73 45.86 85.95
58.23 81.11 41.60 84.01 81.60 42.42 83.33

115.98 77.52 35.44 79.46 78.38 37.24 79.38

Table 3. Elastic constants of single crystal copper thin film with (100) surface orienta-
tion and [100] loading direction.

In this study, we consider a face centered cubic (FCC) material which has cubic symmetry. The
elastic deformation of this material can be represented by the three constants C11, C12, and C66 in the
Voigt notation. These elastic constants of a single crystal copper thin film with (100) surface orientation
and [100] loading direction are computed by MD simulations and FEM according to the change in the
thickness and are tabulated in Table 3. The corresponding elastic constants from the MD simulation and
FEM are almost the same.

For a thin film under the (100)/[110] configuration, the stiffness of the thin film can be regarded as a
45◦ rotation of the (100)/[100] thin film configuration, as depicted in Figure 10. So it is expected that the
elastic constants from MD simulations about the (100)/[110] configuration would be the same as those
computed by using the elastic constants of the (100)/[100] thin film configuration through the stiffness
transformation relationship between the two configurations [Tsai and Hahn 1980].

The MD simulation for copper thin film with the (100)/[110] configuration is performed and elastic
constants are obtained (MD (I)). These are compared with the transformed elastic constants (MD (II))
of the thin film with the (100)/[100] configuration in Table 4. The corresponding quantities are similar
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Figure 9. Poisson’s ratio of a copper thin film with (100) surface and under [100] load-
ing direction, where a dotted circle indicates the matching point between the result of
the FEM and that of the MD simulations.
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MD (I) MD (II) FEM
h (Å) C11,C22 C12 C66 C11,C22 C12 C66 C11C22 C12 C66

14.64 179.11 −17.70 14.65 186.12 −15.83 14.44 193.69 −19.84 13.76
29.11 153.39 −20.19 17.91 159.24 −19.12 17.57 161.54 −20.83 17.64
43.62 145.46 −20.87 18.57 150.74 −21.15 18.94 150.74 −21.15 18.94
58.23 143.35 −21.20 19.12 145.36 −22.65 19.75 145.34 −21.32 19.59

115.98 134.57 −22.10 20.61 135.93 −22.98 21.04 137.19 −21.57 20.57

Table 4. Elastic constants of single crystal copper thin film with (100) surface orienta-
tion and [110] loading direction.

to each other and the elastic constants obtained by FEM are also close to both the MD (I) and MD (II)
simulation results in the thin film with different thicknesses.

The comparison of the Young’s modulus and shear modulus of thin film with (100) surface orientation
and [110] loading direction between the MD simulations and FEM is shown in Figure 11. But the
trend of variations of the Young’s modulus and shear modulus is opposite to those of the thin film with
the (100)/[100] configuration. Especially for the Young’s modulus, the modulus gets larger than bulk
counterpart as the thickness becomes smaller. FEM results also show good agreement with those of the
MD simulations.

From the results shown above, there is an obvious size effect for mechanical properties of nanosized
thin film with thickness variations. In addition, the mechanical properties for a single crystal structure
are strongly dependent on the loading directions.

Bending rigidity and the coefficient of thermal expansion. The surface effects are also introduced in
bending as an additional force. The flexural rigidity of the bulk thin plate is Db =

1
12 Eh3/(1− ν2) and

the flexural rigidity of thin film is D f =
1

12 Eh3/(1− ν2)+ 1
2 h2(2µ0 + λ0), while the nondimensional

flexural rigidity is plotted in Figure 12. The quantity (D f −Db)/Db for the thin film with the (100)/[100]
configuration becomes small with decreasing thickness because negative surface stiffness also softens
the flexural rigidity. But it tends to converge in the opposite way in the case of the thin film with
the (100)/[110] configuration. Figure 13 shows the comparison of the CTE from the FEM and MD
simulations. The bulk value of the CTE is obtained as 1.65× 10−5/K from the MD simulations, which is

Figure 10. Top view of the (100) surface of FCC copper thin film.
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Figure 11. Young’s modulus of a copper thin film (left) and shear modulus with (100)
surface and under [110] loading direction (right).
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almost the same as the reference value [Shackelford and Alexander 2000]. The CTE of a copper thin film
with (100) surface decreases as the thickness of the film decreases [Pathak and Shenoy 2005]. Generally,
the change in the film area with temperature can be written as 1A/A0 = α1T , where 1A is the change
of area, A0 is the initial area, and α is the CTE. Temperature rise usually expands the size of the thin film.
But when the thickness gets smaller, the role of surface stress becomes more prominent and the positive
surface stress tends to shrink the thin film. Therefore, the area of the film is decreased and the CTE of
the thin film becomes smaller than that of the bulk. For a thin film with FCC (100) surface orientation,
it exhibits in-plane symmetry so that the CTE does not change with respect to the directions.

Buckling analysis. To investigate how the surface effect affects the buckling behavior of the nano thin
film, the buckling analysis is carried out for free standing copper thin film.

For a thin film, the strain energy subjected to in-plane forces can be written as U =Ub+Us , where
Ub is the strain energy due to the bending including surface effects and Us is the strain energy due to the
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Figure 13. CTE of a copper thin film with a (100) surface. (CTEbulk(αbulk)= 1.65× 10−5 /K).

in-plane forces, given by [Abbas and Thomas 1977]

Us =
1
2

∫
�

[
N11

(
∂w
∂x1

)2
+ N22

(
∂w
∂x2

)2
+ 2N12

(
∂w
∂x1

)(
∂w
∂x2

)]
d A, Nαβ =

∫ h/2

−h/2
σαβ dz, (36)

or, in matrix form,

Us =
1
2

∫
�

[
∂w
∂x1

∂w
∂x2

] [
N11 N12

N12 N22

] ∂w∂x1
∂w
∂x2

 d A. (37)

By using the derivative of the lateral displacement w given in (20), we have

Us =
1
2

∫
�

{ Ed}T BT
[N]B{ Ed} d A. (38)

The differentiation in (38) with respect to the nodal displacements gives a geometric stiffness:

[Ks] =

∫
�

BT
[N]B d A. (39)

We assemble the element matrices to get the static stability matrix equation

([Kb] − λ[Ks]){ Ed} = 0, (40)

where λ is the buckling load. Equation (40) was solved for a thin film structure with simply supported
boundary conditions, and the results are shown in Figure 14. For copper thin film with a (100) surface
orientation, the buckling parameter K = N ∗b2/(π2 D) of the film becomes smaller as the thickness
decreases, due to surface effects. The surface effects do not change the fundamental buckling mode
shape, shown in Figure 15. As the thickness increases, the buckling parameter value converges to the
bulk value obtained by ignoring surface effects.

The buckling of a thin film with high aspect ratio (a/b = 10) was considered next, and the results are
shown in Figure 16. All edges are clamped in the left half of the figure and simply supported the right
half. Again, there is no change in fundamental buckling mode shape due to the surface effects, but the
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buckling parameter values of the thin film considering surface effects are lower than those of the bulk
when the thickness becomes smaller, as shown in Figures 14 and 16.

The postbuckling behavior of the nano thin film is quite different from that of the proposed continuum
plate behavior with the size effect. The atomistic potential behavior is totally different from the continuum
linear elastic behavior because the atomic behavior includes the highly geometric nonlinear effect as well
as the inelastic effects such as twining and slip. However, the onset of instability can be reasonably well
described by the linear elastic buckling analysis. Thus the linear buckling analysis of nanoscale thin
films can provide a guideline for the onset of structural instability.

6. Conclusions

In this study, a continuum model considering of the surface effects of thin film is suggested and a fi-
nite element formulation is also implemented. Because this continuum model is properly modified for
nano sized thin film by adding the surface energy contribution to the classical thin plate theory in the
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Figure 14. Buckling parameter K for a roughly square copper thin film with a (100)
surface is clamped on all edges and compressed biaxially (left), or simply supported on
all edges and subjected to pure shear (right).

Figure 15. Shape of fundamental buckling mode for the experiments of Figure 14.
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Figure 16. A strip of copper thin film with a (100) surface is clamped on all edges and
compressed uniaxially (left), or alternatively simply supported on all edges and subjected
to pure shear (right). Top: buckling parameters; bottom: shape of fundamental buckling
mode.

macroscale, it can represent the dominant surface effects which should be considered in nanoscale thin
film structures.

The suggested continuum model should serve as a useful alternative method to overcome the limi-
tations of conventional molecular dynamics (MD) simulations, such as excessive required computing
resources and time. The proposed continuum model can also be used when we need to carry out the
design modification and analysis process repeatedly for practical applications in the mesoscale range.
To accurately predict the properties of thin film structures, reliable material constants of its bulk and
surface should be known. Therefore, precise measurement techniques and MD simulation methods are
essential factors. The thermomechanical responses of the thin film with other surface orientations will
be addressed in future.

Appendix: Equilibrium equations and boundary conditions

The principle of virtual work states that the stress, body force, and traction are in equilibrium if and
only if the internal virtual work equals the external virtual work for every virtual displacement field.
Therefore, the following equation can be derived by applying integration by parts and the divergence
theorem to obtain the equilibrium equations from (10):

δ5=

∫
�

−(Nαβ,β + τ+αβ,β+τ
−

αβ,β) δu
o
α −

{
Mαβ,αβ +

h
2
(τ+αβ,αβ − τ

−

αβ,αβ)
}
δw

− (τ+α3,α + τ
−

α3,α) δw− pα δuo
α − p3 δw d A+Boundary Conditions. (A.1)

The boundary terms are summarized as the following. First, the boundary conditions of the bulk part are
considered:

δU boundary
bulk =

∫
∂S

Nαβnβ δu0
α +Mαβ,βnβ δw−Mαβnβ δw,α d S. (A.2)
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The boundary conditions are usually expressed in terms of directions that are normal and tangent to
the boundaries. Therefore, the derivatives of w in Cartesian coordinates can be represented in terms of
derivatives in the normal direction (∂w/∂n) and the tangent direction (∂w/∂t) of the boundary:

w,α =
∂w
∂n

nα +
∂w
∂t

tα. (A.3)

Substituting (A.3) into (A.2) we obtain

δU boundary
bulk =

∫
∂S

Nαβnβ δu0
α +Mαβ,βnβ δw−Mαβnβ δw,α d S

=

∫
∂S

Nαβnβ δu0
α +Mαβ,βnβ δw−Mαβnβ δ

(
∂w
∂n

nα +
∂w
∂t

tα
)

d S

=

∫
∂S

Nαβnβ δu0
α +Mαβ,βnβ δw−Mαβnβnα δ

(
∂w
∂n

)
−Mαβnβ tα

(
∂w
∂t

)
d S, (A.4)

where the fourth term can be changed to the following form through integration by parts:∫
∂S

Mαβnβ tα
(
∂w
∂t

)
d S =

[
Mαβnβ tα

(
∂w
∂t

)]S2

S1
−

∫
∂S

(
∂Mαβnβ tα

∂t

)
δw d S. (A.5)

If the boundary is a closed smooth curve, the start and end points are the same and the first term vanishes
in above equation. Therefore, the final form of the boundary condition for the bulk part is given as

δU boundary
bulk =

∫
∂S

Nαβnβ δu0
α −Mαβnβnα δ

(
∂w
∂n

)
+

(
∂(Mαβnβ tα)

∂t
+Mαβ,βnβ

)
δw d S. (A.6)

Next, the boundary conditions about surface layers are considered:

δU boundary
surface =

∫
∂S
(τ+αβ − τ

−

αβ)nβ δu
0
α −

h
2
(τ+αβ − τ

−

αβ)nβ δw,α

+
h
2
(τ+αβ,β − τ

−

αβ,β)nα δw+ (τ
+

α3+ τ
−

α3)nα δw d S

=

∫
∂S
(τ+αβ − τ

−

αβ)nβ δu
0
α −

h
2
(τ+αβ − τ

−

αβ)nαnβ δ
(
∂w
∂n

)
+

{
h
2
∂(τ+αβ − τ

−

αβ)

∂t
tαnα + (τ+α3+ τ

−

α3)nα +
h
2
(τ+αβ,β − τ

−

αβ,β)nα

}
δw d S. (A.7)

Finally, the boundary conditions of the bulk and surface layers are assembled to give

δU boundary
=

∫
∂S
(Nαβ + τ+αβ − τ

−

αβ)nβ δu
0
α −

(
Mαβ +

h
2
(τ+αβ − τ

−

αβ)
)

nβnα δ
(
∂w
∂n

)
+

{(
∂Mαβ

∂t
+

h
2
∂(τ+αβ − τ

−

αβ)

∂t

)
tβ +Mαβ,β +

h
2
(τ+αβ,β − τ

−

αβ,β)+ (τ
+

α3+ τ
−

α3)

}
nα δw d S. (A.8)

From (A.1), the following equilibrium equations can be obtained:

Nαβ,β + τ+αβ,β + τ
−

αβ,β + pα = 0,

Mαβ,αβ +
h
2
(τ+αβ,αβ − τ

−

αβ,αβ)+ (τ
+

α3,α + τ
−

α3,α)+ p3 = 0.
(A.9)
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If we set N ∗αβ = Nαβ + τ+αβ + τ
−

αβ and M∗αβ = Mαβ +
h
2
(τ+αβ + τ

−

αβ), (A.9) can be simplified as

N ∗αβ,β + pα = 0, M∗αβ,αβ + (τ
+

α3,α + τ
−

α3,α)+ p3 = 0. (A.10)

This leads to the following possibilities for the boundary conditions:

• u0
α prescribed or N ∗αβnβ specified.

•
∂w
∂n

prescribed or M∗αβnαnβ specified.

• w prescribed or
∂(M∗αβ tβ)

∂t
+M∗αβ,β + (τ

+

α3+ τ
−

α3) specified.
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