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ANTON MATZENMILLER, SEBASTIAN GERLACH AND MARK FIOLKA

Delamination in layered composites and debonding in adhesive joints are modeled and analyzed us-
ing interfacial mechanics, consisting of interface elements for the kinematical assumption and traction-
separation equations for the constitutive model. Material equations are presented for the inelastic be-
havior of pure and ductile-modified epoxy resins, used for the matrix phase of the composite and in a
chemically modified form for the adhesive in bonded structures.

Two different modeling approaches are proposed. The first is a brittle fracture model with a stress-
based failure criterion and rate-dependent strength parameters together with a mixed-mode energy crite-
rion for the interaction of the three different modes of failure. The second makes use of an elastic-plastic
approach with a traction-separation equation for ductile materials and rate-dependent yield stresses.

Standard tests for the delamination of layered composites under various modes of failure are simulated
by making use of the interface element for bonding/debonding. The model for the inelastic behavior of a
thin layer of the structural adhesive is validated up to fracture for various modes of failure due to pure and
combined loading in the normal and shear directions. Therefore, the relevant part of the experimental
setup for the testing is meshed with finite elements and the results of the simulation are compared to the
corresponding test data.

1. Introduction

Delamination in layered composites and debonding in adhesive joints are caused by crack initiation
and growth, since epoxy resin is often used as the matrix material of the reinforced composite and in
a chemically modified form as the adhesive for the bonding of structural components. With regard
to the mathematical description of both failure mechanisms, that is, the separation of the laminae and
the breaking of the adhesive layer in the joints, interfacial mechanics may be employed with interface
elements for the kinematics and traction-separation equations of the constitutive formulation. Therefore,
constitutive equations for the inelastic behavior of pure and ductile-modified epoxy resins are needed in

Keywords: adhesive models, structural bonding, delamination, crash analysis, interface element, traction-separation model,
adhesively bonded joints, simulation of failure, plasticity, mixed-mode fracture.
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addition to the interface elements for the effective modeling of the cohesive zone in the crashworthiness
analysis of layered composites as well as adhesively bonded structures.

In order to prevent sudden brittle fracture at low strain magnitudes, typical adhesives, made of epoxy
resin, are toughened by admixing tiny particles of elastomeric substances in order to make the duromeric
matrix more ductile. These structural adhesives become strain rate dependent and withstand large de-
formations. They are used in the bonded joints of car bodies. Tests on bulk specimens of toughened
adhesives show permanent deformations after unloading, if the material is strained beyond a critical
limit.

The theory of interfacial mechanics is well suited for the modeling and analysis of delamination in
layered composite structures and failure of adhesive joints in assembled components. The characteristic
feature of interfacial mechanics is the use of only those three stress components, which act on the interface
and, thus, on the plane of failure. The constitutive equations are formulated in terms of the displacement
discontinuities across the interface.

The failure analysis of adhesive joints in assembled structures requires a fine discretization of the
adhesive layer in the thickness direction in order to describe the state of stress precisely. However, for
the crashworthiness analysis of complete vehicle bodies, tiny finite elements are undesirable, since they
require a small critical time step for the simulation of the entire structure with explicit integration schemes
for the equations of motion. Crash simulation with solid elements for thin adhesive layers in complete
car body models is numerically still too elaborate, if no additional measures, like mass-scaling, are taken
to increase the critical step length of time. Thus, interface elements with very small or zero thickness are
superior for the modeling of thin adhesive layers. Then, the critical time step is no longer controlled by
the Friedrichs–Levy criterion of the solid elements for the adhesive layer but rather by the neighbouring
shell or solid elements, applied for the adjacent steel structures.

Two different modeling approaches for the delamination of layered materials and joints with thin
adhesive layers are taken from the literature. The first is a fracture model, founded on the work of
Barenblatt [1959] and Dugdale [1960], with a stress-based failure criterion and rate-dependent strength
parameters together with a mixed-mode energy criterion for the interaction of the three different modes
of failure. The second makes use of an elastic-plastic description with a traction-separation equation for
ductile materials as proposed by Su et al. [2004].

Due to the similarity between thin layers in structural components and laminated fiber composites,
analysis using interface models can be used in both cases. The finite element calculation of fracture or
delamination of specimens in different modes of failure under quasistatic and crash loading is demon-
strated with various numerical examples.

2. Cohesive zone models

The experimental investigations performed in [Schlimmer et al. 2008] at joints, bonded with crash-
resistant adhesives, show that the fracture of the bonding is dominated by cohesive failure, that is, the
crack initiation and growth takes place within the cohesive zone (see Section 5). Modelling with one
element through the thickness of the adhesive layer is numerically sufficient for the purposes of crashwor-
thiness analysis of complex structural assemblages, because only the effective mechanical behavior of the
bonding is important for the vehicle simulation, not the complete three-dimensional fine stress resolution
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in the adhesive layer. Modelling with interface elements is justified, since the compliant adhesive bond
between the stiff sheet metal is nearly inextensible and shear rigid in the plane tangential to the adhesive
layer. Thus, interfacial mechanics are an efficient approach to modeling adhesive layers as they are
widely accepted for the delamination analysis of layered composite structures.

2A. Interface element. Interface elements were originally developed for the description of the delam-
ination process in composite materials [Beer 1985; Mi et al. 1998; Schellekens and de Borst 1993].
Contrary to the usual finite element concept, the primary kinematical variable of the interface element
is the displacement jump vector 1 instead of the strain tensor, as is typical for volumetric continuum
elements. The element has three degrees of freedom at each node and consists of a total of eight nodes
with four nodes on the upper and lower sides of the interface. The displacement field in the length and
transverse directions of the interface is assumed to be bilinear. Full integration with four Gauss points is
performed. The element has no stiffness in the membrane direction. Pronounced locking effects could
not be observed so far.

2B. Mixed-mode extension of the Hillerborg fracture model. The constitutive behavior for fracture
of the adhesive is formulated between the interface stresses ti and the displacement jumps 1i , which
represent the differences of the displacement components in the normal and tangential directions of the
two neighbouring surfaces of the adherents. For the description of the softening behavior in interfaces
various models have been presented in the literature; for example, Barenblatt [1959] developed a damage
model for brittle interfaces. The traction-separation equations are formulated for the three failure modes
of fracture mechanics by means of the dissipated energy during the opening of the interface:

GIc =

∫
t3 d13, GIIc =

∫
t1 d11, GIIIc =

∫
t2 d12, (2-1)

where GIc, GIIc, and GIIIc are the critical energy release rates of the three well-known modes of fracture.
The interface traction as a function of the crack opening in the process zone is unknown and must be
supposed unless better experimental information is available, as given by [Andersson and Stigh 2004].
Different assumptions for the distribution of the traction-separation equation are discussed in the litera-
ture. An example is the bilinear model of Hillerborg et al. [1976] for brittle interfaces, which combines
linear elasticity with brittle fracture (see Figure 1).

The adhesive joint behaves linearly elastically up to the stress maximum:

t = K1, with K =

Kn 0 0
0 Kt 0
0 0 Kt

 . (2-2)

∆i

ti

t max
i

Gc

Kn, Kt

Figure 1. Bilinear course of interface traction versus displacement discontinuity.
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The same relation holds with reduced stiffness values for unloading and reloading, if the interface has
started softening. The failure initiation of the interface is determined here by a mixed-mode stress crite-
rion [Brewer and Lagace 1988]:√(

t1
tmax
1

)2

+

(
t2

tmax
2

)2

+

(
〈t3〉
tmax
3

)2

= 1. (2-3)

The interaction of the three different modes of fracture is accounted for by a mixed-mode energy criterion
[Whitcomb 1986]: (

GI
GIc

)n
+

(
GII
GIIc

)n
+

(
GIII
GIIIc

)n
= 1. (2-4)

The implementation of the model into a commercial finite element code and the application of the mixed-
mode formulation with a bilinear stress-strain diagram were presented first by Dávila and Camanho
[2001] (see also [Pinho et al. 2006]). In the present paper, the model is extended to rate-dependency and
implemented into the commercial FE code LS-DYNA [DYNA 2006], since structural adhesives show
rate-dependent material behavior even under the moderate strain rates encountered in the crashworthiness
analysis of bonded structural components — see the test data in Section 5A.

In order to take rate-dependent material behavior into account, the mixed-mode fracture model is
extended here according to the proposal by Johnson and Cook [1983] for a rate-dependent yield limit.
Its application to the brittle fracture model is based on the scaling of the failure stress components (tmax

i )0
of the rate-independent limit case with the logarithm of the rate of the effective displacement discontinuity
1̇v, defined as

tmax
1 = (tmax

1 )0

(
1+C

〈
ln
1̇v

1̇0

〉)
, tmax

3 = (tmax
3 )0

(
1+C

〈
ln
1̇v

1̇0

〉)
, (2-5)

with the material parameter C , and in the Macaulay brackets 〈 · 〉 the reference value of the jump velocity
1̇0, which must be identified from the experimental results:

1̇v =

√
1̇2

1+ 1̇
2
2+ 1̇

2
3. (2-6)

It is assumed that the rates of the effective displacement discontinuity 1̇v below the reference value 1̇0

do not contribute to the rate-dependency of the strength parameters for the adhesive.

2C. Tvergaard–Hutchinson fracture model. Tvergaard and Hutchinson proposed one of the first inter-
face failure models for the analysis of fractures in the cohesive zone. The model is widely accepted and
used for cohesive zone analysis, since it is available in commercial finite element codes (for example,
LS-DYNA [DYNA 2006]). The model of Tvergaard and Hutchinson [1994], based on the ductile fracture
concept of Dugdale [1960], possesses a trilinear distribution of the interface traction with regards to the
effective crack opening displacement, which is taken as a measure for the damage 3 (see Figure 2),
defined as

3=

√(
11

1max
1

)2

+

(
〈13〉

1max
3

)2

,

where 1max
1 and 1max

3 are the critical crack opening displacements in the tangential and normal directions.
However, no permanent displacement jumps in the sense of plasticity are taken into account. Interaction
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Figure 2. Trilinear course of interface stress σ versus damage 3.

of fracture modes I and II is inherent in the formulation, which may be extended to mode III in an
analogous manner.

The components ti of the stress vector on the interface are derived from a free energy density function
[Tvergaard and Hutchinson 1996, equation (1.2)] where the parameter for the damage 3 is defined by
means of the components 11 and 13 of the displacement discontinuity vector. The interface stresses are
given by the derivatives of the free energy density function with respect to the associated components
1i of the crack opening:

t3 =
σ(3)

3

13

1max
3

, t1 =
σ(3)

3

1max
3

1max
1

11

1max
1

. (2-7)

Hence, the critical energy release rate Gc becomes:

Gc =
1
2 σ̂1

max
3 (1−31+32). (2-8)

2D. Elastic-plastic interface model. Su et al. [2004] developed an elastic-plastic interface model with
softening, which accounts for elastic and irreversible inelastic displacement jumps prior to failure. In this
paper the model is improved with respect to hardening and softening and is extended to rate-dependency.
It is applied to the analysis of joints, bonded with toughened ductile adhesives under combined loading of
shear and tension. Unlike in [Su et al. 2004], the model is validated here for the case of combined tension
and shear loading. No information about the model’s performance for combined loading is given in [Su
et al. 2004]. The constitutive behavior is formulated between the three components of the interface stress
vector ti and the components of the displacement jump vector across the adherent layer 1i . Based on
the additive decomposition of the displacement jump vector into elastic and plastic parts, 1=1e

+1p,
the elasticity assumption for the calculation of the interface stress vector leads to

t = K1e
= K (1−1p), (2-9)

with the two-dimensional elastic stiffness tensor K of the interface as given in (2-2). The interface stress
vector t may be decomposed into normal and tangential parts, tn = (t · n)n and t t = t− tn . The effective
shear stress τ =

√
t t · t t in the interface is the resultant stress of the two tangential traction components.

The elastic domain is bounded by two yield curves with functions f (1) and f (2) for a two surface plasticity
interface model. The yield conditions in the normal (1) and shear (2) modes are

f (1) = tn − Y (1) ≤ 0, (2-10)

f (2) = τ +µtn − Y (2) ≤ 0, (2-11)
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with the yield stress in the normal, Y (1), and tangential, Y (2), directions. The variable µ in (2-11) can be
interpreted as the friction parameter of the Coulomb model, describing the interaction between stresses
in the normal and tangential directions at yielding.

The rate of the plastic displacement jump is defined by the flow rule:

1̇
p
=

2∑
i=1

λ(i)m(i) (2-12)

with an associated flow vector in tension m(1)
= n(1) and a nonassociated flow vector in shear

m(2)
=

t t
τ
6= n(2),

where n(i) is the normal to the yield surface f (i). The variable λ(i) is the plastic multiplier in the flow
rule for mode (i). It has nothing to do with the 3 of Section 2C in the Tvergaard–Hutchinson model.

Hardening or softening due to either mode of yielding is introduced into the model by means of
evolution equations for the change of the current yield stresses Y (i) in [Su et al. 2004]. Here, the yield
stresses are given as

Y (i) = Ŷ (i)(γ̄) (2-13)

in each mode of plastic flow as a function of the equivalent plastic displacement jump γ̄, introduced as
the weighted sum of the time integrated plastic multipliers γ(i):

γ̄ :=

√
(γ(1))2+β(γ(2))2, (2-14)

with β as an appropriately identified mode interaction parameter, and where

γ(i) :=

∫ t

0
λ(i)(τ )dτ. (2-15)

For the analysis of the peel and KS-II (see Section 5D) tests, the experimental data in Figure 9 are
approximated by piecewise linear yield curves for tension (α = 0) and slow, uniform loading in pure
torsion (α =∞):

Y (1) = Ŷ (1)(1P
n )= Y (1)0 + H (1)(γ̄)1P

n , Y (2) = Ŷ (2)(1P
t )= Y (2)0 + H (2)(γ̄)

√
β1P

t . (2-16)

The kinematical variables1P
n =1

P
3 and1P

t =

√
(1P

1 )
2
+ (1P

2 )
2 are respectively the normal and resultant

shear components of the plastic displacement jump vector 1P . The material quantities H (1) and H (2)

are the hardening parameters H (1)
hard and H (2)

hard identified as the inclinations of the yield curves in the
hardening range. Likewise, H (1)

soft and H (2)
soft denote the slopes of the straight lines through the data in

the successive softening range. Three different cases can be distinguished for the hardening quantities
H (i)(γ̄), depending on the state of the effective plastic displacement jump γ̄:

H (i)(γ̂)=


H (i)

hard if γ̄ < γ̄crit,

H (i)
soft if γ̄crit ≤ γ̄ < γ̄fail and f (i) > 0,

0 if γ̄ ≥ γ̄fail.

(2-17)
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In the first case, the equivalent plastic displacement jump γ̄ is smaller than the given critical displacement
jump γ̄crit and the adhesive layer is still in the state of hardening. If the variable γ̄ is greater than the
critical displacement jump, then softening of the adhesive takes place. The interface fails when the
variable γ̄ is equal to the displacement jump at failure γ̄fail, which follows from the softening moduli
H (1)

soft and H (2)
soft. Note that the softening moduli are included in the model as material parameters and γ̄fail

is calculated from them.
In this paper the elastic-plastic traction-separation equation is extended to rate-dependency by defining

the initial yield stresses Y (1)0 and Y (2)0 in the normal and tangential directions similar to the proposal of
Johnson and Cook [1983] for a rate-dependent yield limit:

Y (1) = Y (1)0

(
1+C

〈
ln
1̇v

1̇0

〉)
+ H (1)

hard1
P
n , Y (2) = Y (2)0

(
1+C

〈
ln
1̇v

1̇0

〉)
+ H (2)

hard1
P
t . (2-18)

The material parameter C and the reference rate of the displacement jump 1̇0 must be determined ex-
perimentally. The variables Y (i)0 are the initial yield stresses according to (2-16) for the two modes of
plastic flow and the variable 1̇v is the rate of the effective displacement jump as given in (2-6).

3. Time step control for explicit integration of equations of motion

The size of the critical time step for the conditionally stable explicit schemes has to be estimated for
the numerical time integration of the equations of motion. The inverse of the largest eigenfrequency
of the linear system of second order ordinary differential equations limits the maximum allowable time
step, which is slightly reduced and then used for the step-by-step integration of the nonlinear system of
the equations of motion. The largest eigenfrequency of the linear system is usually not known, since it
is practically impossible to repeatedly solve the associated eigenvalue problem with a large number of
degrees of freedom for the finite element mesh of a vehicle in a crashworthiness analysis. Therefore,
approximate solutions, mainly based on the analysis of the individual finite element, must be used for a
conservative estimate of an efficient time step.

A conservative estimate of the critical step length for the spatially discretized equations of motion for
the complete structure is computed from the largest value ωmax of the set of maximum eigenfrequencies
of all individual finite elements e: ωsystem

max ≤maxe(ω
e
max), where ωe

max is the maximum frequency of
the e-th element subjected to zero traction boundary conditions [Irons 1970; Hughes et al. 1979]. The
maximum eigenvalue of solid elements is often approximated by the bar wave velocity c and the smallest
distance 1l of two arbitrary nodes within the element, leading to the critical time step 1tcrit =1l/c. If
only one solid element over the thickness dk is used for the spatial modeling of thin adhesive layers, the
smallest distance 1l between adjacent nodes is equal to dk . The criterion above leads to an inefficiently
small critical time step, since the length of any edge in any of the finite elements must currently be at least
5 mm for the crash analysis of complete vehicle bodies to guarantee a reasonable run time in practice.
Therefore, we resort to another estimate for the critical size of the time step.

The distributed springs, symbolizing the stiffness, provided by an eight node interface element connect
the masses of the top and bottom planes in Figure 3, left.

Both planes may consist of shell elements, describing the adjoining sheet metal or the surfaces of
solid elements, used for the modeling of more bulky structural parts. The masses of both surfaces mainly
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integration point

node

m1 k m2

Figure 3. Left: interface element symbolized by distributed springs. Right: spring-mass system.

come from the bonded steel components and, to a small extent, from the adhesive layer. Figure 3, right,
shows a node with mass m1 in the top plane and a neighbouring node with mass m2 in the bottom
surface, connected by a discrete spring with stiffness k, which is computed by numerical quadrature at
the integration points of the interface element. The parameter k equals the product of the shear or normal
stiffness times a quarter of the element area in the case of an eight node interface element. The critical
time step for the spring-mass system is given by:

1tcrit = 2
√

m1m2
m1+m2

1
k
. (3-1)

Note from this equation that the thickness dk of the adhesive layer does not enter the estimate of the
critical time step for the interface element. It may be shown by numerical investigation that the critical
time step of the solid elements for the steel parts is not further limited by this estimate for the interface
elements.

4. Numerical examples for delamination analysis

The interface elements, along with the traction-separation equations of mixed-mode fracture and elasto-
plasticity, were coded into the finite element program FEAP [FEAP 2002] and the commercial code LS-
DYNA [DYNA 1998; DYNA 2006] as user defined material models. The performance of the different
approaches are demonstrated by means of the double cantilever beam (DCB) and fixed ratio mixed-mode
(FRMM) tests for delamination, all run with FEAP. The values of the elastic interface stiffness terms Kn

and Kt serve more or less as penalty parameters in the case of delamination analysis and are kept in a
reasonable range, where the stiffness does not obstruct the condition number of the stiffness matrix in
implicit analysis [Fiolka and Matzenmiller 2007] or the time step of the explicit runs.

4A. DCB test. The double cantilever beam (DCB) test, shown schematically in Figure 4, is a widely used
interlaminar fracture test of fiber-reinforced structures to analyze crack growth in mode I. The material
parameters E11, E22, G12, G13, and ν12 of the orthotropic elasticity model for the DCB specimen, made
of fiber-reinforced composite material, are given in Table 1 together with the material constants for mode
I of the Hillerborg fracture model.

For the analysis of the delamination test, two kinds of elements are used: the three-dimensional in-
terface element (see Section 2A) and a locking-free solid-shell element [Fiolka and Matzenmiller 2007].
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Figure 4. DCB test setup and finite element model.

The convergence study reveals that 140 interface elements along the length of the uncracked specimen
of 118.25 mm are sufficient for the accurate resolution of the load-deflection diagram. A total of 290
solid-shell elements are taken for the double cantilever [Fiolka 2007].

Figure 5, left, displays the experimental data from [Aliyu and Daniel 1985] and the analytical solution
from [Mi et al. 1998] together with the finite element simulation. The numerical and the experimental
results are identical until the load peak is reached, where the crack begins to increase. During the
delamination process, the forces in the numerical and the analytical solutions match very well. Further
finite element simulations have shown that the shape of the traction-separation equation, here taken as
bilinear or trilinear as in the Tvergaard–Hutchinson model, has only a small influence on the force-
displacement curve.

The interface stiffness parameters Kn and Kt are chosen to be sufficiently large enough in Table 1,
since practically the same result is obtained as in Figure 5, left, for the numerical case, if Kn and Kt are
reduced to 12000 N/mm3 or increased to 30000 N/mm3; see Figure 5, right.
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Figure 5. Left: Experimental data and simulation results of the mixed-mode fracture
model for the DCB test. Right: Results for various interface stiffness values Kn and Kt

of the mixed-mode fracture model for the DCB test from [Fiolka 2007, page 115].
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Elasticity moduli E11 = 138000 N/mm2 E22 = 8960 N/mm2

Shear moduli G12 = 7100 N/mm2 G23 = 3446 N/mm2

Poisson’s ratio ν12 = 0.3
Elastic interface stiffness Kn = 18000 N/mm3 Kt = 18000 N/mm3

Maximal interface stress tmax
3 = 51.7 N/mm2

Energy release rate GIc = 222 Nm/m2

Table 1. Material parameters for orthotropic elasticity model of composite and bilinear
interface model of DCB test from [Teßmer 2000; Fiolka 2007].

Elasticity moduli E11 = 130000 N/mm2 E22 = 8000 N/mm2

Shear moduli G12 = 6000 N/mm2 G23 = 3000 N/mm2

Poisson’s ratio ν12 = 0.27
Elastic interface stiffness Kn = 100000 N/mm3 Kt = 100000 N/mm3

Maximal interface stress tmax
1 = 48.0 N/mm2 tmax

3 = 48.0 N/mm2

Energy release rates GIc = 257 Nm/m2 GIIc = 856 Nm/m2

Interaction parameter n = 2

Table 2. Material parameters of orthotropic elasticity model for composite layer and
interface model for FRMM test.

4B. FRMM test. Among the mixed-mode bending tests, the FRMM test in Figure 6 is a common bench-
mark for the investigation of interlaminar fracture and for the determination of the mixed-mode properties
for the delamination process in fiber-reinforced composite structures. The layered composite is notched
at the free end over a length of a0 = 45 mm and clamped at the other end. The material parameters of the
FRMM specimen, made of carbon fiber-reinforced epoxy resin [Chen et al. 1999], are given in Table 2.
The parameters for the elastic interface stiffness are chosen in accordance with the earlier considerations.
A transverse load is applied at the free edge of the upper layer. The length of the finite elements is
chosen as 0.87 mm in the direction of the crack growth after a convergence study of the mesh size has
been undertaken on the experience of the DCB test. Hence, 148 volume-shell elements and 69 interface
elements are used in total.

The simulation results are compared to the experimental data and the analytical solution in Figure
7, left. The Hillerborg mixed-mode model approximates the experimental load-displacement curve
fairly well for an interaction parameter of n = 2 in (2-4). However, the Tvergaard–Hutchinson model

a

u

l=105

F

b=24

h=3.1

= 45a0

initial crack

F

Figure 6. FRMM test setup.
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underestimates the experimental load-displacement curve, because the critical energy release rate Gc in
(2-8) takes only the mode I part into account. Again, it can be shown that the shape of the graph from
the traction-separation equation has only a minor effect on the load-displacement relation — see Figure
7, right, where the force-displacement curve with λ1 = λ2 = 0.1 (the bilinear shape) is compared to the
one with λ1 = 0.2 and λ2 = 0.6 (the trilinear shape in Figure 2).

5. Failure analysis of adhesive bonds

The proposed interface models are used for the simulation of the mechanical behavior of adhesively
bonded joints until failure of the adhesive layer occurs. Therefore, the bonded tube test, the peel test,
and the KS-II test are simulated with LS-DYNA and explicit time integration. The numerical results are
compared to the experimental data. The thickness of the adhesive layers is between 0.25 and 0.30 mm
for all specimens.

5A. Experimental results for toughened adhesives. Structural adhesives are crash-resistant, toughened
plastic polymers, nowadays used in bonding applications. The material behavior of crash-resistant adhe-
sives such as Betamate 1496, SikaPower 490-6, EP 12, or Terokal 5070 was comprehensively examined
in an earlier research project [Schlimmer et al. 2002]. A typical characteristic behavior of toughened
adhesives is plastic flow under shear as well as hydrostatic loading, as can be measured in tension and
torsion tests of adhesively bonded tubes. The constitutive response in shear of a crash-resistant adhesive
under slow loading, complete unloading, and reloading was investigated in [Schlimmer 2003] with a
shear strain rate of γ̇xy = 2 · 10−3 s−1. The shear stress-shear strain from the test is shown in Figure 8,
where permanent strains γxy,bl remain in the specimen, if the external load exceeded the yield limit
before unloading took place. The hysteresis loops due to cyclic loading are neglected in the elastoplastic
approach and the linear elastic response with the shear modulus Gs is fitted to the unloading/reloading
paths.
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Figure 7. Left: Experimental data and simulation results of the Hillerborg mixed-mode
interface model for FRMM test. Right: Experimental data and simulation results of the
Tvergaard–Hutchinson mixed-mode interface model for the DCB test.
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Figure 9. Experimental results of pure tension, pure torsion, and combined tension-
torsion tests of adhesively bonded tubes from [Schlimmer 2003].

The material behavior in Figure 9 is typical for an adhesive layer between two bonded steel tubes
under uniaxial tension and torsion loading. The experimental data for the stress-strain diagrams have
been provided by Schlimmer [2003]. The combined tension-torsion tests are characterized by the ratio
α= γ/(2ε) of normal to shear strains ε and γ. In Figure 9 the results of pure tension (α=∞) and torsion
(α = 0) tests and two combined tension-torsion experiments with α = 0.5 and α = 2.0 are shown.

The rate dependency of the yield stress or stress at failure is investigated by means of tension tests
at butt-jointed specimens and of shear tests at thick shear lap specimens [Schlimmer et al. 2008]. The
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2005; Schlimmer et al. 2008].
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Figure 11. Experimental data for rate-dependent shear strength of adhesively bonded
joints and least square fit of model response for thick shear lap specimen from [Jendrny
2005; Schlimmer et al. 2008].

results are summarized in Figures 10 and 11 together with the least square fit to the data of the functions
in (2-5).

5B. Numerical analysis of bonded tubes. The bonded tube test above consists of two hollow metal
cylinders, joined at the cross section by an adhesive layer of Betamate 1496 V. An axial force or a torque
is applied at the upper end of the structure, while the far end of the lower cylinder is kept fixed (see
Figure 12). The parameters of the elastic-plastic interface model, discussed above, are determined by
fitting the model response to the data [Schlimmer et al. 2002] from the pure tension and pure torsion tests
of the bonded tubes. These are given in Table 3. The elastic interface stiffness parameters Kn and Kt
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120dk

50 60

adhesive layer

Figure 12. Bonded tubes with geometrical data.

coincide with the measured stiffness values for the adhesive layer with thickness of 0.3 mm. Dividing the
elasticity modulus and shear modulus of the adhesive layer by the thickness delivers the values chosen for
Kn and Kt in Table 3. The combined tension-torsion tests for α = 0.5 and α = 2.0 are used as validation
examples. The adhesive layer is meshed by 28 interface elements in the circumferential direction of the
tube. Figure 13 shows the experimental data from [Schlimmer et al. 2002] and the simulation results of
the stress-strain curves from the elastoplastic interface model in Section 2D.

The results of the finite element simulation agree sufficiently with the experimental data in the pure
tension and pure torsion tests, which are performed for the identification of the constitutive parameters.
The stress-strain curves in Figure 13 show that the different yield limits in the normal and tangential
directions correspond to the experimental data. The hardening of the adhesive layer is approximated
fairly well by the linear course of the graph from the model, whereas the displacement jump at the
failure of the adhesive bond is not so well represented in the load cases of combined tension and torsion.

Although the model is very flexible, allowing independent approximations of yielding due to ten-
sion and shear, its capability to describe the postcritical behavior is very limited. It does not permit
representing the initiation of softening and the state of failure separately. There is only one variable β
(see (2-14)), which may be identified such that either the initiation of softening at γ̄crit or the failure at
γ̄fail takes place in tension and shear at the same time in both modes of plastic flow. In this paper the
determination of the parameter β is a compromise between the onset of softening and the occurrence
of complete failure. In conclusion, the model has only two parameters β and γ̄crit (see Table 3) to
describe the points of maximum stress at the critical discontinuity and zero stress at failure γfail for both
modes of yielding. The combined tension-torsion tests for α = 0.5 and α = 2.0 serve as examples for

Elastic interface stiffness Kn = 6500 N/mm3 Kt = 2500 N/mm3

Yield limits Y (1)0 = 30.0 MPa Y (2)0 = 26.0 MPa
Hardening modulus H (1)

hard = 210 MPa/mm H (2)
hard = 450 MPa/mm

Softening modulus H (1)
soft = 580 MPa/mm H (2)

soft = 5000 MPa/mm
Coulomb friction parameter µ= 0.55
Interaction parameter β = 0.039
Critical displacement jump γ̄crit = 0.035 mm

Table 3. Material parameters of elastic-plastic interface model.
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plastic interface model for tension, torsion, and combined loading tests of bonded tubes.
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Figure 14. Geometry of peel test specimen and FE mesh of front part.

the validation of the model’s hypotheses in describing the plastic flow in nonuniaxial situations. The
prediction of the mechanical behavior from the simulation using LS-DYNA for these combined loading
tests is not satisfactory for the special adhesive Betamate 1496. The mode interaction behavior should
be improved for this adhesive, as should the simple assumption for the flow vector m(2)

= t t in mode II
(see (2-12)).

5C. Numerical analysis of peel test. The first series of specimens with inhomogeneous stress distribu-
tions and fracture to be examined for adhesive joints is the peel test. It resembles the DCB specimen (see
Figure 14), where two metal sheets with width b = 25 mm are glued together with the crash resistant
adhesive Betamate 1496 V and torn apart by forces at the ends normal to the bonding. However, the
metal sheets deform plastically during the peeling process, whereas in the DCB test the laminae bend
only within the elastic range.

The peel test is analyzed with the mixed-mode fracture model and the elastic-plastic interface approach
for the adhesive. Rate-independent material models are used for the adhesive and conventional Prandtl–
Reuss plasticity theory of the von Mises type for the steel of the sheet metal. The material constants
from Table 3 are taken for the plasticity model of the adhesive and from Table 4 for the isotropic, ideal
plastic description of the adherends and the mixed-mode fracture model. The constitutive parameters
of the latter in Table 4 are determined on the basis of fracture tests for modes I and II by Brede and
Hesebeck [2005].

Elasticity modulus steel E = 209000 N/mm2

Poisson’s ratio steel ν = 0.3
Yield limit steel Y0 = 350 N/mm2

Elastic interface stiffness Kn = 6500 MPa/mm, Kt = 6500 MPa/mm
Maximal interface stress tmax

n = 20.0 MPa, tmax
t = 39.5 MPa

Energy release rate GIc = 5400 Nm/m2 GIIc = GIIIc = 23000 Nm/m2

Interaction parameter n = 2

Table 4. Material parameters of steel sheets and mixed-mode cohesive zone model from
[Brede and Hesebeck 2005].
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Figure 15. FE model of deformed shape of peel test specimen.

The FE model of the peel test consists of 473 interface elements along the length and 25 in the cross
direction of the adhesive layer. Three linear solid elements are taken through the thickness of each steel
sheet and 137 in the length direction. With an element size of about 1.1 mm for the hexahedron of the
steel and 0.275 mm for the interface elements of the adhesive, the finite element mesh may be considered
as converged in practice. The boundary value problem is solved with the commercial code LS-DYNA
[DYNA 2006], extended by the user interface element with the constitutive models above, and explicit
time integration. The test is simulated with a constant velocity boundary condition of 140 mm/s at the
upper end. The deformed specimen is shown in Figure 15.

The comparison of the simulation results with the experimental data from [Schlimmer et al. 2008] is
presented in Figures 16 and 17 by means of the load-displacement curves. The typical features of these
are the peak force at the beginning, when the crack starts to open, and the decrease of the resultant force
value during the advancing peel process. The simulations with the mixed-mode model (Figure 16) and
the elastic-plastic interface approach (Figure 17) lead to different peak values of the force in the cases
with data from [Schlimmer 2003; Brede and Hesebeck 2005]. The mixed-mode model with these data
clearly overestimates the maximum load carrying capacity of the specimen; obviously, the force during
the peeling process is significantly greater than that of the corresponding experimental data (Figure 16).

The excessively high load carrying capacity in the simulation with the mixed-mode model, shown in
blue (upper dotted curve) in Figure 16, is mainly due to the loss of adhesion bonding at the surface of
the adherends in the experiments as outlined in [Schlimmer et al. 2008, chapter 3.1.7]. However, the
material data for the energy release rates in Table 4 are determined in [Brede and Hesebeck 2005] for
cohesive fracture at a much higher load carrying capacity. In summary, they may be too large, since
the area under the experimentally measured diagrams of the stress versus crack opening displacement is,
according to the tests in [Schlimmer 2003], about 3240 Nm/m2 in the case of pure tension, α= 0 in Figure
13a, and 12900 Nm/m2 in the case of torsion, α =∞ for pure shearing in Figure 13b. If these values
are taken for the critical energy release rates GIc and GIIc with the maximal interface stresses adjusted
to tmax

n = 35.0 MPa and tmax
t = 39.0 MPa, the red (solid) curves in Figure 16 follow from the simulation

with the mixed-mode fracture model [Schlimmer et al. 2002; Schlimmer 2003]. In the third run, the
energy release rates are lowered to GIc = 1300 Nm/m2 and GIIc = 10000 Nm/m2 as inversely identified in
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Figure 16. Results of the peel test computed with mixed-mode interface model and
compared to experimental data. Simulation data #1 is from [Brede and Hesebeck 2005],
#2 from [Schlimmer et al. 2008], and #3 from [Schlimmer 2003].

[Schlimmer et al. 2008], where the maximal stresses are changed slightly to tmax
n = 43.0 MPa and tmax

t =

39.0 MPa. Shown in green (light-colored dashed graph), this solution approximates the test data best.
The data in Figure 17 suggest that the elastic-plastic interface model approximates the maximum

resultant force of the experiment very well, but the peak is slightly shifted towards the left. The forces
of the interface model during the peeling process coincide with the experimental data (see Figure 17).
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Figure 18. Geometry of KS-II test specimen, and underfilling (lower right).

5D. KS-II test. Hahn et al. [1999] developed an experimental setup to investigate the mechanical be-
havior of adhesively bonded joints under tensile and shear loading (see Figures 18 and 19). The purpose
of the test is to characterize and evaluate the behavior of bonding techniques under different mechanical
stress conditions. Two U-shaped steel components are joined together with an adhesive similar to a
flange in an automotive application (see Figure 18). The dimensions of the adhesive layer are 23 mm by
16 mm with a thickness of 0.3 mm. The underfilling of 50% at the edge of the adhesive layer is shown
in Figure 18, right.

The test specimen can be pulled apart with different clamping devices under various angles of loading
with respect to the normal on the adhesive layer (see Figure 19). Four different load angles are chosen

Figure 19. Test control unit and load cases.
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Figure 20. Finite element idealization of symmetric half model.

with 0◦ for pure shear loading, 90◦ for normal loading, and the two intermediate angles 30◦ and 60◦

for combined tension and shear stressing. The loading is applied in terms of prescribed nodal velocities
on the far ends of the U-shaped profiles, which are mounted on steel support jaws, treated as rigid in
the FE model. In order to investigate the influence of the rate-dependency, analysis and experimental
testing have been performed for loading velocities of v = 1.0 m/s, in addition to the quasistatic one with
v = 10 mm/min. The displacement is measured 15 mm below the upper and lower edges of the specimen
on the line of symmetry.

In the numerical analysis, only the symmetrical half of the specimen is analyzed, as shown in Figure 20,
left. Since the validation of the substitute element for the bonding was the primary intent, both the
adhesive layer and the adherent steel parts are meshed fairly finely with the interface elements in the
region of the bonding. The adhesive bond is meshed with 16 interface elements lengthwise and 46
interface elements crosswise. However, outside of this area the steel parts in the clamping devices are
modeled as rigid bodies, where the loading in terms of prescribed nodal velocities is applied. Special
attention has to be given to the filling at the outer edge of the adhesive layer around the corner from the
steel parts (see the right side of Figure 20). Due to the increased thickness, the strains in the filling are
smaller and, thus, local failure takes place later.

Each load case has been investigated with both constitutive models mentioned above for the adhesive.
The material parameters of the mixed-mode fracture model are determined on the basis of fracture tests
(see Table 4 for the mechanical properties). The material parameters for the elastic-plastic model in Table
3 are identified from the data from experimental tests at bonded tubes with a fairly homogeneous state
of stress in the adhesive layer under tension and torsion. These are used in the analysis of the KS-II test.

The results of the analysis are plotted as the total internal force in the load direction versus the local
displacement in Figures 21–24 and compared to the data measured in the experiments [Schlimmer et al.
2008]. The local displacements in the experiment are computed as the difference of the displacement
vectors for two marked points on the clamped legs of the upper and lower U-shaped steel parts. In the
finite element analysis, the local displacement is defined as the discontinuity between the displacements
of the rigid bodies for parts of the upper and lower steel components. The force in the load direction on
the ordinate of the diagrams is calculated in the theoretical investigation from the stresses in the adhesive
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layer by summing them over the entire area. It is generally impossible to measure with a device the
force in the adhesive layer without influencing its properties with embedded particles. Therefore, the
force cannot be recorded close to the glued interface in the current test setup and a measurement cell is
put into the top of the upper clamping device. Due to the inertial effects of the mass for the steel parts
between the adhesive layer and the measurement cell, the measured forces differ from the total internal
force, transferred through the adhesive joint between the lower and upper steel components. It is difficult
to estimate the deviation of the internal force in the measurement device from the resultant on the cut
through the adhesive layer. Despite the unknown error between the measured force in the clamping
device and the stress resultant on the adhesive layer we compare the measured force from the test to the
calculated resultant in the joint and plot both quantities over the local displacements in Figures 21–24.
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Figure 21. Comparison between experimental data and simulation results with mixed-
mode interface model for quasistatic loading: tension and shear tests with angles 90◦

and 0◦ (top) and off-axis tests with angles 60◦ and 30◦ (bottom).
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5E. Quasistatic loading of KS-II test. The numerical analysis of the KS-II test shows that the failure
mechanism of the specimen is very complex. The thickness of the adherents is only 1.2 mm and, therefore,
the relatively thin sheet metals are bent in two directions during the loading process. Additionally, the
thickness of the bonding layer varies at the edges of the U-shaped adherents due to the filling of the joint
(see Figure 20). Because of these phenomena, the state of stress and strain in the adhesive layer is very
inhomogeneous. Therefore, the onset of failure takes place in the center very locally and spreads out
continuously throughout the entire bonded area.

The maximum load carrying capacity depends on the off-axis angle and is largest in the cases of shear
loading and minimal under normal loading. The peak values of the forces from the experimental and
numerical analyses are of the same order of magnitude for both models (see Figures 21 and 22). However,
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Figure 22. Comparison between experimental data and simulation results with elastic-
plastic interface model for quasistatic loading: tension and shear tests with angles 90◦

and 0◦ (top) and off-axis tests with angles 60◦ and 30◦ (bottom).
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the courses of the load-deflection diagrams from the test and the simulation in the case of shear loading
(0◦) differ in the postcritical range. As in the mixed-mode approach, the elastic-plastic interface model
describes the mechanical behavior of the bonded joint in all four load cases reasonably well (Figure 22).
The load-deflection diagrams of the load cases 30◦, 60◦, and 90◦ are more ductile in the test than in
the simulations. The predicted peak values in all cases are in the range of the experimental data. The
corresponding local displacement jumps between the two clamping devices are underestimated at both
critical states, namely at the location of the maximum force and at complete failure in most load cases.

5F. Dynamic loading of KS-II test. The rate-dependent material behavior of the adhesive layer becomes
significant in crash analyses. The rate dependency of the models, presented in (2-18), is quantitatively
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Figure 23. Comparison between experimental data and simulation results with mixed-
mode model for velocity v = 1.0 m/s: tension and shear test with angles 90◦ and 0◦ (top),
and off-axis tests with angles 60◦ and 30◦ (bottom).
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defined with the reference value 1̇0 = 10−4 1/s and with the parameter C , which is set equal to the
slope of the graph for the linear regression in Figures 10 and 11: C = m = 0.076. Because of the rate-
dependent influence of the adhesive, the KS-II specimens are tested dynamically. The tests are performed
with tensile loading under four different off-axis angles as given above. The load-displacement curves
are determined from the measured data for the displacements and the internal forces versus time. The
experimental results from the tests in [Schlimmer et al. 2008] are shown in Figures 23 and 24 for a
loading velocity of v = 1.0 m/s. Due to the rate-dependency of the adhesive, the peak value of the force
increases clearly with a larger loading velocity in comparison to the ones of the quasistatic cases in
Figures 21 and 22.

The mechanical behavior of the KS-II specimen under pure normal and combined loading with respect
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Figure 24. Comparison between experimental data and simulation results with elastic-
plastic interface model for velocity v = 1.0 m/s: tension and shear test with angles 90◦

and 0◦ (top), and off-axis tests with angles 60◦ and 30◦ (bottom).
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to the direction of the adhesive layer is investigated in Figure 23 by comparing the finite element results
of the mixed-mode fracture model to the experimental data. The theoretical solution and the test data
are in fairly good agreement.

The results of the numerical analysis with Anand’s traction-separation equations, extended to rate-
dependency, are graphically represented in Figure 24 for the four loading angles and a velocity of
v = 1.0 m/s for the separation of the two steel parts. The experimental data are added to the predicted
load-displacement curves. In the case of shear loading, the ultimate forces in the experiment and the
simulation agree well, but complete failure is detected at a much smaller relative displacement in the
analysis with the traction-separation model than in the test. For the case of combined loading, the
maximum forces differ more than in the diagrams for shear loading; however, the postcritical parts of the
force-displacement curves agree better. A more reliable validation of the test data with the theoretical
results is under way. One source of error is the force, measured far away from the adhesive layer, as
already mentioned, and compared to the stress resultant of the adhesive layer. In contrast to the quasistatic
case the entire test control unit should be modeled from the lower clamping part up to the measurement
device for the force in the case of dynamical loading. The internal force, calculated at the position of the
measurement cell, must be compared to the experimentally found value.

Another uncertainty is the exact reproduction of equal mechanical properties for the adhesive layer.
The liquid glue solidifies under heating of the entire specimen in the successive curing process. It is
difficult to guarantee a specified quality of the adhesive bond with strength and fracture strain within a
small interval of tolerance.

6. Summary and outlook

The similarities of interface models for the analysis of delamination and fracture of adhesive layers
between relatively stiff parts have been outlined and discussed with regard to the validation of simulated
results from experimental tests. Two different approaches for the modeling of thin adhesive layers under
crash loading conditions have been briefly outlined. An existing mixed-mode fracture model is extended
to account for rate-dependent strength and damage and failure of the adhesive bond. Alternatively, an
elastic-plastic interface model with a traction-separation equation can be used to describe the effective
bonding behavior. Although the interface elements may be massless an estimate of the critical time step
for the interface elements can be given.

Comparison of the simulation results and the experimental data demonstrates the model’s ability to
capture the experimentally observed major effects of rate-dependent damage and failure. The numerical
approximation of the experimental data must be still improved, for example, by modeling the entire con-
trol unit and by better matching the experimental data. In order to draw conclusions from the simulation
at hand for the crashworthiness analysis of vehicle bodies, the finite-element idealization for the KS-II
test has to be simplified by reducing the number of elements considerably.

In addition to the development of an application oriented substitute model for the adhesive layer,
the determination of adequate constitutive parameters for more effective substitute models is another
important task of the current research project. Finally, the models developed so far should be applied to
the simulation of a B-pillar in a car body, which will be investigated experimentally by another research
partner.
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H. D. BUI École Polytechnique, France
J. P. CARTER University of Sydney, Australia

R. M. CHRISTENSEN Stanford University, U.S.A.
G. M. L. GLADWELL University of Waterloo, Canada

D. H. HODGES Georgia Institute of Technology, U.S.A.
J. HUTCHINSON Harvard University, U.S.A.

C. HWU National Cheng Kung University, R.O. China
B. L. KARIHALOO University of Wales, U.K.

Y. Y. KIM Seoul National University, Republic of Korea
Z. MROZ Academy of Science, Poland
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