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Under quasiperiodic fluctuating dynamic loads, a structure made of elastic plastic material may fail by
incremental collapse (ratcheting) or alternating plasticity (fatigue). For the kinematic hardening materials
considered, the only two crucial material parameters needed are the initial and ultimate yield stresses,
but not the generally deformation-history-dependent hardening curve between them. With the high-cycle
loading we suggest taking the fatigue limit as the initial yield stress, and taking the stress corresponding
to a certain allowable amount of plastic deformation from the empirical Ramberg–Osgood curve (or the
particular cyclic yield strength corresponding to the amount 0.2% of plastic deformation) as the ultimate
yield stress in our shakedown analysis of structures. The approach is practical and well founded within
our shakedown theory, while the small deformation assumption framework of the classical plasticity
theory is kept. As illustrations, we derive explicit expressions of the working load limits for the circular
shaft and helical spring, which are based on the shakedown analysis and can be used for safety design of
the structures with given loading conditions.

1. Introduction

The design of machine elements made of elastic plastic materials, including shafts and springs [Lubliner
1990; Beer and Johnston 1992; Parmley 2000; Okopny et al. 2001; Akiniwa et al. 2008], requires the
determination of plastic collapse loads for the structures. A plastic load limit is reached when an entire
section of a determinate structure yields plastically, or full plastic yielding happens at a number of
sections within an indeterminate structure to make it a mechanism. Many practical machine elements are
subjected to fluctuating dynamic loads, whether periodic [Gavarini 1969] or quasiperiodic [Pham 1992;
2008]. Under such fluctuating dynamic loads, a structure would not collapse instantaneously according
to the classical plastic limit theory, thanks to the inertia effect, but would fail incrementally (ratcheting
mode) or by alternating plasticity (fatigue mode). The problem can be solved in the framework of
shakedown theory [Koiter 1963; Gokhfeld and Cherniavski 1980; König 1987; Bree 1989; Pham 1992;
2003; 2005; 2007; 2008; Pham and Stumpf 1994; Pham and Weichert 2001; Weichert and Maier 2002].

Machines and structures are often made of elastic plastic materials that can be described by various
sophisticated kinematic hardening models [Prager 1949; Armstrong and Frederick 1966; Ohno and Wang
1993; Pham 2007; Chaboche 2008], in which the hardening curve is generally nonlinear and depends on
the plastic deformation history. However it was established in [Pham 2007; 2008] that for the shakedown
safety assessment of a structure, the only plastic parameters needed are the initial and ultimate yield
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stresses, not the particular hardening curve between them. Further development of the theory and its
practical implementation will be demonstrated as it applies to shaft and spring structures in this study.

2. Circular shaft

Consider a circular shaft along the central axis z (0 ≤ z ≤ L), attached to a fixed support at one end
(z = 0), as presented in Figure 1. When the shaft is subjected to torsion, every cross-section remains
plane and undistorted. That implies the kinematic assumption for the tangential angular displacement in
the shaft’s circular cross-section:

uϕ = C(z)r, (1)

where C is a function of z, and r is the radial distance from the neutral axis of the shaft. The respective
shear strain is

γ =
∂uϕ
∂z
=

dC
dz

r = C1(z)r. (2)

As the torque M(L) is applied to the free end (z = L) of the shaft, the shaft will twist, with its cross-
section at z rotating through an angle ϕ(z), which, in the elastic range, is related to the elastic moment
Me(z) via the differential relation

dϕ
dz
=

Me

G Jp
, (3)

where G is the elastic shear modulus and Jp is the polar moment of inertia, which for a circular hollow
shaft of constant cross-section, with inner and outer radii R1 and R2, has the expression

Jp =
π

2
(R4

2 − R4
1). (4)

The elastic shear stress in the shaft is

τ e
ϕ =

Me

Jp
r, R1 ≤ r ≤ R2 . (5)

The shaft is made of an elastic plastic kinematic hardening material with initial and ultimate yield
stresses τ i

Y and τ u
Y [Pham 2007; 2008].

As the torque increases, the maximal shear stress at the outer radius R2 from (5) reaches the initial
yield value τ i

Y , and the moment over the whole section achieves the initial yield value

M i
Y = τ

i
Y

Jp

R2
. (6)

L

R1 2R

z

M, M

 

 
Figure 1. Conventions for a circular shaft.
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The whole section of the shaft yields plastically at the ultimate yield moment

Mu
Y =

∫ R2

R1

rτ u
Y 2πr dr = τ u

Y
2π
3
(R3

2 − R3
1). (7)

Mu
Y is considered the plastic collapse limit for the shaft subjected to static torque.
Assume that the free end of the shaft is subjected to the quasiperiodic dynamic torque

M(L)= Mp(t)+Mq(t) sin[ω(t)t], (8)

where Mp(t), Mq(t) and ω(t), with an underlined time variable, are slowly-varying functions of time
(so their time derivatives can be neglected in comparison with the functions themselves), varying within
the limits

M−p ≤ Mp(t)≤ M+p , |M
−

p | ≤ M+p , 0≤ Mq(t)≤ M+q , 0≤ ω(t)≤ ω+< ωI =
π

2L

√
G
m
, (9)

Here ωI is the principal natural frequency of the shaft (in twisting vibration), and m is the shaft’s mass
density.

We need to determine the collapse load limits for the shaft in the space of external load parameters
M−p ,M+p ,M+q , ω

+.
The equilibrium equation for the problem is

d M
dz
= m Jp

d2ϕ

dt2 . (10)

The elastic moment solution of the problem (10)+(3) with boundary conditions (8) and ϕ(0)= 0 is

Me
= Mp +Mq

cos(
√

m/Gωz)
cos(
√

m/GωL)
sin(ωt) . (11)

The shakedown kinematic theorem [Pham 2007; 2008], applied to the problem and expressed through
the shakedown safety factor ks (at ks < 1 the structure collapses, at ks > 1 it is safe, and ks = 1 determines
the shakedown boundary in the space of external load parameters), has the form

k−1
s =max {I, A}, (12)

where I and A describe respectively the incremental and alternating plasticity collapse modes:

I = sup
τ e
ϕ ;γ

∫ L
0

∫ R2
R1

maxt(τ
e
ϕγ)2πr dr dz∫ L

0

∫ R2
R1
τ u

Y |γ|2πr dr dz
= sup

Me;C1

J−1
p
∫ L

0

∫ R2
R1

maxt MeC1r3 dr dz

τ u
Y

∫ L
0

∫ R2
R1
|C1|r2 dr dz

= sup
C1

∫ L
0 maxt

[
Mp +Mq

cos(
√

m/Gωz)
cos(
√

m/GωL)
sin(ωt)

]
C1(z)

∫ R2
R1

r3 dr dz

Jpτ
u
Y

∫ L
0 |C1(z)|

∫ R2
R1

r2 dr dz

= sup
C1

∫ L
0

[
M+p +M+q

cos(
√

m/Gω+z)
cos(
√

m/Gω+L)

]
C1(z) dz

Mu
Y

∫ L
0 |C1(z)| dz

=
1

Mu
Y

[
M+p +

M+q
cos(
√

m/Gω+L)

]
, (13)
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A = sup
z,r,t1,t2

τ e(z, r, t1)− τ e(z, r, t2)
2τ i

Y

= sup
z,r

[
M+p −M−p + 2M+q

cos(
√

m/Gω+z)
cos(
√

m/Gω+L)

]
r

2τ i
Y Jp

=
1

2M i
Y

[
M+p −M−p +

2M+q
cos(
√

m/Gω+L)

]
. (14)

Here γ is the compatible plastic strain increment of the type (2), and τ e is the elastic stress from (5) and
(11). To obtain the last equality in (13), we applied a theorem on the norm of a linear functional. The
optimal field C1(z) in (13) is proportional to δ(z), the Dirac delta function, which means the incremental
collapse mode (13) happens at the section z = 0. The alternating plasticity collapse mode (14) takes
place at z = 0 and r = R2.

Two-surface models for kinematic hardening materials involving the initial and ultimate yield stresses
have been used widely in literature; see, among others, [Halphen and Nguyen 1975; Mandel 1976;
Weichert and Gross-Weege 1988; Polizzotto et al. 1991; Stein et al. 1992; Corigliano et al. 1995; Pham
and Weichert 2001; Nguyen 2003; Pham 2005]. Our model leaves unspecified the hardening curve,
which generally depends on the plastic deformation history, but assumes it satisfies the positive hysteresis
postulate (

∮
α dε p

≥ 0 for any closed cycle, where α is the back stress and ε p the plastic deformation).
This postulate seems to be supported by the experimental data in the literature [Pham 2007].

For our particular problem, the plastic deformation does change proportionally at every point within
the structure over loading cycles; hence the expressions (12)–(14) are exact, not just an upper bound, for
the shakedown safety factor ks . For more details, consult [Pham and Stumpf 1994].

From the relations (12)–(14), the safety criterion against incremental plastic collapse (ratcheting) of
the shaft can be represented as

M+p +
M+q

cos(
√

m/Gω+L)
≤ Mu

Y (i.e., I ≤ 1), (15)

while the safety against alternating plasticity collapse (fatigue) requires

M+p −M−p +
2M+q

cos(
√

m/Gω+L)
≤ 2M i

Y (i.e., A ≤ 1). (16)

At M+q = 0, (15) reduces to the known criterion for safety of the shaft against static plastic collapse
stated in (7).

The shear initial yield stress τ i
Y appearing in the expression (6) for the initial yield moment M i

Y in (14)
and (16), which is responsible for the alternating plasticity mode, is generally not the convenient one
corresponding to the amount 0.2% of plastic deformation, but may take its value as small as the fatigue
stress limit τ f

Y , since (16) determines the alternating plasticity collapse at the high-number of loading
cycles (about 106–107 cycles). For particular loading processes with smaller numbers of cycles, τ i

Y (and
hence M i

Y ) may be given larger values, up to the ultimate shear yield stress τ u
Y (corresponding to Mu

Y ),
and can be taken from the fatigue curve for the particular material making the shaft.

Similarly, the shear ultimate yield stress τ u
Y appearing in the expression (7) for the ultimate yield

moment Mu
Y in (13) and (15), which is responsible for the incremental mode, is generally not that de-

termined from a monotonic loading experiment, but may be smaller and can be taken from ratcheting
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experiments on high number of cycles corresponding to those met in particular loading conditions of
the material. The ratcheting (ultimate yield) stress may also be taken as that corresponding to a certain
amount of allowable plastic deformation. Fatigue and ratcheting are observed widely in experiments on
the mechanical properties of materials.

We need the experimental ratcheting curve (yield stress versus number of cycles) for a material, like
the known fatigue curve, for application in our shakedown safety assessment procedure, in particular for
the incremental mode.

Introduce the dimensionless parameters and variables

a =
M−p
M+p

, f =
M i

Y

Mu
Y
=

3(R4
2 − R4

1)τ
i
Y

4R2(R3
2 − R3

1)τ
u
Y

, P =
M+p
Mu

Y
, Q =

M+q
Mu

Y
, W =

√
m
G
ω+L

2
π
. (17)

Then (15) and (16) can be represented as

P +
Q

cos(Wπ/2)
≤ 1 (i.e., I ≤ 1), (18)

P(1− a)+
2Q

cos(Wπ/2)
≤ 2 f (i.e., A ≤ 1). (19)

The incremental collapse curve I = 1, through the W -Q relation, can be written as

Q = (1− P) cos(Wπ/2), (20)

while the alternating plasticity collapse curve A = 1 is

Q =
(

f − P(1− a)/2
)

cos(Wπ/2). (21)

Comparing (20) and (21), one sees that, at

P >
2(1− f )

1+ a
, (22)

the curve (20) lies under the curve (21); thus, according to (12), the collapse mode is incremental, while at

P <
2(1− f )

1+ a
(23)

the curve (21) is lower; hence the collapse mode is alternating plasticity.
As numerical illustrations, we present in Figure 2 the shakedown curve (20) and (21) in the W -Q

coordinate plane for these particular cases (the domain under the curve is the safety domain):

• a = 0, f = 1
2 , P = 1

4 , fatigue mode (A = 1): Q = 3
8 cos(Wπ/2);

• a = 1, f = 1
3 , P = 7

10 , ratcheting mode (I = 1): Q = 3
10 cos(Wπ/2);

• a = 1, f = 1
2 , P = 3

4 , ratcheting mode (I = 1): Q = 1
4 cos(Wπ/2);

• a = 1
2 , f = 1

3 , P = 1
2 , fatigue mode (A = 1): Q = 5

24 cos(Wπ/2).

On approaching the principal natural frequency of the structure (W→ 1), the safety limit on Q reduces
to 0.
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Figure 2. Shakedown curves (and modes) in the plane of external torque’s frequency-
amplitude parameters, at various values of a, f, P .
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Figure 3. Incremental (I = 1) and alternating plasticity (A = 1) lines in the plane of
external torque’s amplitudes’ parameters, at a = 1, W = 1

3 (left) and at a = 1
2 , W = 2

3
(right).

Alternatively, the incremental collapse line I = 1 from (18) and the alternating plasticity collapse line
A = 1 from (19) are plotted in Figure 3 in the P-Q coordinate plane for these two cases:

• a = 1, W = 1
3 , corresponding to I = P + 2

√
3

Q = 1, A = 4
√

3
Q = 1;

• a = 1
2 , W = 2

3 , corresponding to I = P + 2Q = 1, A = 1
2 P + 4Q = 1.

The shakedown domain is what lies under both the incremental (ratcheting) I = 1 and alternating
plasticity (fatigue) A = 1 lines. At the intersect of the lines, the collapse mode changes from one mode
to the other

3. Helical spring

Consider a cylindrical coiled spring Figure 4 with small angle of lifting of coil α� 1 and the central
axis z (0≤ z ≤ L , not counting the two irregular short ends) along the wire making the spring; D is the
pitch diameter of spring; R1 and R2 are inner and outer radii of the circular hollow wire. One end of the
spring is fixed, while the other end is subjected to the dynamic quasiperiodic fluctuating load

F = Fp(t)+ Fq(t) sin[ω(t)t], (24)
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Figure 4. Conventions for a helical spring.

where Fp(t), Fq(t), ω(t) with underlined time variable are slowly-varying functions of time, which vary
within the limits

F−p ≤ Fp(t)≤ F+p , |F
−

p | ≤ F+p , 0≤ Fq(t)≤ F+q , 0≤ ω(t)≤ ω+< ωI , (25)

ωI is the principal natural frequency of the spring. We have to determine the collapse load limits for the
spring in the space of external load parameters F−p , F+p , F+q , ω

+.
The elastic shear stress on a cross-section of the spring’s wire is composed of the two parts: the

torsional shear stress (Me and Fe are the torque and cutting load acting on the section, r is the radial
distance from the section’s center)

τ e
ϕ =

Me

Jp
r =

Fe

2Jp
Dr, (26)

and the cutting shear stress

τ e
x =

Fe

π(R2
2 − R2

1)
. (27)

Comparing (26) and (27), one sees that under the condition

R� D, (28)

we have
|τ e

x | � |τ
e
ϕ |, (29)

and the component τ e
x can be disregarded as a small contribution (compared to τ e

ϕ). The effect of the two
irregular short ends of the spring is also disregarded (they are considered as rigid).

The elastic moment on the wire’s sections in response to load (24) is

Me
= Fp

D
2
+ Fq

D
2

cos(
√

m/Gωz)
cos(
√

m/GωL)
sin(ωt) . (30)

Then, similar to the problem of the previous section, the shakedown kinematic theorem applied to the
problem has the particular form

k−1
s =max {I, A}, (31)
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with

I =
P
g
+

Q
g cos(Wπ/2)

, A = P
1− a

2
+

Q
cos(Wπ/2)

, (32)

where

P =
F+p
F i

Y
, Q =

F+q
F i

Y
, W =

√
m
G
ω+L

2
π
, a =

F−p
F+p

,

g =
Fu

Y

F i
Y
=

4R2(R3
2 − R3

1)τ
u
Y

3(R4
2 − R4

1)τ
i
Y
, F i

Y = τ
i
Y
π

DR2
(R4

2 − R4
1), Fu

Y = τ
u
Y

4π
3D

(R3
2 − R3

1).

(33)

The expressions (31)–(32) are similar to those in (12)–(14), with F+p , F−p , F+q , F i
Y , Fu

Y replacing
M+p , M−p , M+q , M i

Y , Mu
Y , respectively; hence the shakedown analysis follows the same line.

As already stated in our previous works, the initial yield stress should be taken as small as the fatigue
limit for the shakedown safety in the general path-independent spirit of the shakedown theorems. The
ultimate yield stress is expected to be the lowest limit from those obtained in multicycle loading experi-
ments rather than that obtained in the standard monotonic loading experiment. However the high-cycle
ultimate yield strength as well as the monotonic one are often attained at the large plastic deformations,
which fall far outside the small deformation assumption framework of the classical plasticity theory and
the shakedown theorems. Also the design requirement of many structures would not allow excessive
global configuration changes due to the large plastic deformations. Hence we suggest taking for the
ultimate yield stress (of the quasistatic or low-cycle processes) - the yield stress corresponding to some
allowable small amount of plastic deformation from the standard monotonic loading experiment, such as
that from the broadly used Ramberg–Osgood empirical formula (the unnecessary for our purpose elastic
part of the relationship is dropped)

σY = K (ε p)n, (34)

where σY is the yield strength, ε p the plastic deformation, K the strength coefficient, and n the strain
hardening exponent. The best known one is the yield strength σ (0.2)Y corresponding to 0.2% of plastic
deformation; this is considered as the first significant amount of irreversible strain:

σ
(0.2)
Y = K (0.002)n. (35)

Note that though a local plastic deformation at the amount 0.2% may be insignificant for the global
geometry of a structure because of the global compatible strain constraint, when a global incremental
mechanism I = 1 is formed with σ u

Y = σ
(0.2)
Y , a significant global compatible plastic strain increment arises

leading to a significant configuration change of the structure. Still, Equations (34) and (35), obtained
from the monotonic loading experiment, are the only first approximations for our ultimate yield stress
σ u

Y of multicycle loading processes, which should be established from high-cycle loading experiments
(such as those in the fatigue tests). Ideally we need the stress-controlled cyclic loading experiments
leading to certain allowable amount of plastic deformation. For cyclic softening materials, we may rely
on the strain-controlled cyclic loading experiments, as those presented in [Tucker et al. 1979; Roessle and
Fatemi 2000; Li et al. 2009]. From the multicycle tests they got the Ramberg–Osgood type relationship

σY c = K ′(ε p)n
′

, (36)
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Alloy steel K ′ n′ σY f σ
(0.2)
Y c σ

(0.2)
Y σY b εY b

SAE 1141* 1127 0.124 433 591 814 925 0.88
SAE 1038 1009 0.208 248 364 410 649 1.10
SAE 1541 1622 0.194 228 424 475 783 0.80
SAE 1090 1310 0.174 350 545 735 1090 0.15
08 Si2Mn 524 0.110 195 248 400 414 1.02
20 Si2Mn 772 0.180 152 241 262 441 0.96
40 Si2Mn 1434 0.140 403 600 883 931 1.02
60 Si2Mn 1358 0.120 381 648 789 1000 0.41

* Aluminum fine grain

Table 1. Strength properties of some alloy steels. K ′ is the cyclic strength coefficient,
n′ the cyclic strain hardening exponent, σY f the fatigue limit, σ (0.2)Y c the cyclic yield
strength (0.2%); σ (0.2)Y the yield strength (0.2%), σY b the ultimate yield strength, and
εY b the corresponding ultimate plastic strain. All strength parameters are given in MPa,
except the dimensionless parameters n′ and εY b.

where σY c is the cyclic yield stress amplitude, ε p is the cyclic plastic deformation amplitude, K ′ is
the cyclic strength coefficient, and n′ is the cyclic strain hardening exponent. The most significant
strength parameter might be the cyclic yield strength σ (0.2)Y c corresponding to the amount 0.2% of plastic
deformation, which we could adopt as the ultimate yield stress σ u

Y for the incremental collapse mode

σ
(0.2)
Y c = K ′(0.002)n

′

. (37)

It designates the critical point, beyond which the excessive global compatible plastic deformation incre-
ments of the structure are expected. Because the small plastic deformation assumption is kept, application
of the classical plasticity theory and our path-independent shakedown theorems is legitimate.

The cyclic yield strength σ (0.2)Y c , cyclic strength coefficient K ′, cyclic strain hardening exponent n′, as
well as the fatigue limit σY f , yield strength σ (0.2)Y , ultimate yield strength σY b and corresponding ultimate
plastic strain εY b for a number of alloy steels are given in [Tucker et al. 1979; Roessle and Fatemi 2000;
Li et al. 2009], some of which are presented in Table 1. All the strength parameters are given in MPa,
except the dimensionless parameters n′ and εY b. Note that the ultimate yield strength σY b generally is
reached at the large amount of plastic deformation εY b, and the cyclic yield strength σ (0.2)Y c may be much
different from the yield strength σ (0.2)Y .

As numerical illustrations of Equations (31)–(33) we choose SAE-1090 steel, a = 3
4 , W = 2

3 , and the
following situations:

• The alternating plasticity collapse mode A = 1 with τ i
Y =

1
2σ

i
Y =

1
2σY f = 175 MPa,

• The incremental collapse mode I = 1 with τ u
Y =

1
2σ

u
Y =

1
2σ

(0.2)
Y c = 272.5 MPa,

• The incremental collapse mode (I =) I ′ = 1 with τ u
Y =

1
2σ

u
Y =

1
2σ

(0.2)
Y = 367.5 MPa,

• The incremental collapse mode (I =) I ′′ = 1 with τ u
Y =

1
2σ

u
Y =

1
2σY b = 545 MPa.
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Figure 5. Alternating plasticity line A= 1; Incremental lines I = 1 (σ u
Y = σ

(0.2)
Y c ), I ′ = 1

(σ u
Y = σ

(0.2)
Y ), and I ′′= 1 (σ u

Y = σY b) in the plane of external load’s amplitude parameters.

The results of calculations are presented in the plane of dimensionless load amplitude parameters Q-P
in Figure 5. The shakedown working domain is bounded above by the lower envelope of the ratcheting
(incremental) and fatigue (alternating plasticity) lines. On the boundary of the domain, the collapse mode
changes from the ratcheting one at small values of Q to the fatigue one at sufficiently high values of Q.

One should keep in mind that, in the light of shakedown analysis, the alternating plasticity (fatigue)
mode is local, while the incremental (ratcheting) mode is global [Pham 2000].

4. Conclusion

Our shakedown theory has been applied to determine the working load limits for some typical elements
of machines subjected to quasiperiodic dynamic loads. In the static limit, the results reduce to those
plastic limit ones often used in design of the structures. It is clear that for dynamic loading, the load
amplitude limits may decrease significantly, especially when the frequency of the acting load approaches
the natural frequencies of a structure. The two distinct nonshakedown collapse modes: the incremental
and alternating plasticity ones are separated.

In shakedown safety analysis for elastic plastic kinematic hardening materials, the only plastic pa-
rameters required are the initial and ultimate yield stresses. However for high-cycle loadings, which
are usual for structures under working dynamic fluctuating loads, the initial and ultimate yield stresses
should not be taken as the convenient and usual ones from monotonic loading experiments, but may be
much lower and are to be taken from the fatigue and ratcheting curves experimentally constructed for the
materials under high-cycle loadings (up to 106–107 cycles). Application of shakedown theorems should
be kept within the framework of the small plastic deformation assumption. Here, in particular, we take
the fatigue limit as the initial yield stress, and the cyclic yield strength (corresponding to 0.2% of plastic
deformation) as the ultimate yield stress for the shakedown safety assessment of the structures subjected
to dynamic high-cycle loading.

Though used here to analyze only simple shaft and spring structures as illustrations, our approach
involving two nonshakedown modes (and the corresponding recommendations) applies to general elastic
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plastic kinematic hardening structures. The approach is supported by the shakedown theorems in [Pham
2007; 2008].
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troenie, Moscow, 2001.

[Parmley 2000] R. O. Parmley (editor), Illustrated sourcebook of mechanical components, McGraw-Hill, New York, 2000.

[Pham 1992] Pham D. C., “Extended shakedown theorems for elastic plastic bodies under quasi-periodic dynamic loading”,
Proc. R. Soc. Lond. A 439:1907 (1992), 649–658.

[Pham 2000] Pham D. C., “From local failure toward global collapse of elastic plastic structures in fluctuating fields”, Int. J.
Mech. Sci. 42 (2000), 819–829.

[Pham 2003] Pham D. C., “Shakedown theory for elastic-perfectly plastic bodies revisited”, Int. J. Mech. Sci. 45:6–7 (2003),
1011–1027.

[Pham 2005] Pham D. C., “Shakedown static and kinematic theorems for elastic-plastic limited linear kinematic-hardening
solids”, Eur. J. Mech. A Solids 24:1 (2005), 35–45.

[Pham 2007] Pham D. C., “Shakedown theory for elastic plastic kinematic hardening bodies”, Int. J. Plast. 23:7 (2007), 1240–
1259.



458 PHAM DUC CHINH

[Pham 2008] Pham D. C., “On shakedown theory for elastic-plastic materials and extensions”, J. Mech. Phys. Solids 56:5
(2008), 1905–1915.

[Pham and Stumpf 1994] D. C. Pham and H. Stumpf, “Kinematical approach to shakedown analysis of some structures”, Quart.
Appl. Math. 52:4 (1994), 707–719.

[Pham and Weichert 2001] D. C. Pham and D. Weichert, “Shakedown analysis for elastic-plastic bodies with limited kinematic
hardening”, Proc. R. Soc. Lond. A 457:2009 (2001), 1097–1110.

[Polizzotto et al. 1991] C. Polizzotto, G. Borino, S. Caddemi, and P. Fuschi, “Shakedown problems for mechanical models
with internal variables”, Eur. J. Mech. A Solids 10:6 (1991), 621–639.

[Prager 1949] W. Prager, “Recent developments in the mathematical theory of plasticity”, J. Appl. Phys. 20:3 (1949), 235–241.

[Roessle and Fatemi 2000] M. L. Roessle and A. Fatemi, “Strain-controlled fatigue properties of steels and some simple
approximations”, Int. J. Fatigue 22:6 (2000), 495–511.

[Stein et al. 1992] E. Stein, G. Zhang, and J. A. König, “Shakedown with nonlinear strain-hardening including structural
computation using finite element method”, Int. J. Plast. 8:1 (1992), 1–31.

[Tucker et al. 1979] L. E. Tucker, R. W. Landgraf, and W. R. Brose, “Technical report on fatigue properties”, Technical report
SAE J1099, Society of Automotive Engineers, 1979.

[Weichert and Gross-Weege 1988] D. Weichert and J. Gross-Weege, “The numerical assessment of elastic-plastic sheets under
variable mechanical and thermal loads using a simplified two-surface yield condition”, Int. J. Mech. Sci. 30:10 (1988), 757–
767.

[Weichert and Maier 2002] D. Weichert and G. Maier (editors), Inelastic behaviour of structures under variable repeated loads:
direct analysis methods, CISM Courses and Lectures 432, Springer, Vienna, 2002.

Received 12 Jul 2009. Revised 17 Oct 2009. Accepted 30 Oct 2009.

PHAM DUC CHINH: pdchinh@imech.ac.vn
Vietnamese Academy of Science and Technology, Institute of Mechanics, Vien Co Hoc, 264 Doi Can, Ba Dinh, Hanoi,
Vietnam



JOURNAL OF MECHANICS OF MATERIALS AND STRUCTURES
http://www.jomms.org

Founded by Charles R. Steele and Marie-Louise Steele

EDITORS

CHARLES R. STEELE Stanford University, U.S.A.
DAVIDE BIGONI University of Trento, Italy
IWONA JASIUK University of Illinois at Urbana-Champaign, U.S.A.

YASUHIDE SHINDO Tohoku University, Japan

EDITORIAL BOARD
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